冗余驱动并联机构的构型综合与伴随运动的消除
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对现代装备的高性能要求,本文提出利用冗余驱动并联机构来提升技术装备的整体驱动能力和提高机构的容错性能,并系统研究驱动冗余并联机构的构型综合理论。
     提出了一种系统综合冗余驱动并联机构的方法。选择单环机构或者多环机构作为机构的支链驱动单元,将机构可能的约束耦合在支链单元内完成,从而获得非过约束的或者低次过约束的冗余驱动并联机构。基于上述的构型方法,对具有三转动、三移动、两转动一移动、两移动一转动和四、五自由度运动的冗余驱动并联机构进行了构型综合,得到了系列构型。
     基于独立参数的设计需求,给出了冗余驱动并联机构的一般演化过程。不考虑机构末端动平台的自由度形式,空间刚体的位置和姿态可以由选定的与刚体固联的不共线三点决定。选定与动平台固联点的实现形式:空间点、平面点和直线点,通过单环或者多环机构实现固联点的运动,即可得到冗余驱动并联机构的系列构型。
     通过添加冗余驱动支链的方式,对机构可能出现的伴随运动进行了消除。针对典型的3-UPU并联机构总是存在非期望转动这一情况,进行了分析评估和规避研究。考虑约束误差对伴随转动的影响,约束螺旋与伴随转动之间的互易积将不再等于零,即:约束螺旋对伴随转动存在做功现象。基于此,得到了伴随转动自由度运动的范数表达,并以此作为衡量指标检验了误差约束对非期望转动的影响幅度。最后,提出了通过添加冗余驱动支链的方法,对机构可能出现的伴随运动进行消除。
     提出了一种新型4-UPU冗余驱动并联机构。该机构以2-UPU单环机构作为基础构型单元,消除了UPU类并联机构可能存在的伴随运动。此冗余驱动并联机构具有简单的正运动学求解,并且只有一种可以完全规避的结构奇异。当某一个驱动支链出现故障锁住时,机构动平台依然能够实现部分的空间移动运动,通过求解得到机构的容错工作空间。
ABSTRACT:For the modernized requirements of major technical equipment, the redundantly actuated parallel mechanism is proposed to improve the wrench capabilities and fault tolerance.
     A systematic method is proposed for the type synthesis of redundantly actuated parallel mechanism in this thesis. By using the single loop or the multi-loop mechanism as the actuated unit, the possible constraints coupling can be performed in limb unit, and thereby the non-over constrained or the lower order over constrained redundantly actuated parallel mechanisms can be constructed. Based on the above synthesis method, the redundantly actuated parallel mechanisms with three rotational (3R), three translational (3T),2R1T,2T1R,4and5degrees of freedom (DOF) motions are synthesized.
     Based on the requirements of independent design parameters, the general evolutionary process of redundantly actuated parallel mechanism is presented. Without taking the DOF types into consideration, the position and orientation of a rigid body can be determined by three non-collinear points attached to the rigid body. After the forms of three non-collinear points are determined, the point in space, in planar or in line, which are realized by single loop mechanism or multi-loop mechanism, series of redundantly actuated parallel mechanisms can be obtained.
     The possible parasitic motions can be eliminated by adding proper redundantly actuated limbs. The typical3-UPU parallel mechanism is chosen as an example to perform the parasitic rotation evaluation and avoidance. Due to the effect of constraint errors, the reciprocal product of constraint wrenches and parasitic motions will not be zero in practice, namely the constraint wrenches act on the moving platform in such a way that it produce works while the moving platform is undergoing the parasitic motions. The norm expression of parasitic motion is obtained, which can be used to perform the evaluation of parasitic motion under the constraint errors. Finally, the redundantly actuated limb is used to eliminate the possible parasitic motions.
     A novel4-UPU redundantly actuated parallel mechanism with three translations is proposed. The2-UPU single loop mechanism is used as the basic configurational unit to avoid the possible parasitic motion of UPU type parallel mechanism. The forward kinematic of this4-UPU redundantly actuated parallel mechanism is very easy and there is only one structural singular configuration, which can be avoid completely. When there occurs failure of an active joint in one limb and the active joint is locked, the4-UPU parallel mechanism still possesses some spatial translations, and the fault-tolerant workspace is obtained.
引文
[1]R.Clavel. Conception d' un robot parallele rapide a 4 degres de liberte [Dissertation]. Lausanne: Ecole Polytechnique Federale de Lausanne (EPFL),1991.
    [2]Y. F. Fang, L.-W. Tsai. Structure synthesis of 4-DOF and 5-DOF parallel manipulators with identical limb. The International Journal of Robotics Research,2002,21(9):799-810.
    [3]J.-P. Merlet. Designing a parallel manipulator for a specific workspace. The International Journal of Robotics Research,1997,16(4):545-556.
    [4]J.-P. Merlet. Workspace-oriented methodology for designing a parallel manipulator. Proceedings of IEEE International Conference on Robotics and Automation, Minneapolis, USA,1996, pp. 3726-3731.
    [5]J.-P. Merlet, D. Daney. Dimensional synthesis of parallel robots with a guaranteed given accuracy over a specific workspace. Proceedings of IEEE International Conference on Robotics and Automation, Barcelona, Spain,2005, pp.942-947.
    [6]J.-P. Merlet. Parallel robots,2nd Edition. Springer,2006.
    [7]J.-P. Merlet, C. Gosselin, N. Mouly. Workspaces of planar parallel manipulators. Mechanism and Machine Theory,1998,33(1-2):7-20.
    [8]J. M. Herve. The Lie group of rigid body displacements, a fundamental tool for mechanism design. Mechanism and Machine Theory,1999,34(5):719-730.
    [9]J. Angeles. The qualitative synthesis of parallel manipulators. Journal of Mechanical Design, 2004,126(4):617-624.
    [10]X. W. Kong, C. Gosselin. Type synthesis of parallel mechanisms. Springer,2007.
    [11]Z. Huang, Q. C. Li. General methodology for type synthesis of symmetrical Lower-Mobility parallel manipulators and several novel manipulators. The International Journal of Robotics Research,2002,21(2):131-146.
    [12]杨廷力.机器人机构拓扑结构学.机械工业出版社,2003.
    [13]杨廷力,金琼.基于单开链单元的三平移并联机器人机构型综合及其分类.机械工程学报,2002,38(8):31-36.
    [14]G. Gogu. Structural synthesis of parallel robots, part 1:methodology. Springer,2007.
    [15]J. J. Yu, J. S. Dai, S. S. Bi et al. Numeration and type synthesis of 3-DOF orthogonal translational parallel manipulators. Progress in Natural Science,2008,18(5):563-574.
    [16]J. S. Dai, D. L. Wang. Geometric analysis and synthesis of the metamorphic robotic hand. Journal of Mechanical Design,2007,129(11):1191-1197.
    [17]J. S. Dai, Z. Huang, H. Lipkin. Mobility of overconstrained parallel mechanisms. Journal of Mechanical Design,2006,128(1):220-229.
    [18]Y. Jin, I-M. Chen, G. L. Yang. Structure synthesis and singularity analysis of a parallel manipulator based on selective actuation. Proceedings of IEEE International Conference on Robotics and Automation, New Orleans, USA,2004, pp.4533-4538.
    [19]S. Briot, I. A. Bonev. Pantopteron-4:a new 3T1R decoupled parallel manipulator for pick-and-place applications. Mechanism and Machine Theory,2010,45(5):707-721.
    [20]F. Gao, W. M. Li, X. C. Zhao et al. New kinematic structures for 2-,3-,4-, and 5-DOF parallel manipulator designs. Mechanism and Machine Theory,2002,37(11):1395-1411.
    [21]G. Gogu. T1R3-type redundantly-actuated parallel manipulators. Recent Progress in Robotics: Viable Robotic Service to Human, Lecture Notes in Control and Information Sciences Volume 370,2008, pp.79-90.
    [22]J. A. Saglia, N. G. Tsagarakis, J. S. Dai et al. A high performance 2-dof over-actuated parallel mechanism for ankle rehabilitation. Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan,2009, pp.2180-2186.
    [23]F. Firmani, R. P. Podhorodeski. Force-unconstrained poses for a redundantly-actuated planar parallel manipulator. Mechanism and Machine Theory,2004,39(5):459-476.
    [24]G. Gogu. Full-isotropic T2R3-type redundantly-actuated parallel robots. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, USA,2007, pp.3937-3942.
    [25]T. Ropponen, Y. Nakamura. Singularity-free parameterization and performance analysis of actuation redundancy. Proceedings of IEEE International Conference on Robotic and Automation, Cincinnati, USA,1990, pp.806-811.
    [26]K. E. Zanganeh, J. Angeles. Mobility and position analyses of a novel redundant parallel manipulator. Proceedings of IEEE International Conference on Robotics and Automation, San Diego, USA,1994, pp.3049-3054.
    [27]K. E. Zanganeh, J. Angeles. Instantaneous kinematics and design of a novel redundant parallel manipulator. Proceedings of IEEE International Conference on Robotics and Automation, San Diego, USA,1994, pp.3043-3048.
    [28]B. Q. Xu, T. M. Li, X. J. Liu et al., Workspace analysis of the 4RRR planar parallel manipulator with actuation redundancy. Tsinghua Science and Technology,2010,15(5):509-516.
    [29]D. Chakarov. Study of the antagonistic stiffness of parallel manipulators with actuation redundancy. Mechanism and Machine Theory,2004,39(6):583-601.
    [30]S. B. Nokleby, R. Fisherb, R. P. Podhorodeski et al. Force capabilities of redundantly-actuated parallel manipulators. Mechanism and Machine Theory,2005,40(5):578-599.
    [31]J. Wu, J. S. Wang, L. P. Wang et al. Study on the stiffness of a 5-DOF hybrid machine tool with actuation redundancy. Mechanism and Machine Theory,2009,44(2):289-305.
    [32]C. X. Yan, Q. Zhang, Z. Lu. Fault tolerance of parallel manipulator with actuation or structure redundancy. Journal of Beijing University of Aeronautics and Astronautics,2010,36(12): 1407-1411.
    [33]J.-P. Merlet. Parallel robot:open problems. Proceedings of 9th International Symposium of Robotics Research, Snowbird,1999.
    [34]J.-P. Merlet. Redundant parallel manipulators. Journal of Laboratory Robotic and Automation, 1996,8(1):17-24.
    [35]S. Kock, W. Schumacher. A parallel x-y manipulator with actuation redundancy for high-speed and active-stiffness applications. Proceedings of the IEEE International Conference on Robotics and Automation, Leuven, Belgium,1998, pp.2295-2300.
    [36]张立杰,刘辛军.平面2自由度驱动冗余并联机器人的机构设计.机械工程学报,2002.38(12):49-53.
    [37]G. Gogu. Fully-isotropic redundantly-actuated parallel wrists with three degrees of freedom. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Las Vegas, USA,2007, pp.943-950.
    [38]J. Kim, C. Park, S. J. Ryu et al. Design and analysis of a redundantly actuated parallel mechanism for rapid machining. IEEE Transactions on Robotics and Automation,2001,17(4): 423-434.
    [39]J. Kim, J.-C. Hwang, J.-S. Kim et al. Eclipse II:a new parallel mechanism enabling continuous 360-degree spinning plus three-axis translational motions. IEEE Transactions on Robotics and Automation,2002,18(3):367-373.
    [40]S. H. Kim, D. Jeon, H. P. Shin et al. Design and analysis of decoupled parallel mechanism with redundant actuator. International Journal of Precision Engineering and Manufacturing,2009, 10(4):93-99.
    [41]吴军.四自由度冗余混联机床的分析、辨识和控制[学位论文].清华大学,2007.
    [42]S. Kim. Operational quality analysis of parallel manipulators with actuation redundancy. Proceedings of IEEE International Conference on Robotics and Automation, Albuquerque, USA, 1997, pp.2651-2656.
    [43]王艾伦.机构自由度、原动件和执行构件关系的一般问题研究.中国科学:E辑,2009.39(3):409-415.
    [44]A. Kirecci, L. C. Dulger. A study on a hybrid actuator. Mechanism and Machine Theory,2000, 35(8):1141-1149.
    [45]D. Tesar et al. Compact hybrid actuation for maximum performance (CHAMP). Proposal to DARPA by University of Texas Robotics Research Group, Rockwell Science Center, ARM Automation Inc., and the Naval Surface Warfare Center,1999.
    [46]D. Rabindran, D. Tesar. Study of the dynamic coupling term (u) in parallel Force/Velocity Actuated Systems. Proceedings of the IEEE International Conference on Automation Science and Engineering, Scottsdale, USA,2007, pp.418-423.
    [47]B.-S. Kim, J.-J. Park, J.-B. Song. Double actuator unit with planetary gear Train for a safe manipulator. Proceedings of the IEEE International Conference on Robotics and Automation, Roma, Italy,2007, pp.1146-1151.
    [48]J.-P. Merlet. Still a long way to go on the road for parallel mechanisms. Keynote of ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,27th Biennial Mechanisms and Robotics Conference, Montreal, Canada,2002.
    [49]S. Kock, W. Schumacher. A mixed elastic and rigid-body dynamic model of an actuation redundant parallel robot with high-reduction gears. Proceedings of the IEEE International Conference on Robotics & Automation, San Francisco, USA,2000, pp.1918-1923.
    [50]张立杰.平面两自由度驱动冗余并联机器人的承载能力分析.机械设计与研究,2003.,19(1):28-30.
    [51]张立杰,刘辛军,黄真.平面2自由度驱动冗余并联机器人的性能分析.机械工程学报,2006,42(7):181-185.
    [52]张立杰,刘辛军,黄真,平面2自由度驱动冗余并联机器人的输出速度分析.机械设计,2006,23(2):19-21.
    [53]张立杰,刘辛军.一种平面冗余驱动并联机器人的优化设计.机械设计与研究,2007,23(4):35-38.
    [54]张立杰,李永泉,史文雅.一种球面2-DOF冗余驱动并联机器人的优化设计.机械设计与研究,2009,25(2):59-64.
    [55]H. Cheng, Y.-K.Yiu, Z. X. Li. Dynamics and control of redundantly actuated parallel manipulators. IEEE/ASME Transactions on Mechatronics,2003,8(4):483-491.
    [56]沈辉.并联机器人的几何分析理论和控制方法研究[学位论文].国防科技大学,2003.
    [57]D. Chakarov. Synthesis of parallel manipulators with redundant actuation. Proceedings of 3rd International Conference Power Transmissions, Kallithea, Greece,2009, pp.295-300.
    [58]D. Chakarov. Stiffness control schemes of redundant actuated manipulators. Proceedings of the 3rd Conference on Bionics, Biomechanics and Mechatronics, Varna, Bulgaria,2002, pp.48-51.
    [59]D. Chakarov. Analysis and synthesis of the stiffness of a hybrid manipulator with redundant actuation. Proceedings of the 5th Magdeburg Days of Mechanical Engineering, Magdeburg, Germany,2001, pp.119-127.
    [60]F. Marquet, S. Krut, O. Company et al. ARCH1:a new redundant parallel mechanism-modeling, control and first results. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, Hawaii, USA,2001, pp.183-188.
    [61]S. Krut, O. Company, S. Rangsri et al. Eureka:a new 5-degree-of-freedom redundant parallel mechanism with high tilting capabilities, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, USA,2003, pp.3575-3580.
    [62]J. Wu, J. S. Wang, T. M. Li et al. Performance analysis and application of a redundantly actuated parallel manipulator for milling. Journal of Intelligent and Robotic Systems,2007, 50(2):163-180.
    [63]J. Wu, J. S. Wang, L. P. Wang et al. Dynamics and control of a planar 3-DOF parallel manipulator with actuation redundancy. Mechanism and Machine Theory,2009,44(4): 835-849.
    [64]L. P. Wang, J. Wu, J. S. Wang et al. An experimental study of a redundantly actuated parallel manipulator for a 5-DOF hybrid machine tool. IEEE/ASME Transactions on Mechatronics, 2009,14(1):72-81.
    [65]L. P. Wang, J. Wu, J. S. Wang. Dynamic formulation of a planar 3-DOF parallel manipulator with actuation redundancy. Robotics and Computer-Integrated Manufacturing,2010.26(1): 67-73.
    [66]B. R. So, B.-J. Yi, W. Kim et al. Design of a redundantly actuated leg mechanism. Proceedings of IEEE International Conference on Robotics and Automation, Taipei, Taiwan, China,2003, pp. 4348-4353.
    [67]J. Saglia, J. S. Dai. Geometry and kinematics analysis of a redundantly actuated parallel mechanism for rehabilitation. Proceedings of ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference,31st Mechanisms and Robotics Conference, Las Vegas, USA,2007, pp.1081-1090.
    [68]J. Saglia, J. S. Dai, D. G. Galdwell. Geometry and kinematic analysis of a redundantly actuated parallel mechanism that eliminates singularity and improves dexterity. Journal of Mechanical Design,2008,130(12):124501(5 pages).
    [69]J. Saglia, N. G. Tsagarakis, J. S. Dai et al. Inverse kinematics based control of a redundantly actuated platform for rehabilitation. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering,2009,223(1):53-70.
    [70]J. Saglia, N. G. Tsagarakis, J. S. Dai et al. A high-performance redundantly actuated parallel mechanism for ankle rehabilitation. International Journal of Robotics Research,2009,28(9): 1216-1227.
    [71]闫彩霞,闫楚良,陆震,基于加权矩阵的过驱动并联机构驱动力矩调节法.吉林大学学报(工学版),2008,38(5):1215-1219.
    [72]闫彩霞,何广平,陆震,过驱动并联机器人驱动力矩的特解构造法.北京航空航天大学学报,2008,34(6):725-733.
    [73]闫彩霞,何广平,陆震,考虑容错的平面二自由度过驱动机构力矩分配.北京航空航天大学学报,2008,34(2):244-248.
    [74]H. Cheng, G. F. Liu, Y. K. Yiu et al. Advantages and dynamics of parallel manipulators with redundant actuation. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, Hawaii, USA,2001, pp.171-176.
    [75]G. F. Liu, Y. L. Wu, X. Z. Wu et al. Analysis and control of redundant parallel manipulators. Proceedings of IEEE International Conference on Robotics and Automation, Seoul, Korea, 2001, pp.3748-3754.
    [76]W. W. Shang, S. Cong. Study on force transmission performance for planar parallel manipulator.Proceedings of the Sixth World Congress on Intelligent Control and Automation, Dalian, China,2006, pp.8098-8102.
    [77]W. W. Shang, S. Cong, Y. X Zhang et al. Active joint synchronization ccontrol for a 2-DOF redundantly actuated parallel manipulator. IEEE Transactions on Control Systems Technology, 2009,17(2):416-423.
    [78]W. W Shang, S. Cong, Z. X. Li et al. Augmented nonlinear PD controller for a redundantly actuated parallel manipulator. Advanced Robotics,2009,23(12-13):1725-1742.
    [79]郭盛,方跃法.并联机器人机构综合方法研究.北京交通大学学报,2007,31(1):41-45.
    [80]R. S. Ball. Treatise on the theory of screws. Cambridge,1900.
    [81]A. T. Yang, F. Freudenstein. Application of dual-number quaternion algebra to the analysis of spatial mechanisms. Journal of applied mechanics,1964,31(2):300-308.
    [82]K. H. Hunt. Kinematic geometry of mechanisms.Oxford University,1978.
    [83]J. Phillips. Freedom in machinery:volume 1 introducing screw theory. Cambridge University, 1985.
    [84]K. J. Waldron. The constraint analysis of mechanisms. Journal of mechanisms and robotics, 1966,1(2):101-114.
    [85]M. G. Mohamed, J. Duffy. A direct determination of the instantaneous kinematics of fully parallel robot manipulators. Journal of Mechanisms, Transmissions, and Automation in Design, 1985,107(2):226-229.
    [86]黄真,李秦川.少自由度并联机器人机构的构型综合原理.中国科学(E辑),2003,33(9):813-819.
    [87]李秦川.对称少自由度并联机器人型综合理论及新机型综合[学位论文].燕山大学,2003.
    [88]Y. F. Fang, L.-W. Tsai. Structure synthesis of a class of 3-DOF rotational parallel manipulators. IEEE Transactions on Robotics and Automation,2004,20(1):117-121.
    [89]J. M. Rico, J. J. Cervantes-Sanchez, A. Tadeo-Chavez et al. New considerations on the theory of type synthesis of fully parallel platforms. Journal of Mechanical Design,2008,130(11):112302 (9 pages).
    [90]O. Salgado, O. Altuzarra, E. Amezua et al. A parallelogram-based parallel manipulator for schonflies motion. Journal of Mechanical Design,2007,129(12):1243-1250.
    [91]O. Salgado, O. Altuzarra, V. Petuya et al. Synthesis and design of a novel 3T1R fully-parallel manipulator. Journal of Mechanical Design,2008,130(4):042305 (8 pages).
    [92]Q. C. Li, J. M. Herve. Structural shakiness of nonoverconstrained translational parallel mechanism with identical limbs. IEEE Transactions on Robotics,2009,25(1):25-36.
    [93]Q. C. Li, J. M. Herve. Parallel mechanisms with bifurcation of Schoenflies motion. IEEE Transactions on Robotics,2009,25(1):158-164.
    [94]颜鸿森.姚燕安,王玉新等译.机械装置的创造性设计.机械工业出版社,2002.
    [95]J. S. Dai, J. R. Jones. Mobility in metamorphic mechanisms of foldable/erectable kinds. Journal of Mechanical Design,1999,121(3):375-382.
    [96]J. S. Dai, J. R. Jones. Configuration transformations in metamorphic mechanisms of foldable/erectable kinds. Proceedings of 10th World Congress on the Theory of Machines and Mechanisms, Oulu, Finland,1999, pp.98-109.
    [97]J. S. Dai, J. R. Jones. Matrix representation of topological changes in metamorphic mechanisms. Journal of Mechanical Design,2005,127(4):675-682.
    [98]L.-W. Tsai. Robot Analysis:The mechanics of serial and parallel manipulators. Wiley,1999.
    [99]J. K. Davidson, K. H. Hunt. Robot and screw theory:applications of kinematics and statics to robotics. Oxford University,2004.
    [100]黄真,赵永生,赵铁石.高等空间机构学.高等教育出版社,2006.
    [101]J.-P. Merlet. Singular configurations of parallel manipulators and grassmann geometry. The International Journal of Robotics Resarch,1989,8(5):45-56.
    [102]郭盛,方跃法,岳聪.基于螺旋理论的单闭环多自由度过约束机构综合.机械工程学报,2009,45(11):38-45.
    [103]郭盛,方跃法,付高阁等.单闭环一自由度过约束机构解析综合.中国机械工程,2009,20(4):383-388.
    [104]Y. F. Fang, L.-W. Tsai. Enumeration of a class of overconstrained mechanisms using the theory of reciprocal screws. Mechanism and Machine Theory,2004,39(11):1175-1187.
    [105]L.-W. Tsai. Kinematics of a three-DOF platform with three extensible limbs. Recent Advances in Robot Kinematics, Kluwer academic,1996, pp.401-410.
    [106]R. D. Gregorio, V. Parenti-Castelli. A translational 3-DOF parallel manipulator. Advances in Robot Kinematics:Analysis and Control, Kluwer academic,1998, pp.49-58.
    [107]C. Han, J. Kim, J. Kim et al. Kinematic sensitivity analysis of the 3-UPU parallel mechanism. Mechanism and Machine Theory,2002,37(8):787-798.
    [108]I. A. Bonev, D. Zlatanov. The mystery of the singular SNU translational parallel robot. http://www.parallemic.org/Reviews/Review004.html,2001.
    [109]D. Zlatanov, I. A. Bonev, C. Gosselin. Constraint singularity of parallel mechanism. Proceedings of the IEEE International conference on Robotics and Automation, Washington D.C., USA,2002, pp.496-502.
    [110]D. Zlatanov, I. A. Bonev, C. Gosselin. Constraint singularities as configuration space singularities. Advances in Robot Kinematics:Theory and Applications, Kluwer Academic,2002, pp.183-192.
    [111]A. Wolf, M. Shoham, F. C. Park. Investigation of singularities and self-motions of the 3-UPU robot. Advanceds in Robot Kinematics:Theory and Applications,Kluwer Academic Publishers, 2002, pp.165-174.
    [112]A. Wolf, M. Shoham. Investigation of parallel manipulators using linear complex approximation. Journal of mechanical design,2003,125(3):564-572.
    [113]M. Conconi, M. Carricato. A new assessment of singularities of parallel kinematic chains. IEEE Transactions on Robotics and Automation,2009,25(4):757-770.
    [114]G. Gogu. Constraint singularities and the structural parameters of parallel robots. Advances in Robot kinematics:Analysis and Design, Springer,2008, pp.21-28.
    [115]A-H. Chebbi, Z. Affi, L. Romdhane. Kinetostatic and singularity analyses of the 3-UPU translational parallel robot. Computational Kinematics:Proceedings of the 5th International Workshop on Computational Kinematics, Springer,2009, pp.61-68.
    [116]A. H. Chebbi, V. Parenti-Castelli. Geometric and manufacturing issues of the 3-UPU pure translational manipulator. New Trends in Mechanism Science:Analysis and Design, Springer, 2010, pp.595-603.
    [117]黄真,孔令富,方跃法.并联机器人机构学理论及控制.机械工业出版社,1997.
    [118]D. Tesar, D. J. Cox. The dynamic modeling and command signal formulation for parallel multi-parameter robotic devices. CIMAR, University of Florida,1981.
    [119]D. Tesar, S. Michael. Modularity in robotic systems. NASA Technical report,1989.
    [120]H. Asada, J. Granito. Kinematic and static characterization of wrist joints and their optimal design. Proceedings of IEEE International Conference on Robotics and Automation, St. Louis, USA,1985, pp.244-250.
    [121]C. Gosselin, J. Angles. The optimal kinematic design of a spherical three-degree-of-freedom parallel manipulator. Journal of Mechanisms, Transmissions, and Automation in Design,1989, 111(2):202-207.
    [122]C. Gosselin, E. Lavoie. On the kinematic design of spherical three-degree-of-freedom parallel manipulators. The International Journal of Robotics Resarch,1993,12(4):394-402.
    [123]C. Gosselin, J. F. Hamel. The agile eye:a high-performance three-degree-of-freedom camera-orienting device. Proceedings of IEEE International Conference on Robotics and Automation, San Diego, USA,1994, pp.781-786.
    [124]S. Staicu. Dynamics of a 3-RRR spherical parallel mechanism based on principle of virtual powers. Proceedings of 12th IFToMM World Congress in Mechanism and Machine Science, Besancon, France,2007.
    [125]C. Gosselin, M. Gagne. Dynamic models for spherical parallel manipulators. Proceedings of the 9th World Congress on the Theory of Machines and Mechanisms, Milano, Italy,1995, pp. 2032-2036.
    [126]C. Gosselin, J. Wang. Singularity loci of a special class of spherical three-degree-of-freedom parallel mechanisms with revolute actuators. The International Journal of Robotics Resarch, 2002,21(7):649-659.
    [127]I. A. Bonev, C. Gosselin. Singularity loci of spherical parallel mechanisms. Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain,2005, pp. 2957-2962.
    [128]J. M. Wiitala, M. M. Stanisic. Design of an overconstrained and dextrous spherical wrist. Journal of Mechanical Design,2000,122(3):347-353.
    [129]P. Vischer, R. Clavel. Argos:a novel 3-DOF parallel wrist mechanism. The International Journal of Robotics Resarch,2000,19(1):5-11.
    [130]G. Gogu. Structural synthesis of parallel robots, part 4:other topologies with two and three degrees of freedom. Springer,2012.
    [131]X. W. Kong, C. Gosselin. Type synthesis of three-degree-of-freedom spherical parallel manipulators. The International Journal of Robotics Resarch,2004,23(3):237-245.
    [132]X. W. Kong, C. Gosselin. Type synthesis of 3-DOF spherical parallel manipulators based on screw theory. Journal of Mechanical Design,2004,126(1):101-108.
    [133]G Gogu. Full-isotropic three-degree-of-freedom parallel wrists. Proceedings of IEEE International Conference on Robotics and Automation, Roma, Italy,2007, pp.895-900.
    [134]T. A. Hess-Coelho. Topological synthesis of a parallel wrist mechanism. Journal of Mechanical Design,2006,128(1):230-235.
    [135]M. Karouia, J. M. Herve. Asymmetrical 3-dof spherical parallel mechanisms. European Journal of Mechanics-A/Solids,2005,24(1):47-57.
    [136]R. Kurtz. Kinematics and optimization of a parallel robotic wrist mechanism with redundancy [Dissertation]. McGill University,1989.
    [137]R. Kurtz, V. Hayward. Multiple-goal kinematic optimization of a parallel spherical mechanism with actuator redundancy. IEEE Transactions on Robotics and Automation,1992,8(8): 644-651.
    [138]V. Hayward, R. Kurtz. Modeling of a parallel wrist mechanism with actuator redundancy. Journal of Robotic and Automation,1992,4(2):69-76.
    [139]曲海波.少自由度串联机器人构型综合与奇异分析[学位论文].北京交通大学,2008.
    [140]B.-J. Yi, R. A. Freeman, D. Tesar. Force and stiffness transmission in redundantly actuated mechanisms:the case for a spherical shoulder mechanism. Proceedings of the 22nd Biennial Mechanisms Conference, Scottsdale, USA,1992, pp.163-172.
    [141]R. Clavel. DELTA, a fast robot with parallel geometry. Proceedings of 18th International Symposia on Industrial Robot, Lausanne, Switzerland,1988, PP.91-100.
    [142]J. Arata, H. Kondo, N. Ikedo et al. Haptic device using a newly developed redundant parallel mechanism. IEEE Transactions on Robotics,2011,27(2):201-214.
    [143]D. Corbel, M. Gouttefarde, O. Company et al. Towards 100G with PKM. Is actuation redundancy a good solution for pick-and-place? Proceedings of IEEE International Conference on Robotics and Automation, Anchorage, USA,2010, pp.4675-4682.
    [144]D. Corbel, M. Gouttefarde, O. Company et al. Actuation redundancy as a way to improve the acceleration capabilities of 3T and 3T1R pick-and-place parallel manipulators. Journal of Mechanisms and Robotics,2010,2(4):041002(13pages).
    [145]K. H. Hunt. Structural kinematics of in-parallel-actuated robot-arms. Journal of Mechanisms, Transmissions, and Automation in Design,1983,105(4):705-712.
    [146]J.-P. Merlet. Direct kinematics of planar parallel manipulators. Proceedings of IEEE International Conference on Robotics and Automation, Minneapolis, USA,1996, pp. 3744.3749.
    [147]H. B. Qu, Y. F. Fang, S. Guo. Parasitic rotation evaluation and avoidance of 3-UPU parallel mechanism. Frontiers of Mechanical Engineering,2012,7(2):210-218.
    [148]S. Guo, H. B. Qu, Y. F. Fang et al. The DOF degeneration characteristics of closed loop over-constrained mechanisms. Transactions of the Canadian Society for Mechanical Engineering,2012,36(1):67-82.
    [149]Y. J. Zhao, F. Gao. Dynamic performance comparison of the 8PSS redundant parallel manipulator and its non-redundant counterpart-the 6PSS parallel manipulator. Mechanism and Machine Theory,2009,44(5):991-1008.
    [150]Y. J. Zhao, F. Gao, X. J. Dong, X. C. Zhao. Elastodynamic characteristics comparison of the 8-PSS redundant parallel manipulator and its non-redundant counterpart-the 6-PSS parallel manipulator. Mechanism and Machine Theory,2010,45(2):291-303.