一类三自由度并联机构的特性研究与优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着天文学的发展,望远镜的分辨率要求越来越高,对副镜的支撑提出了更高的要求,传统的四翼梁式支撑结构可以实现自动调焦,但不能主动校正副镜的姿态,因此,设计具有两个转动一个移动自由度的副镜支撑机构,实时、稳定、高精度地调整副镜相对主镜的焦距和姿态,具有重要的现实意义。
     本文以望远镜副镜三自由度并联支撑为背景,围绕三自由度并联机构的设计主线,开展了构型设计与选型、运动学设计、精度分析与设计、结构参数优化设计、仿真平台设计等五方面的研究。
     并联机构的设计首先需要进行构型设计和选型。根据期望两个转动和一个移动自由度的需求,采用约束螺旋理论设计了三支链、采用添加约束法设计了四支链对称的三自由度并联机构。在此基础上,综合考虑并联机构的结构对称、结构简单、结构紧凑、低惯性等定性指标,以及伴随运动小、全局条件数大、运动副刚度大精度好等定量指标,最终选取3-RCU构型作为望远镜副镜并联支撑。
     本文提出分类建模方法,建立两转一移三自由度并联机构的统一运动学模型、速度传递模型和误差传递模型。根据并两转一移三自由度并联机构的驱动和约束特性,分类建立了运动学模型;在此基础上,建立了运动支链的D-H矩阵模型,全面反映各运动支链的运动副和杆件的运动特性;建立了并联机构的速度传递模型,反映驱动速度与动平台的有效位姿变化速度之间的映射关系,并得到机构的速度Jacobian巨阵和全局条件数。同时,对并联机构的姿态描述进行了深入讨论,引入zxz欧拉角法研究机构的伴随运动和姿态空间,引入YXY欧拉角法研究机构速度Jacobian矩阵、全局条件数和误差传递模型。
     考虑并联机构具有两个转动一个移动自由度,定义了两个欧拉角和一个移动的微小摄动为机构的有效位姿误差,基于误差摄动原理和机构的速度传递模型,建立了运动副安装误差(包括结构偏差)、运动副间隙误差和支链驱动误差(包括传感误差)等主要误差源到动平台有效位姿误差的全误差模型;然后,推导了3-RCU并联机构的最大误差模型,分析了各主要误差源对动平台有效位姿误差的误差灵敏度;最后,分别研究了基于灵敏度和基于成本的3-RCU并联机构精度设计,并采用遗传算法实现了3-RCU并联机构的精度设计。
     根据两转一移三自由度并联机构的运动特点,推广了机器人包含工作空间和全姿态工作空间的概念,定义了两转一移并联机构的可达工作空间和灵活工作空间,以及工作空间体积;然后讨论了并联机构的约束条件,并基于区间分析方法计算了3-RCU并联机构的工作空间,分析了工作空间的形状特点。
     确定以动平台半径、连杆中心位置长度和驱动行程与静平台半径的比值为设计变量,分析了全局条件数、最大位姿误差和工作空间体积等3个性能指标随3个设计变量的变化规律,优化设计得到3-RCU并联机构的关键结构参数。
     最后,利用Matlab GUI工具箱设计了两转一移三自由度并联机构仿真平台,重点研究了3-RCU并联机构的可视化运动仿真模块。基于SolidWorks软件建立了机构的三维实体模型,基于SimMechanics工具箱设计了机构的运动学和动力学控制系统,包括轨迹规划模块、控制器模块、并联机构模型模块和显示模块等,实现了3-RCU并联机构的可视化运动仿真研究。
With the advancement of Astronomy, and the continuously increasing requirements of telescopes resolution, the study of support for the secondary mirror is highly desirable. The traditional support structure, which is a four-wing beam framework, can realize automatic focal distance adjustment, while active adjustment of secondary mirror posture is not possible. It has strong practical application to have a supporting system for the telescope secondary mirror to modulate focal distance and posture in a real-time, stable, and high accuracy manner. Three degrees-of-freedom (DoFs) parallel mechanisms have high accuracy, large loading capacity, and these potentials can be explored in the area of telescope supporting system.
     This dissertation concentrates on design of some three DoFs parallel mechanism for the telescope secondary mirror support. The type synthesis and selection, kinematics model and analysis, accuracy analysis and synthesis, structure parameter optimization, and design of simulation platform are presented. The results provide analytical and statistical support for the telescope system.
     Firstly, type synthesis and selection is presented. Symmetric three-chain and four-chain parallel mechanisms with two rotational DoFs and one translational DoF (2R1T) are designed based on constrained screw theory. The3-RCU structure is chosen as the support structure for the telescope secondary mirror considering its symmetry, simplicity, compact structure, low inertia, high overall conditional number, high stiffness and high accuracy of kinematics pairs.
     Secondly, unified kinematics models of these2R1T parallel mechanisms are built based on classification modeling method. Driving models are built considering that the input can change the length of chain or the position of the kinematics pairs that connect the moving platform and the base. Constrained models are built for cases where the constrained force line vector of each chain can be parallel to the moving platform or to base. Then, the D-H matrix model is built to express chain and kinematics pair moving attributes. Velocity transfer model is also derived to show the mapping between driving speed and moving platform posture speed, the Jacobian matrix, and global conditional number.
     The attitude description of the2R1T parallel mechanisms is deeply analyzed. The zxz Euler angel approach is taken to describe the attitude to solve the prismatic motion and attitude workspace. Then YXY Euler angel approach is considered to describe the attitude to study the velocity Jacobian matrix, the global condition number and the error transfer model.
     Thirdly, the efficient error model is proposed as the perturbation of the two Euler angels and one translation, under consideration of that all these parallel mechanisms have two rotational and one translational DoFs. The error perturbation theory and velocity transformation model are used to derive the mapping from joint installation errors (including the structural deviations), the joint clearances and the driving errors (including sensing errors) to the pose error of moving platform. Based on this model, the largest pose error and the sensitivity for each main error source can be calculated for the3-RCU parallel mechanism. Moreover, the accuracy synthesis is performed for3-RCU parallel mechanism based on sensitivity and manufacturing cost, respectively. And the Genetic Algorithm is introduced to realize the accuracy synthesis.
     Fourthly, the definition of the robot workspace is generalized for the2R1T parallel mechanisms. The accessible workspace, flexible workspace, and the workspace volume of the2R1T parallel mechanisms are defined, and the constraints are discussed. The workspace characteristics of the3-RCU parallel mechanism are presented and discussed using interval analysis method.
     Fifthly, the ratios of the key structural parameters and the radius of the base are chosen to be the design variables. The key structural parameters include the radius of the moving platform, the chain length at equilibrium position, and the driving stroke. These parameters are optimized by analyzing the overall conditional number, largest pose error and the volume of the workspace.
     Finally, the simulation platform for the2R1T parallel mechanisms is built on Matlab GUI toolbox, and the kinematics and dynamic simulation are conducted and shown. The3-D model is built using SolidWorks, and the control system is designed using SimMechanics, including trajectory planning block, controller block, parallel mechanism model block, and display block.
引文
Abbasnejad G, Zarkandi S, Imani M.2010. Forward Kinematics Analysis of a 3-PRS Parallel Manipulator [J]. Word Academy of Science, Engineering and Technology,61:329.
    Badescu M, Mavroidis C.2004. Workspace optimization of 3-legged UPU and UPS parallel platforms with joint constraints [J]. ASME J. of Mechanical Design,126(2):291-300.
    Bashar S E, Placid M F.1999. Computation of stiffness and stiffness bounds for parallel link manipulators [J]. International Journal of Machine Tools and Manufacture,39:321-342.
    Cao Y, Huang Z, Zhou H, et al.2010. Orientation workspace analysis of a special class of the Stewart-Gough parallel manipulators [J]. Robotica,28(07):989-1000.
    Carretero J A, Nahon M, Gosselin C M, et al.1997. Kinematic Analysis of A Three-DOF Parallel Mechanism for Telescope Applications [C].//Proceedings of the 1997 ASME Design Engineering Technical Conferences, Sacramento, CA, DETC97/DAC-3981.
    Carretero J A, Podhorodeski R P, Nahon M A, et al.2000. Kinematic Analysis and Optimization of a New Three Degree-of-Freedom Spatial Parallel Manipulator [J]. ASME J. Mech.122(1): 17-24.
    Casalta J M, Arino J, Canchado M, et al.2004. The Performances of GTC Secondary Mirror Drive Unit [J]. SPIE,5495:507-517.
    陈峰,费燕琼,赵锡芳.2005.六自由度并联机器人的支链选取[J].机器人,27(5):396-399.
    陈红亮,罗玉峰,杨廷力.2008.对称三自由度并联机器人拓扑结构型综合与分类[J].农业机械学报,39(1):138-141.
    Cheng G, Ge S R.2010. Kinematic Analysis of 3-UCR Parallel Robot Leg, Robot Manipulators New Achievements, Aleksandar Lazinica and Hiroyuki Kawai (Ed.).
    程刚,葛世荣.2009.3-RPS对称并联式机械腿误差模型及分析[J].中国矿业大学学报,38(1):50-55.
    程刚,葛世荣,蒋世磊.2008.3-UCR并联机构的瞬态运动学研究[J].光学精密工程,16(1):108-113.
    程刚,万勇健,葛世荣.2009.3-RPS对称并联支撑结构误差灵敏度研究[J].光电工程,36(09): 146-150.
    程景全.2003.天文望远镜原理和设计[M].北京:中国科学技术出版社.
    Craig J J.2005. Introduction to robotics:mechanics and control (3rd Edition) [M]. PEARSON Prentice Hail Pearson Education International.
    Cui Q F, Zheng X Z.2009. Constraint forces applied on limbs of 3-RPS parallel manipulator in static equilibrium [C].//International Technology and Innovation Conference, pp.1-5,12-14.
    Dong Z, Hu W.1994. New Production Cost-Tolerance Models for Tolerance Synthesis. ASME.
    窦玉超,姚建涛,侯雨雷,等.2012.65米射电望远镜副面调整系统姿态精度监测与回零策略[J].机器人,04:399-405.
    范彩霞,刘宏昭.2012.基于李群理论的双驱动2T3R五自由度并联机构型综合[J].中国机械工程,(17):2053-2057.
    范彩霞,刘宏昭,张彦斌.2010.基于构型演变和李群理论的2T2R型四自由度并联机构型综合[J].中国机械工程,(09):1101-1105.
    Fang Y, Tsai L W.2002. Structure synthesis of a class of 4-DoF and 5-DoF parallel manipulators with identical limb structures[J]. The International Journal of Robotics Research,21(9): 799-810.
    冯树龙.2005.地基望远镜力学、温度场特性对光学性能影响研究[D]:[博士].北京:中国科学院研究生院.
    Fichter E F.1986. A Stewart Platform-Based Manipulator:General Theory and Practical Construction [J]. The International Journal of Robotics Research,5(2):157-182.
    Fogarasy A, Smith M.1998. The Influence of Manufacturing Tolerances on the Kinematic Performance of Mechanisms [J]. Proc. Inst. Mech. Eng., Part C:J. Mech. Eng. Sci.,212, pp. 35-47.
    Gao F, Li W M, Zhao X C, et al.2002. New Kinematic Structures for 2-,3-,4-,and 5-DOF Parallel Manipulator Designs [J]. Mechanism and Machine Theory,37(11):1395-1411.
    高峰.2005.机构学研究现状与发展趋势的思考[J].机械工程学报,41(8):3-17.
    高猛,李铁民,郑浩峻,等.2003.并联机床铰链制造误差的补偿[J].清华大学学报,43(5):617-620.
    Gallardo J, Orozco H, Rico J M.2008. Kinematics of a 3-RPS parallel manipulators by means of screw theory [J]. International Journal of Advanced Manufacturing Technology,36(5): 598-605.
    Geijo E M, Casalta J M, Canchado M, et al.2006. VISTA secondary mirror drive performance and test results [J]. SPIE,6273:3801-3810.
    Gosselin C M.1988. Kinematic analysis optimization and programming of parallel robotic manipulators [D]:[Ph.D].Canada:McGill University.
    Gosselin C M, Angeles J.1989. The optimum kinematic design of a spherical 3-DOF parallel manipulator [J]. ASME Journal of Mechanism, Transmission and Automation in Design, 112(2):202-207
    Gosselin C M.1990. Stiffness mapping for parallel manipulator [J]. IEEE Transactions on Robotics and Automation,6(3):377-382
    Gosselin C M.1990. Determination of the workspace of 6-dof parallel manipulators [J]. Journal of Mechanical Design,112(3):331-336.
    Gosselin C, Angeles J.1991. A global performance index for the kinematic optimization of robotic manipulators [J]. Journal of Mechanical Design,113:220-226.
    顾伯忠,乐中宇.2009.基于六杆机构的望远镜副镜支承的分析[J].天文研究与技术,6(4):334-341.
    Herve J M.1978. Analyse structurelle des m'ecanismes par groupe de d'eplacements. Mechanism and Machine Theory,13(4):437-450.
    贺利乐.2006.含五杆闭链的并联机构构型综合及主要运动性能分析研究[D]:[博士].西安:西安理工大学.
    贺新升,高春甫,王彬,等.2012.太阳自动跟踪机构的设计和位姿分析[J].光学精密工程,20(05):1048-1054.
    Hong K S, Kim J G.2000. Manipulability analysis of a parallel machine tool:Application to optimal link length design [J]. Journal of Robotic Systems,17(8):403-415
    胡波,路懿.2010.求解3-RCU并联机构刚度的新方法[J].机械工程学报,46(1):24-29.
    Huang P, Tang X Q, Wang L P, et al.2008. Error analysis and distribution of the driving mechanism for large spherical radio telescope active reflector [J] High Technology Letters.
    Huang T, Zhao X Y. Whitehouse D J.2002. Stiffness estimation of a tripod-based parallel kinematic machine[J]. IEEE Transactions on Robotics and Automation,18(1):50-58.
    Huang Z, Li Q C.2002. Some novel lower-mobility parallel mechanisms[C].//Proceedings of ASME Design Engineering Technical Conference, Montreal, Canada.
    Huang Z, Wang J, Fang Y F.2002. Analysis of Instantaneous Motions of Deficient-Rank 3-RPS Parallel Manipulators [J]. Mech. Mach. Theory,37(2), pp.229-240.
    黄真,孔令富,方跃法.1997.并联机器人机构学理论及控制[M].北京:机械工业出版社.
    黄真,李秦川.2003.少自由度并联平台机构的型综合原理[J].中国科学(E辑),33(9):813-819.
    黄真,赵铁石,李秦川.2000.空间少自由度并联机器人机构的基础综合理论[C].//第一届国际机械工程学术会议.
    黄真,赵永生,赵铁石.2006.高等空间机构学[M].北京:高等教育出版社.
    Hunt K H.1978. Kinematic geometry of mechanisms [M]. Oxford:Clarendon Press.
    Hunt K.H.1983. Structural kinematics of in parallel actuated robot arms [J]. J. of Mechanisms, Transmissions and Automation in Design,105(4):705-712.
    Jiang Q, Gosselin C M.2009. Determination of the maximal singularity-free orientation workspace for the Gough-Stewart platform [J]. Mechanism and Machine Theory.44(6): 1281-1293.
    姜兵,黄田.2000.6-PSS并联平台操作机平动工作空间解析[J].机器人.22(2):136-142
    Jo D Y, Haug E J.1989. Workspace analysis of closed-loop mechanisms with unilateral constraints [J] Proc. ASME Design Automation Conference, Montreal, Canada.
    Joshi S, Tsai L W.2003. A comparison study of two 3-DOF parallel manipulators:one with three and the other with four supporting legs [J]. IEEE Transactions on Robotics and Automation, 19(2):200-209.
    Joshi S A, Tsai L W.2003. The kinematics of a class of 3-dof,4-legged parallel manipulators [J]. ASME Journal of Mechanical Design 125:52-60.
    Kim H S, Choi Y J.2000. Kinematic error bound analysis of the Stewart platform [J]. Journal of Robotic Systems.17 (1):63-73.
    Kong X W, Gosselin C M.2004. Type synthesis of 3-DOF translational parallel manipulators based on screw theory [J]. Journal of mechanical design,126(1):83-92.
    Kong X W, Gosselin C M.2004. Type synthesis of 3-DOF spherical parallel manipulators based on screw theory [J]. Journal of Mechanical Design,126(1):101-108.
    Lee K M, Shah D K.1988. Kinematic analysis of a three degrees-of-freedom in-parallel actuated manipulator [J]. IEEE J. of Robotics and Automation,4(3):354-360.
    理查德·摩雷,李泽湘,夏恩卡·萨思特里.1997.机器人操作的数学导论[M].北京:机械工业出版社.
    李宁宁.2008.精密并联定位平台性能优化与构型综合[D]:[硕士].河北:燕山大学.
    Li Q C.2011. Parasitic motion comparison of 3-PRS parallel mechanism with different limb arrangements [J]. Robotics and Computer-Integrated Manufacturing,27(2):389-396.
    Li Q C, Huang Z, Herve J M.2004. Type synthesis of 3R2T 5-DOF parallel mechanisms using the Lie group of displacements [J]. IEEE Transactions on Robotics and Automation,20(2): 173-180.
    李秦川.2003.对称少自由度并联机器人型综合理论及新机型综合[D]:[博士].河北:燕山大学.
    李秦川,陈志,等.2010.[PP]S类并联机构无伴随运动的结构条件[J].机械工程学报.46(15):31-35.
    李秦川,黄真.2004.少自由度并联机构的位移流形综合理论[J].中国科学(E辑).34(9):1011-1020.
    李仕华.2004.几种空间少自由度并联机器人机构分析与综合的理论研究[D]:[博士].河北:燕山大学.
    Li T M, Ye P Q.2003. The Measurement of Kinematic Accuracy for Various Configurations of Parallel Manipulators [C].//IEEE International conference on System, Man and Cybernetics. 2:1122-1129.
    Li Y, Xu Q.2007. Kinematic analysis of a 3-PRS parallel manipulator [J]. Robotics and Computer-Integrated Manufacturing,23(4):395-408.
    李永刚,宋轶民,冯志友.2010.并联机器人机构静刚度研究现状与展望[J].机械设计,(3):1-4.
    梁文科,刘顺发.2007.次镜支撑结构的力学性能分析[J].仪器仪表学报,28(5):859-863.
    Liu X J, Wang J S, Gao F, et al.2002. The mechanism design of a simplified 6-DOF 6-RUS parallel manipulator [J]. Robotica,20(1):81-91.
    刘鸿雁,黄玉美,史文浩,等.2007.3-PRS并联机构误差分析及补偿研究[J].机械科学与技术,26(12)::1637-1639,1643.
    刘极峰,易际明.2006.机器人技术基础[M].高等教育出版社.
    刘琳珊.2007.3-PRS并联机构设计方法研究[D]:[硕士].天津:天津大学.
    刘萍莉.2007.含有中间约束分支的三自由度并联机构综合与性质研究[D]:[硕士].河北:燕山大学.
    刘小初.2006.六自由度运动模拟器结构参数分析设计[D]:[硕士].哈尔滨:哈尔滨工业大学.
    刘辛军,吴超,等.2008.[PP]S类并联平台机构姿态描述方法[J].机械工程学报.44(10):19-23.
    刘辛军,张立杰,高峰.2000.基于AutoCAD平台的六自由度并联平台位置工作空间的解析 求解方法[J].机器人.22(6):457-464
    刘延龙,金建新,汪法根.2003.基于螺旋理论的并联机构构型设计[J].中国机械工程,14(24):2096-2098.
    Lu Q, Zhang Y L.2002. Accuracy Synthesis of a Hexapod Machine Tool Based on Monte-Carlo Method. China Mechanical Engineering,13(6):464-467.
    卢强,张友良.2002.用蒙特卡罗法进行6腿并联机床精度综合[J].中国机械工程,13(6):464-467.
    Lu Y, Shi Y, Hu B.2008. Kinematics analysis of two novel 3UPU Ⅰ and 3UPU Ⅱ PKMs [J]. Robotics and Autonomous Systems,56, pp.296-305.
    罗继曼,蔡光起,杨斌久等.2005.基于螺旋理论三自由度并联机器人型综合新方法[J].东北大学学报(自然科学版),26(10):994-997.
    Meng J, Liu G, Li Z.2007. A geometric theory for analysis and synthesis of sub-6 DOF parallel manipulators [J]. IEEE Transactions o n Robotics.23(4):625-649.
    Meng J, Zhang D, Li Z X.2007. Assembly Problem of Over constrained and Clearance-Free Parallel Manipulators[C]//IEEE International Conference on Robotics and Automation, Piscataway, NJ, USA:IEEE:1183-1188.
    Meng J, Zhang D, Li Z X.2009. Accuracy analysis of parallel manipulators with joint clearance [J]. Journal of Mechanical Design,131(1):011013-1-011013-9.
    Merlet J P.1999. Determination of 6D workspaces of Gough-type parallel manipulator and comparison between different geometries [J]. Int. J. of Robotics Research,18(9):902-916.
    Merlet J P.2001. Micro Parallel Robot MIPS for Medical Applications[C]//Proceedings of the 8th International Conference on Emerging Technologies and Factory Automation. Antibes-Juan les pins, France.
    Merlet J P.2002. Optimal design for the micro robot MIPS [C]//IEEE Int. Conf. on Robotics and Automation, Washington.
    Merlet J P.2006. Parallel Robots (2nd Edition) [M]. Springer.
    Merlet J P.2006. Jacobian, manipulability, condition number, and accuracy of parallel robots [J]. Journal of Mechanical Design,128(1):199-206.
    明名,王建立,张景旭,等.2009.大口径望远镜光学系统的误差分配与分析[J].光学精密工程.17(1):104-108.
    Mohan Rao N, Mallikarjuna Rao K.2009. Dimensional synthesis of a spatial 3-RPS parallel manipulator for a prescribed range of motion of spherical joints [J]. Mechanism and Machine Theory,44(2):477-486.
    潘芳伟,段志善,贺利乐,王朋.2006.基于模糊遗传算法的新型6自由度并联平台精度综合[J].机械设计.23(9):45-48.
    潘芳伟,卢菊洪,贺利乐.2008.新型六自由度并联机器人精度分析[J].机床与液压.36(8):57-60.
    Parenti-Castelli V, Venanzi S.2002. On the Joint Clearance Effects in Serial and Parallel Manipulators[C].//Proceedings of the Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators,215-223.
    Parenti-Castelli V, Venanzi S.2002. A New Deterministic Method for Clearance Influence Analysis in Spatial Mechanisms[C].//Proceedings of the 2002 ASME International Mechanical Engineering Congress and Exposition.
    Parenti-Castelli V, Venanzi S.2005. Clearance Influence Analysis on Mechanisms [J]. Mech. Mach. Theory,40(12):1316-1329.
    Patel A J, Ehmann K F.1997. Volumetric error analysis of a Stewart platform-based machine tool [J]. CIRP Annals-Manufacturing Technology,46(1):287-290.
    Pernette E, Henein S, Magnani I, et al.1997. Design of parallel robots in microrobotics [J]. Robotica,15(4):417-420.
    齐明.2007.一类两转一移三自由度并联机构的设计理论与方法研究[D]:[博士].天津:天津大学.
    ROPPONEN T, ARAI T.1995. Accuracy analysis of a modified Stewart platform manipulator[C]// IEEE International Conference on Robotics and Automation.521-525.
    单鹏,谢里阳,田万禄,等.2010.基于D-H矩阵的Stewart型并联机床位姿误差计算模型[J].机械工程学报,46(17):186-191.
    Siciliano B.1999. The Tricept robot:Inverse kinematics, manipulability analysis and closed-loop direct kinematics algorithm [J]. Robotica.17(4):437-445.
    Su Y X, Duan B Y, Peng B, et al.2001. A real-coded genetic optimal kinematic design of a Stewart fine tuning platform for a large radio telescope[J]. Journal of Robotic Systems,18(9): 507-516.
    Su Y X, Duan B Y, Zheng C H.2001. Genetic design of kinematically optimal fine tuning Stewart platform for large spherical radio telescope[J]. Mechatronics,11(7):821-835.
    苏玉鑫.2002.大射电望远镜精调Stewart平台的优化、分析与控制[D]:[博士].西安:西安电子科技大学.
    苏玉鑫,段宝岩.2000.大射电望远镜精调稳定平台机械结构设计及准动力分析[J].西安电子科技大学学报,27(3):312-316.
    Tahmasebi F.2007. Kinematics of a new high-precision three-degree-of-freedom parallel manipulator [J]. Journal of Mechanical Design,129(3):320-325.
    唐晓强,汪劲松,刘辛军.2004.球面射电望远镜主动反射面支撑机构运动学分析[J].机械工程学报,40(6):127-131,
    Ting K L, Zhu J, Watkins D.2000. The effects of joint clearance on position and orientation deviation of linkages and manipulators [J]. Mechanism and Machine Theory,35(3):391-401.
    Tsai L W.1999. The enumeration of a class of three-dof parallel manipulators[C].//The Tenth World Congress on the Theory of Machines and Mechanisms, Finland,1123-1126.
    Tsai L W, Joshi S A.2000. Kinematics and optimization of a spatial 3-UPU parallel manipulator [J]. ASME J. Mech. Design,122(4):439-446.
    Tsai M S, Shiau T N, Tsai Y J, et al.2003. Direct kinematic analysis of a 3-PRS parallel mechanism[J]. Mechanism and Machine Theory,38(1):71-83.
    Venanzi, S.2004. Methods for Clearance Influence Analysis in Planar and Spatial Mechanisms. [D]:[Ph D] University of Bologna, Bologna, Italy.
    Venanzi S, Parenti-Castelli V.2005. A new technique for clearance influence analysis in spatial mechanisms [J]. Journal of Mechanical Design,127:446.
    王富国,张景旭,杨飞,等.2009.四翼梁式副镜支撑结构的研究[J].光子学报,38(3):674-676.
    Wang H, Roth B.1989. Position Errors Due to Clearance in Journal Bearing [J]. ASME J. Mech., 111:315-320.
    Wang J, Masory O.1993. On the accuracy of a Stewart platform-Part 1:The effect of manufacturing tolerances [C].//IEEE International Conference on Robotics and Automation, 114-120.
    汪劲松,白杰文,高猛,等.2002Stewart平台铰链间隙的精度分析[J].清华大学学报.42(6):758-761.
    Wang S M, Ehmann K F.2002. Error model and accuracy analysis of a six-dof Stewart platform[J]. ASME Journal of Manufacturing Science and Engineering,124(2):286-295.
    文新荣,胡企干,周尊源.2003.望远镜主副镜实时校正系统[J].中国机械工程,14(14):1191-1193.
    徐刚,杨世模,龚雨兵.2008.大型光学望远镜副镜位姿精调机构的优化设计[J].光学精密工程,16(7):1181-1189.
    徐亮.2008.3-PRS并联机构精度分析与综合[D]:[博士].天津:天津大学.
    YAO T K, ZHOU X, ZHOU F, et al.2012. Accuracy Synthesis of a 3-RPS Parallel Robot Based on Manufacturing Costs [C].//The 31st Chinese Control Conference,5168-5172.
    杨廷力.2004.机器人机构拓扑结构学[M].机械工业出版社.
    杨廷力,金琼,刘安心,等.2002.基于单开链单元的三平移并联机器人机构型综合及其分类[J].机械工程学报,38(8):31-36.
    叶鑫,张之敬,万毕乐,等.2009.微动工作台的误差源分析[J].机械工程学报,45(1):258-266.
    Yu J J, Dai J S, Bi S S, et al.2010. Type synthesis of a class of spatial lower-mobility parallel mechanisms with orthogonal arrangement based on Lie group enumeration [J]. Science China Technological Sciences,53(2):388-404.
    于靖军,刘辛军,丁希伦,等.2008.机器人机构学的数学基础[M].北京:机械工业出版社.
    曾达幸,黄真.2011.基于螺旋理论的转动解耦并联机构型综合[J].中国科学:技术科学,41(05):585-591.
    张林波,任戈,陈洪斌,等.2003.四翼十字形中心支撑结构的动力学分析[J].光学精密工程,11(5):472-476.
    赵强,阎绍泽.2006.基于敏感度的运动模拟台误差综合[J].中国机械工程.17(5):478-481.
    朱海宁.2012.PRS-XY型串并联机器人全域性能及其优化研究[D]:[硕士].南京:南京理工大学.