自动微装配系统的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微装配技术已成为生产具有复杂三维几何结构和由不同材料制造的微机电系统(Micro-electro-mechanical system,MEMS)的重要手段。受机械手定位精度的限制,微装配需要视觉和力的反馈控制才能实现。然而,在这种通过视觉和力反馈才能实现的微装配中存在的一些问题一直限制了微装配系统的装配精度和装配效率。首先,如何快速获取清晰的多维高分辨率的视觉反馈信息一直是微装配系统中的难点。其次,在微夹钳上集成实现力反馈的微力传感器是困难的。因此,合理配置微装配系统中的显微视觉系统(Microscopic vision system, MVS),提高自动调焦精度和效率和建立有效的微力传感及控制方法是微装配系统能自动、快速和精确地实现装配任务时必须解决的问题,开展这方面的研究具有重要学术意义和工程应用前景。
     为解决上述问题,根据建立的显微视觉系统的视觉可分辨能力模型和视场空间模型,提出了一种用于权衡双目显微视觉系统的视觉可分辨能力和视场空间的显微视觉系统Pareto优化方法;通过将调焦评价函数曲线以峰值为界分为左右两条独立的调焦评价函数曲线及将最佳聚焦位置看做这两条独立的调焦评价函数曲线的交点,提出了一种基于双侧预测求交的自动调焦方法;建立了夹持力与微夹钳夹爪角度变化量正切之间的关系,提出了夹持力的显微视觉伺服控制方法。
     本文的主要研究工作和创新点可以归纳为以下五个方面:
     1.建立了一个单操作手5自由度自动微装配系统,为自动微装配系统的关键技术研究提供了技术支撑和实验条件。分析了压电致动微夹钳的位移和夹持力特性,建立了夹持力与压电致动微夹钳夹爪角度变化量正切的关系。
     2.为计算双目显微视觉系统的视场空间的相交体积,建立了双目显微视觉系统的相交视场空间模型。提出了一种显微视觉系统的Pareto优化方法权衡自动微装配系统中的双目显微视觉系统的视觉可分辨能力和相交视场空间,优化双目显微视觉系统的拓扑关系和光学放大倍数。通过在视觉可分辨能力模型和相交视场空间模型基础上建立的多目标函数和“Pareto优化”原理,获得表征权衡双目显微视觉系统的视觉可分辨能力性能和相交视场空间性能之间的关系的Pareto最优曲线(即Pareto前沿)。根据Pareto前沿,双目显微视觉系统的拓扑关系和光学放大倍数能够被确定。
     3.为实现自动微装配过程中的自动调焦,提出并研究了一种双侧预测求交自动调焦方法。该方法将调焦评价函数曲线以峰值为界分为左右两条独立的调焦评价函数曲线,最佳聚焦位置看作是这两条独立的调焦评价函数曲线的交点。这种自动调焦方法的调焦精度和调焦效率被测试并与7点爬山法和双曲线拟合方法的调焦精度和调焦效率进行了比较。
     4.为避免在夹持过程中损伤或丢失零件,根据建立的夹持力与微夹钳夹爪角度变化量正切之间的关系,提出了夹持力显微视觉伺服控制方法。应用基于轮廓点余弦值的角点提取方法,根据设定的轮廓点余弦值阈值,提取零件轮廓上的角点和融合图像中零件之间的分界点。研究了基于图像的显微视觉伺服控制方法,设计了基于图像的显微视觉伺服控制的PID(Proportion Integration Differentiation)控制器。在建立的自动微装配系统上,用零件和夹爪位置及夹爪间距控制实验测试了基于图像的显微视觉伺服控制方法,用夹持力的控制实验测试了夹持力显微视觉控制方法。
     5.为实现微型金属圆柱腔的自动对准和堆叠,规划了这个微装配任务的装配序列。在构建的自动微装配系统上,测试并完成了微型金属圆柱腔的自动对准和堆叠任务。
     本文的研究工作对自动微装配系统的开发和设计具有重要的指导意义。
Microassembly has become an important means that produces themicro-electro-mechanical system (MEMS) with complex three-dimensional geometricstructures and different materials. The microassembly only can be implemented byvision and force feedback control due to the restriction of the positioning accuracy ofthe micromanipulators. However, the assembly accuracy and efficiency of themicroassembly systems have been influenced by the vision and force feedback. Firstly,how to quickly get the legible multidimensional vision feedback information with highresolution is always the issue of the microassembly system. Secondly, it is of greatdifficulty to integrate the micro force sensor on the microgripper. Therefore, designingthe proper microscopic vision system of the microassembly systems, improving theaccuracy and efficiency of the autofocus, and establishing the effective micro-forcecontrol method are necessary to automatically, rapidly, and accurately implementmicroassembly tasks. These researches are of importance due to their academicsignificance and engineering application prospect.
     In order to solve the above problems, the Pareto optimization method of themicroscopic vision systems for tradeoff between the vision resolvability and theintersecting space of view of the binocular microscope vision system is proposedaccording to the vision resolvability model and the established space of view model inthis study; the bilateral prediction and intersection calculation autofocus method isproposed by dividing the focus measure curve into two independent focus measurecurves with the peak and regarding the intersection of the two independent focusmeasure curves as the best in-focus position; the relationship between the holding forceand the angle change tangent value of the gripping jaws of the microgripper isestablished and the microscopic visual servo control based holding force control methodis proposed as well.
     The major research works and the innovations in this dissertation can besummarized as follows:
     1. The automated microassembly system with single manipulator and five degreeof freedom is set up for providing the technical support and the experimental conditionswhen studying these key technologies about the automated microassembly systems. Thedisplacement and force features of the piezoelectric-driven microgripper are analyzed and the relationship between the holding force and the angle change tangent value of thegripping jaws of the piezoelectric-driven microgripper is established.
     2. The model of the intersecting space of view of the binocular microscope visionsystem is set up for calculating the intersecting volume of their space of views. Themicroscopic visual servo control based Pareto optimization method is proposed foroptimizing the topological relationship and the magnification by weighing the visionresolvability and the intersecting space of view of the binocular microscope visionsystems. The Pareto optimal curve (namely Pareto front) that represents the weighedrelationship between the vision resolvability and the intersecting space of view iscalculated by the multi-objective function established on the vision resolvability and theintersecting space of view and the "Pareto optimization" principle. The topologicalrelationships and the magnifications of the binocular microscope vision system can bedetermined by the Pareto front.
     3. The bilateral prediction and intersection calculation autofocus method isproposed for implementing the autofocus in the process of the microassembly. Theauto-focus method divides the focus measure curve into two independent focus measurecurves with the peak and regards the intersection of the two independent focus measurecurves as the best in-focus position. The theoretical analyses have shown that theauto-focus method cannot only effectively avoid the principle error caused by assumingthe symmetrical focus measure curve in the auto-focus methods based on curve fitting,but also eliminate the possible waver search near the peak position in the modified fastclimbing search method. The focusing accuracy and the focusing speed of the autofocusmethod have been tested and compared with those of the7-point hill-climbing searchmethod and the quadratic curve fitting method.
     4. The microscopic visual servo control based holding force control method isproposed according to the established relationship between the holding force and theangle change tangent value of the gripping jaw of the microgripper. The corner pointextraction method based on the cosine value of the contour point can accurately extractthe corner point of the contour of the part and the demarcation point between thedifferent parts in the fusion image if the threshold of the cosine value of the contourpoint can be properly set. The vision-based microscopic visual servo control method isexplored and the PID (Proportion Integration Differentiation) controller of thevision-based microscopic visual servo control method is designed. In the builtautomated microassembly system, the vision-based microscopic visual servo control method is tested by the controlling the part and microgripper positions and the gapbetween the gripping jaws, and the microscopic visual servo control based holding forcecontrol method is also by controlling the holding force when gripping the part.
     5. For implementing the automatic alignment and stack task of the tiny metalcylindrical cavities, the assembly sequence of the microassembly task is planned. Onthe built automated microassembly system, the automatic alignment and stack task ofthe tiny metal cylindrical cavities is tested.
     The researches in this dissertation would be beneficial to developing and designingthe automated microassembly systems.
引文
[1] B. H. Van, J. Peirs, and D. Reynaerts. Assembly of microsystems [J]. CIRP Annals-Manufacturing Technology,2000,49(2):451-472.
    [2]王琪民.微型机械导论[M].中国科学技术大学出版社,2003.
    [3] J. Corbett, P. A. Mckeown, G. N. Peggs, and R. Whatmore. Nonotechnology: Internationaldevelopments and emerging products [J]. CIRP Annals-Manufacturing Technology,2000,49(2):523-545.
    [4] J. Cecil, D. Powell, and D.Vasquez. Assembly and manipulation of micro devices—A state ofthe art survey [J]. Robotics and Computer-Integrated Manufacturing,2007,23(5):580-588.
    [5] T. R. Hsu. Micro assembly-A technology on the frontier of new industrial automation [C].Keynote speech at the8th International Conference on Automation Technology,2005,1-16.
    [6]王化明.智能制造中的微操作/微装配系统基础技术研究[D].南京航空航天大学,2004.
    [7]席文明,姚斌.微装配与微操作[M].国防工业出版社,2006.
    [8] W. T. Sun and T. C. Chin. Image-based visual servo for micromanipulation a multiple-viewand multiple-scale approach [J]. Micro-Nanomechatronics and Human Science,2004and theFourth Symposium Micro-Nanomechatronics for Information-Based Society,2004,341-346.
    [9] M. Nakadokoro, S. Komada, and T. Hori. Stereo visual servo of robot manipulators byestimated image features without3D reconstruction [C]. Proceedings of the IEEEInternational Conference on Systems, Man, and Cybernetics,1999,1:571-576.
    [10] J. P. Wang, A. Liu, X. D. Tao,and H. S. Cho. Microassembly of micropeg and-hole usinguncalibrated visual servoing method [J]. Precision Engineering,2008,32(3):173-181.
    [11]谢晖,孙立宁,荣伟彬.基于改进Smith预估器的显微视觉伺服[J].光学精密工程,2006,14(2):285-290.
    [12] R. S. Fearing. Survey of sticking effects for micro parts handling [C]. Proceedings of the1995IEEE/RSJ International Conference on Intelligent Robots and Systems,1995,2:212-217.
    [13] B. V geli and H. V. K nel. AFM-study of sticking effects for microparts handling, Wear,2000,238(1):20-24.
    [14] K. F. Bohringer, K. Goldberg, M. Cohn, R. Howe, and A. Pisano. Parallel microassemblywith electrostatic force fields [C]. International Conference on Robotics and Automation(ICRA),1998,2:1204-1211.
    [15] J. T. Feddema, P. Xavier, and R. Brown. Micro-assembly planning with van der Waals force[J]. Journal of Micromechatronics,1999,1(2):139-153.
    [16] S. Butefisch, V. Seidemann, and S. Buttgenbach. A new micro pneumatic actuator formicromechanical systems [C]. Proceedings of the11th International Conference onSolid-State Sensor and Actuators-Transducers,2011,722-725.
    [17] M. Kohl, B. Krevet, and E. Just. SMA microgripper system [J]. Sensors and Actuators,2002,A97-98:646-652.
    [18] F. Arai and Fukuda T. A new pick up and release method by heating for micromanipulation
    [C]. Proceedings of the Tenth IEEE Annual International Workshop on Micro ElectroMechanical Systems,1997,383-388.
    [19] W. Zesch, M. Brunner, and A. Weber. Vacuum tool for handling of microobjects in ananorobot [C]. Proceedings of the1997IEEE International Conference on Robotics andAutomation,1997,2:1761-1766.
    [20] O. Millet, P. Bernardoni, S. Regnier, P. Bidaud, D. Collard, and L. Buchaillot. Micro gripperdriven by SDAs coupled to an amplification mechanism [C]. The12th InternationalConference on Transducers, Solid-State Sensors, Actuators and Microsystems,2003,1:280-283.
    [21] F. Dionnet, D. Haliyo, and S. Regnier. Autonomous micromanipulation using a new strategyof accurate release by rolling [C]. Proceedings of IEEE International Conference on Roboticsand Automation,2004,5019-5024.
    [22] P. Lerch, C. K. Slimane, B. Romanowicz, and P. Renaud. Modelization and characterizationof asymmetrical thermal micro-actuactors [C]. Journal of Micromechlanics andMicroengineering,1996,6(1):134-137.
    [23] J. Schlick and D. Zuehlke. Design and application of a gripper for microparts using flexurehinges and pneumatic actuation [C]. Proceedings of SPIE Microrobotics and MicroassemblyIII,2001,4568:1-11.
    [24] A. Ferreira, C. Cassier, and S. Hirai. Automatic microassembly system assisted by visionservoing and virtual reality [J]. IEEE/ASME Transantions on Mechatronics,2004,9(2):321-333.
    [25] W. Brenner, A. Almansa-Martin, and F. Sümecz. Advanced methods and tools for handlingand assembly in microtechnology–A European approach in FP6[J]. MicroelectronicEngineering,2006,83(4-9):1386–1388.
    [26]陈立国,孙立宁. MEMS器件微装配系统的设计与研制[J].中国机械工程,2005,16(14):1226-1232.
    [27] K. F. Bohringer, R. S. Fearing, and K. Y. Goldberg. Microassembly, in: Handbook ofIndustrial Robotics, John Wiley&Sons,1999.
    [28] M. B. Cohn, K. F. Boehringer, and J. M. Noworolski. Microassembly technologies for MEMS[C]. Proceedings SPIE Micromachining and Microfabrication,1998,3515:2-16.
    [29] B. Tamadazte, S. Dembélé and N. L-F. Piat. A Multiscale Calibration of a PhotonVideomicroscope for Visual Servo Control: Application to MEMS Micromanipulation andMicroassembly [J]. Sensors&Transducers Journal, Special Issue,2009,5:37-52.
    [30] B. Tamadazte, N. L-F. Piat, and S. Demb′el′e. Robotic Micromanipulation andMicroassembly Using Monoview and Multiscale Visual Servoing [J]. IEEE-ASMETransactions on Mechatronics,2011,16(2):277-287.
    [31] C. Clevy,A. Hubert,and J. Agnusetal. A micromanipulation cell including a tool changer [J].Journal of micromechanics and microengineering,2005,15(10):5292-5301.
    [32] S. J. Lee, K. Kim, D. H. Kim, J. O. Park, and G. T. Park. Multiple magnification imagesbased micropositioning for3D micro assembly [C]. The7th International Conference onControl, Automation, Robotics and Vision,2002,2:914-919.
    [33] K. Kim, D. H. Kim, and S. J. Lee. Hybrid microassembly system for three-dimensionalMEMS components [C]. Proceedings of2002International Workshop on Microfactory,2002,21-24.
    [34] X. Tao, F. Janabi-Sharifi, and H. Cho. An Active Zooming Strategy for Variable Field ofView and Depth of Field in Vision-Based Microassembly[J]. IEEE transactions onautomation science and engineering,2009,6(3):504-513.
    [35] X. Tao, H. Cho, and Y. Cho. Microassembly of peg and hole using active zooming [J].Optomechatronic Systems Control,2005,6052:605204.
    [36] G. Yang, J. A. Gaines, and B. J. Nelson. A supervisory wafer-level3D microassembly systemfor hybrid MEMS fabrication [J]. Journal of Intelligent and Robotic Systems,2003,37(1):43-68.
    [37] J. T. Feddema and R. W. Simon. CAD-driven microassembly and visual servoing [C].Proceedings of the1998IEEE Intemational Conference on Robotics&Automation Leuven,Belgium,1998,2:1212-1219.
    [38] B. Tamadazte, T. Arnould, and S. Dembélé. Real-time vision-based microassembly of3DMEMS [C]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2009,1-6.
    [39] W. Henning and Jérémie B. NEXUS market analysis for MEMS and microsystems III,2005-2009[Z]. NEXUS association, Neuchatel,2005,33-35.
    [40] N. Dechev, W. L. Cleghorn, and J. K. Mills. Construction of a3D MEMS microcoil usingsequential robotic microassembly Operations [C]. Proceedings of ASME IMECE2003:2003ASME International Mechanical Engineering Congress and R&D Expo,2003,1-7.
    [41] Y. H. Anis, J. K. Mills, and W. L. Cleghorn. Automated microassembly task execution usingvision-based feedback control [C]. Proceedings of the International Conference onInformation Acquisition,2007,476-481.
    [42] L. D. Wang, L. Ren, J. K. Mills, and W. L. Cleghom. Automatic3D joining in microassembly
    [C]. Proceedings of the International Conference on Information Acquisition,2007,292-297.
    [43] M. Tanaka. Development of desktop machining microfactory [J]. RIKEN Review: Focusedon Advances on Micro-mechanical Fabrication Techniques,2001,(34):46-49.
    [44] H. Woern, F. Schmoeckel, A. Buerkle, J. Samitier, M. Puig-Vidal, S. A. I. Johansson, U.Simu, J. Meyer, and M. Biehl. From decimeter-to centimeter-sized mobile microrobots–thedevelopment of the MINIMAN system [C]. Proceedings Proc. SPIE4568, Microrobotics andMicroassembly III,2001,175-185.
    [45]段瑞玲.计算机显微视觉伺服柔性微装配系统技术及实验研究[D].清华大学,2006.
    [46]段瑞玲,段惠波,李庆祥,李玉和,杨再华.基于图像处理的微装配自动调焦系统[J].光学精密工程,2006,14(3):468-472.
    [47] H. M. Wang and J. Y. Zhu. A precise visual control method for micromanipulator [J]. CIRPAnnals-Manufacturing Technology,2004,53(1):17-20.
    [48] H. M. Wang, W. M. Xi, and J. Y. Zhu. Control schemes for CMAC neural network-basedvisual servoing [J]. Chinese Journal of Mechanical Engineering,2003,16(3):256-259.
    [49]韩江义.带力觉反馈的主从式遥微操作系统研制与实验研究[D].南京航空航天大学,2010.
    [50]韩江义,游有鹏,王化明,朱剑英.一种带力传感的微夹持器设计及实验研究[J].机器人,2009,31(1):67-71.
    [51]韩江义,游有鹏,王化明,朱剑英.并联机构力传递的分析[J].机器人,2009,31(6):523-528.
    [52]韩江义,游有鹏,王化明,朱剑英.夹钳式力反馈遥微操作试验研究[J].机器人,2010,32(2):184-189.
    [53]谢晖,孙立宁,荣伟彬,陈立国.一种MEMS自动微装配机器人[J].哈尔滨工业大学学报,2006,38(7):1013-1016.
    [54] L. N. Sun, H. Xie, W. B. Rong, and L. G. Chen. Task-reconfigurable system for MEMSassembly [C]. Proceedings of IEEE International Conference on Robotics and AutomationBarcelona, Spain,2005,832-837.
    [55] H. Xie, L. G. Chen, L. N. Sun, and W. B. Rong. Hybrid vision-force control for automaticassembly of miniaturized gear system [C]. Proceedings of t IEEE International Conference onRobotics and Automation,2005,1368-1373
    [56]王乐锋.微构件粘着接触模型和基于粘着力的微操作方法研究[D].哈尔滨工业大学,2008.
    [57] L. N. Sun, L. F. Wang, W. B. Rong. Capillary interactions between a probe tip and ananoparticle [J].Chinese Physics Letter,2008,25(5):1795-1798.
    [58]孙立宁,王乐锋,荣伟彬.小Tabor数分形粗糙表面之间的粘着弹性接触分析[J].摩擦学学报,2008,28(2):145~149.
    [59]宋宇.面向微操作的微小型机器人视觉伺服技术研究[D].哈尔滨工业大学,2007.
    [60]宋宇,郭伟,孙立宁.基于微小型移动机器人的微操作系统[J].机械工程学报,2007,43(2):96-103.
    [61]孙明竹.面向复杂作业的微操作机器人系统视觉反馈与定位研究[D].南开大学,2009.
    [62]赵新,孙明竹,卢桂章,余斌.基于显微图像处理的微操作工具深度信息提取方法[J].自动化学报,2007,33(9):917-923.
    [63]于保军.基于显微视觉的微操作系统及其伺服控制研究[D].吉林大学,2008.
    [64]于保军,杨志刚,齐会良.基于显微视觉的宏/微双驱动微动台系统[J].农业机械报,2008,39(02):125-129.
    [65]李江昊.基于毫米级移动微机器人的微装配系统运动控制与路径规划研究[D].上海交通大学,2009.
    [66]陈国良,黄心汉,周祖德.微装配机器人系统[J].机械工程学报,2009,45(2):288-293.
    [67] X. D. Li, G. H. Zong, and S. S. Bi. Development of global vision system for biologicalautomatic micromanipulation system [C]. Proceedings of the2001IEEE InternationConference on Robotics&Automation,2001,1:127-132.
    [68]徐征.微操作系统中定位控制、人机交互和微量注射问题研究[D].大连理工大学,2003.
    [69]徐征,刘冲,王立鼎,陈阳.微操作避障和定位控制研究[J].机械工程学报,2003,5(39):71-75.
    [70] X. D. Wang, G. J. Yao, C. Liu and L. D. Wang. Microfluidic analytical device orientedmicroassembly sysem [C]. The4th International Workshop on Microfactories(IWMF2004).
    [71] B. Robert, D. Andrew, S. Paul and P. Nikolaos. Optimal camera placement for automatedsurveillance Tasks [J]. Journal of Intelligent and Robotic Systems: Theory and Applications,2007,50(3):257-295.
    [72] C. H. Chen, Y. Yao, D. Page, B. Abidi, A. Koschan and M. Abidi. Camera handoff andplacement for automated tracking systems with multiple omnidirectional cameras [J].Computer Vision and Image Understanding,2010,114(2):179-197.
    [73] T. Bill and L. Christian. Automatic camera placement for robot vision tasks [C]. Proceedingsof the1995IEEE International Conference on Robotics and Automation,1995,2:1732-1737.
    [74] B. J. Nelson and P. K. Khosla. Integrating sensor placement and visual tracking strategies [C].Proceedings of the1994IEEE International Conference on Robotics and Automation,1994,2:1351–1356.
    [75] K. A. Tarabanis, R. Y. Tsai and A. Kaul. Computing occlusion free viewpoints [J]. IEEETransactions on Pattern Analysis and Machine Intelligence,1996,18(3):273–292.
    [76] E. Dunn and G. Olague. Pareto optimal camera placement for automated visual inspection [C].2005IEEE/RSJ International Conference on Intelligent Robots and Systems,2005,3821-3826.
    [77] J. G. Emilio, R. C. Sergio, J. S. Michael and C. J. Jesús. An efficient multi-camera,multi-target scheme for the three-dimensional control of robots using uncalibrated vision.Robotics and Computer-Integrated Manufacturing,2003,19(5):387-400.
    [78] S. Fleishman, D. Cohen-Or and D. Lischinski. Automatic camera placement for image-basedmodeling [J]. Computer Graphics Forum,2000,19(2):101-110.
    [79] M. Subbarao, T. Choi, and A. Nikzad. Focusing techniques [J]. Journal of OpticalEngineering,1993,32(11):2824–2836.
    [80] J. F. Brenner, B. S. Dew, J. B. Horton, T. King, P. W. Neurath, and W. D. Selles. Anautomated microscope for cytologic research a preliminary evaluation [J]. Journal ofHistochemistry&Cytochemistry,1976,24:100-111.
    [81] F. C. A. Groen, I. T. Young, and G. Ligthart. A comparison of different focus functions foruse in autofocus algorithms [J]. Cytometry,1985,12(6):81-91.
    [82] E. Krotov. Focusing. Int. J. Comput. Vis,1987,1:223-237.
    [83] T. Yeo, S. O. Jayasooriah, and R. Sinniah. Autofocusing for tissuemicroscopy [J]. Image andVision Computing,1993,11:629-639.
    [84] L. Firestone, K. Cook, K. Culp, N. Talsania, and K. Preston. Comparison of autofocusmethods for automated microscopy [J]. Cytometry,1991.12:195-206.
    [85]孙杰,袁跃辉,王传永.数字图像处理自动图像聚焦算法的分析和比较[J].光学学报,2007,27(1):35-39.
    [86] J. Kautsky, J. Flusser, B. Zitova and S. Simberova. A new wavelet-based measure of imagefocus [J]. Pattern Recognition Letters,2002,23(14):1785-1794.
    [87]余超,王伯雄,郑汉卿,罗秀芝,张明照.显微镜自动粗调焦的TennenGrad改进算法[J].光学精密工程,2007,15(5):784-790.
    [88]李玉和,刘志峰.微系统自动化装配技术[M].北京:电子工业出版社,2008,101-119.
    [89]王昕,王海霞,徐抒岩,王永成.基于功率谱的遥感相机自动调焦算法研究与实现[J].电子器件,2007,30(3):980-987.
    [90] K. Ooi, K. Izumi, M. Nozaki, and I. Takeda. An advanced autofocus system for video camerausing QUASI condition reasoning [J]. IEEE Transactions on Consumer Electronics,1990,36(3):526-530.
    [91] J. Baina and J. Dublet. Automatic focus and iris control for video cameras [C]. FifthInternational Conference on Image Processing and its Applications,1995,232-235.
    [92] K. S. Choi, J. S. Lee, and S. J. Ko. New autofocusing technique using the frequency selectiveweighted median filter for video cameras [J]. IEEE Transactions on Consumer Electronics,1999,45(3):820-827.
    [93] T. Pengo, A. Mu oz-barrutia, and C. Ortiz-De-Solórzano. Halton sampling for autofocus [J].Journal of Microscopy,2009,235(1):50-58.
    [94] J. He, R. Z. Zhou, and Z. L. Hong. Modified fast climbing search auto-focus method withadaptive step size searching technique for digital camera [J]. IEEE Transactions on ConsumerElectronics,2003,49(2):257-262.
    [95] H. S. Yoon and T. H. Park. A fast focusing method for CCM autofocusing handlers [J].International Journal of Advanced Manufacturing Technology,2009,43(3):287-293.
    [96] S. Yazdanfar, K. B. Kenny, K. Tasimi, A. D. Corwin, E. L. Dixon, and R. J. Filkins. Simpleand robust image-based autofocusing for digital microscopy [J]. Optics Express,2008,16(12):8670-8677.
    [97] H. Oku, M. Ishikawa, Theodorus, and K. Hashimoto. High-speed autofocusing of a cell usingdiffraction patterns [J]. Optics Express,2006,14(9):3952-3960.
    [98] C. M. Chen, C. M. Hong and H. C. Chuang. Efficient auto-focus algorithm utilizing discretedifference equation predicting model for digital still cameras [J]. IEEE Transactions onConsumer Electronics,2006,52(4):1135-1143.
    [99] N. Kehtarnavaz and H. J. Oh. Development and real-time implementation of a rule-basedauto-focus algorithm, Real-Time Imaging [J].2003,9(3):197-203.
    [100]周峰.基于灰色预测的微装配自动调焦方法[D]重庆,重庆大学,2010.
    [101] S.Hutchinson, G. Hager, and P. Corke. A tutorial on visual servo control [J]. IEEETransactions on Robotics and Automation,1996,12(5):651-670.
    [102] S. J. Ralis, B. Vikramaditya, and B. J. Nelson. Visual servoing frameworks formicroassembly of hybrid MEMS [C]. Proceedings of SPIE on Microrobotics andMicromanipulation,1998,3519:70-79.
    [103] B. Vikramaditya and B. J. Nelson.Visually guided microassembly using optical microscopesand active vision techniques. Proceedings of the1997IEEE Intemational Conference onRobotics and Automation,1997,4:3172-3177.
    [104] Kemal Berk Yesin. CAD model tracking for visually guilded3D microassembly [D].University of Minnesota,2003.
    [105] B. Tamadazte, N. L-F. Piat, and E. Marchand. A Direct Visual Servoing Scheme forAutomatic Nanopositioning [J]. IEEE/ASME transactions on mechatronics,2012,17(4):728-736.
    [106]席文明,王磊.基于显微镜聚焦的微装配视觉伺服研究[J].仪器仪表学报,2005,26(11):1191-1194.
    [107] M. C. Carrozza, A. Eisinberg, A. Menciassi, D. Campolo, S. Micera, and P. Dario. Towards aforce-controlled microgripper for assembling biomedical microdevices [J]. Journal ofMicromechanics and Microengineering,2000,10(2):271-276.
    [108] F. Arai, D. Andou, Y. Nonoda, T. Fukuda, H. Iwata, and K. Itoigawa. Integratedmicroendeffector for micromanipulation [J]. IEEE/ASME Transactions on Mechatronics,1998,3(1):17-23.
    [109] R. Pérez, N. Chaillet, K. Domanski, P. Janus, P. Grabiec. Fabrication, modeling andintegration of a silicon technology force sensor in a piezoelectric micro-manipulator [J].Sensors and Actuators A: Physical,2006,128(2):367-375.
    [110] S. K. Nah and Z. W. Zhong. A microgripper using piezoelectric actuation for micro-objectmanipulation [J]. Sensors and Actuators A: Physical,2007,133(1):218-224.
    [111] M. M. Blideran, M. Fleischer, F. Grauvogel, K. L ffler, M.G. Langer, and D.P. Kern.Real-time gripping detection for a mechanically actuated microgripper [J]. MicroelectronicEngineering,2008,85(5-6):1022-1026.
    [112] M. N. M. Zubir and B. Shirinzadeh. Development of a high precision flexure-basedmicrogripper [J]. Precision Engineering,2009,33(4):362-370.
    [113] M. N. M. Zubir, B. Shirinzadeh, and Y. L. Tian. Development of a novel flexure-basedmicrogripper for high precision micro-object manipulation [J]. Sensors and Actuators A:Physical,2009,150(2):257-266.
    [114] D. H. Wang, Q. Yang, and H. M. Dong. A monolithic compliant piezoelectric-drivenmicrogripper: Design [J].Modeling and Testing, IEEE/ASME Transactions on Mechatronics,2013,18(1):138-147.
    [115] D. H. Wang and Q. Yang. A piezoelectrically driven microgripper and its open-loopdisplacement characteristics [J]. Nanotechnology and Precision Engineering (in Chinese),2010,8(1):47-53.
    [116]杨群.一种夹爪平行移动的压电致动微夹钳的研究[D].重庆,重庆大学,2009.
    [117] C. J. Kim, A. P. Pisano, and R. S. Muller. Overhung electrostatic microgripper [C]. Digest ofTechnical Papers of International Conference on Solid-State Sensors and Actuators(Transducers’91),1991,610-613.
    [118] C. J. Kim, A. P. Pisano, and R. S. Muller. Silicon-processed overhanging microgripper [C].Journal of Microelectromechanical Systems,1992,1(1):31-36.
    [119] D. H. Kim, M. G. Lee, B. Kim, and Y. Sun. A superelastic alloy microgripper with embeddedelectromagnetic actuators and piezoelectric force sensors a numerical and experimental study[J] Smart Materials and Structures,2005,14(6):1265-1272.
    [120] I. Giouroudi, H. H tzendorfer, J. Kosel, D. Andrijasevic, W. Brenner. Development of amicrogripping system for handling of microcomponents [J]. Precision Engineering,2008,32(2):148-152.
    [121] K. Kim, X. Liu, Y. Zhang and Y. Sun. Micronewton force-controlled manipulation ofbiomaterials using a monolithic MEMS microgripper with two-axis force feedback [C].Proceedings of IEEE International Conference on Robotics and Automation (ICRA2008),2008,3100-3105.
    [122] H. Du, C. Su, M. K. Lim and W. L. Jin. A micromachined thermally-driven gripper: anumerical and experimental study [J]. Smart Materials and Structures,1999,8(5):616-622.
    [123] K. M lhave and O. Hansen. Electro-thermally actuated microgrippers with integratedforce-feedback [J]. Journal of Micromechanics and Microengineering,2005,15(6):1265-1270.
    [124] Y. H. Anis, J. K Mills, and W. L. Cleghorn. Active microgripper interface used inmicroassembly of MEMS [C]. Proceedings of Canadian Conference on Electrical andComputer Engineering (CCECE’06),2006,352-354.
    [125] T. C. Duc, G-K. Lau, J. F. Creemer, and P. M. Sarro. Electrothermal microgripper with largejaw displacement and integrated force sensors [J]. Journal of MicroelectromechanicalSystems,2008,17(6):1546-1555.
    [126] J. H. Kyung, B. G. Ko, Y. H. Ha, and G. J.Chung. Design of a microgripper formicromanipulation of microcomponents using SMA wires and flexible hinges [J]. Sensorsand Actuators A: Physical,2008,141(1):144-150.
    [127] D. H. Kim, B. Kim and H. Kang. Development of a piezoelectric polymer-based sensorizedmicrogripper for microassembly and micromanipulation [J]. Microsystem Technologies,2004,10(4):275-280.
    [128] G. Thomell, M. Bexell, J. A. Schweitz, and S. Johansson. Design and fabrication of a grippingtool for micromanipulation [J]. Proceedings of the8th International Conference on Solid-StateSensors and Actuators, Sensors and Actuators A: Physical,1995,53(1-3):428-433.
    [129] M. Weck, C. Peschke. Equipment technology for flexible and automated micro-assembly [J].Microsystem Technologies,2004,10(3):241-246.
    [130] R. Salim, H. Wurmus, A. Harnisch, and D. Hülsenberg. Microgrippers created inmicrostructurable glass [J]. Microsystem Technologies,1997,4(1):32-34.
    [131] Menciassi A, Eisinberg A, Mazzoni M, and Dario P, A sensorized μelectro dischargemachined superelastic alloy microgripper for micromanipulation: simulation andcharacterization, Proceedings of IEEE/RSJ International Conference on Intelligent Robots andSystem, Vol.2, No.2, pp.1591-1595,2002.
    [132] R. Keoschkerjan and H. Wurmus. A novel microgripper with parallel movement of grippingarms [C]. Proceedings of the8th International Conference on New Actuators (Actuator2002),Bremen, Germany,2002,321-324.
    [133] E. T. Enikov, L. L. Minkov and S. Clark. Microassembly experiments with transparentelectrostatic gripper under optical and vision-based control [J]. IEEE transactions onindustrial electronics,2005,52(4):1005-1012.
    [134] M. Goldfarb and N. Celanovic. A flexure-based gripper for small-scale manipulation [C].Robotica, Cambridge University Press,1999,17(2):181-187.
    [135] A. Menciassi, G. Scalari, A. Eisinberg, C. Anticoli, P. Francabandiera, M.C. Carrozza and P.Dario. An instrumented probe for mechanical characterization of soft tissues [J]. BiomedicalMicrodevices,2001,3(2):149-156.
    [136] A. Menciassi, A. Eisinberg, G. Scalari, C. Anticoli, M.C. Carrozza, P. Dario. Forcefeedback-based microinstrument for measuring tissue properties and pulse in microsurgery
    [C]. Proceedings2001IEEE International Conference on Robotics and Automation(ICRA’2001),2001,1:626-631.
    [137] M. A. Greminger, B. J. Nelson. Vision-based force measurement [J]. IEEE Transactions onPattern Analysis and Machine Intelligence, March2004,26(3):290-298.
    [138] Y.T. Shen, N. Xi, W.J. Li, and J.D. Tan,. A high sensitivity force sensor for microassembly:design and experiments [J]. IEEE Advanced Intelligent Mechatronics, Jnly2003,2(1):703-708.
    [139] F. Arai, Y. Nonoda, and T. Oota. New force measurement and micro grasping method usinglaser raman spectrophotometer [C]. Proceedings of the IEEE International Conference onRobotics and Automation Minneapolis, Minnesota,1996,3:2220-2225.
    [140] T. Chen, L.G. Chen, L. N. Sun, X. X. Li. Design and fabrication of a four-arm-structureMEMS gripper [J]. IEEE Transactions on Industrial Electronics, April2009,56(4):996-1004.
    [141] F. Beyeler, A. Neild, S. Oberti, D. J. Bell, Y. Sun, J. Dual., B. J. Nelson. Monolithicallyfabricated microgripper with integrated force sensor for manipulating microobjects andbiological cells aligned in an ultrasonic field [J]. Journal of Microelectromechanical Systems,Feb2007,16(1):7-15.
    [142] H. K. Chu, J. K. Mills, and W. L. Cleghorn. MEMS capacitive force sensor for use inmicroassembly [C]. IEEE/ASME International Conference on Advanced IntelligentMechatronics (AIM2008), Xian China, July2008,797-802.
    [143] E. T. Enikov and B. J. Nelson. Three-dimensional microfabrication for a multi-degree-of-freedom capacitive force sensor using fibre-chip coupling [J]. Journal ofMicromechanics and Microengineering, Dec2000,10(4):492-497.
    [144] B. J. Nelson, Y. Zhou, and B. Vikramaditya. Sensor-based microassembly of hybrid MEMSdevices [J]. IEEE Control Systems Magazine, Dec1998,18(6):35-45.
    [145] Z. Lu, P. C. Y. Chen and W. Lin. Force sensing and control in micromanipulation [J]. IEEETransactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, Nov2006,36(6):713-724.
    [146] X. Wang, G. K. Ananthasuresh, and J. P. Ostrowski. Vision-based sensing of forces in elasticobjects [J]. Sensors and Actuators A:Physical2001,94(3):142-156.
    [147] David J. Cappelleria, Gianluca Piazzab and Vijay Kumara. A two dimensional vision-basedforce sensor for microrobotic applications [J]. Sensors and Actuators A: Physical,2011,171(2):340-351.
    [148] A. N. Reddy, N. Maheshwari, D. K. Sahu, and G. K. Ananthasuresh. Miniature compliantgrippers with vision-based force sensing [J]. IEEE transactions on robotics,2010,26(5):867-877.
    [149] M. Kaneko, N. Kanayama, and T. Tsuji. Vision-Based Active Sensor Using a Flexible Beam[J]. IEEE/ASME transactions on mechatronics,2001,6(1):7-16.
    [150] X.Y. Liu, Y. Sun, W.H. Wang, and B.M. Lansdorp. Vision-based cellular force measurementusing an elastic microfabricated device [J]. Journal of micromechanics and microengineering,2007,17:1281-1288.
    [151] Y. H. Anis, J. K. Mills and W. L. Cleghorn. Vision-based measurement of microassemblyforces [J]. Journal of micromechanics and microengineering2006,16:1639-1652.
    [152] V. Chawda and M. K. OrMalley. Vision-Based force sensing for nanomanipulation [J].IEEE/ASME transactions on Mechatronics,2011,16(6):1177-1183.
    [153] D. H. Wang, W. Zhu, Q. Yang, and W. M. Ding. A high-voltage and high-power amplifier fordriving piezoelectric stack actuators [J]. Journal of Intelligent Material Systems andStructures,2009,20(16):1987-2001.
    [154] B. J. Nelson and P. K. Khosla. Vision resolvability for visually servoed manipulation[J].Journal of Robotic System,1996,13(9):75-93.
    [155] N. Muller, L. Magaia, and B. M. Herbst. Singular Value Decomposition,Eigenfaces, and3DReconstructions [J]. Society for Industrial and Applied Mathematics,2004,46(3):518-545.
    [156] S. Allegro, C. Chanel, and J. Jacot. Autofocus for automated microassembly under amicroscope [J]. Journal of Image Processing,1996,2(10):677-680.
    [157] Y. Sun, S. Duthaler, and B. J. Nelson. Autofocusing in computer microscopy: Selecting theoptimal focus algorithm [J]. Microscopy Research and Technique,2004,65(3):139-149.
    [158] M. A. Bueno-Ibarra, J. Alvarez-Borrego, L. Acho, and M. C. Chavez-Sanchez. Fast autofocusalgorithm for automated microscopes [J]. Optical Engineering,2005,44(6),063601.
    [159] S. H. Jin, J. U. Cho, and J. W. Jeon. FPGA based passive auto focus system using adaptivethresholding [C]. Proceedings of the ICASE International Joint Conference,2006,2290-2295.
    [160] M. Riaz, S. Park, M. B. Ahmad, W. Rasheed, and J. Park. Generalized laplacian as focusmeasure [C]. Proceedings of International Conference on Computational Science,2008,5101:1013-1021.
    [161] G. J. Chen, M. F. Zhu, and X. G. Qiu. Image auto-focus system based on remote web monitor
    [C]. Proceedings of2007International Workshop on Imaging Systems and Techniques,2007,91-94.
    [162] K. Grabowski, W. Sankowski, M. Zubert, and M. Napieralska. Focus assessment issues in irisimage acquisition system [C] International Conference on Mixed Design of IntegratedCircuits and Systems,2007,628-631.
    [163] T. Hu, S. Z. Chen, G. D. Liu, and Z. B. Pu. Selection of auto-focus function in micro visualsystem [J]. Semiconductor Optoelectronics,2006,27(2):216-220.
    [164] R. L..Duan, H. B..Duan, Q. X..Li, Y. H..Li, and Z. H. Yang. Micro-assembly auto-focusingsystem based on image processing [J]. Optics and Precision Engineering,2006,14(3):468-472.
    [165] Takahashi K, Kubota A and Naemura T2004A focus measure for light field rendering [C].Proceedings of2004International Conference on Image Processing, pp.2475-2478
    [166] S.L. Brazdilova and M. Kozubek, Information content analysis in automated microscopyimaging using an adaptive auto-focus algorithm for multimodal functions [J]. Journal ofMicroscopy,2009,236(3):194-202.
    [167]傅德印,刘晓梅.预测方法与应用.北京:中国统计出版社,2003.
    [168]王代华,周峰,吴朝明.基于阈值的调焦方向判断方法[J].仪器仪表学报,2010,31(8):1813-1818.
    [169] G. Iannello, L. Onofri, G. Punzo, and P. Soda. An efficient autofocus algorithm for indirectimmunofluorescence applications [C]. Proceedings of24th IEEE International Symposium onComputer-Based Medical Systems (CBMS),2011,1-6.
    [170] S. J. Ralis, B. Vikramaditya, and B. J. Nelson. Micropositioning of a weakly calibratedmicroassembly system using coarse-to-fine visual servoing strategies [J]. IEEE Transactionson Electronics Packaging Manufacturing,2000,23(2):123-131.