单元及组合型网格式移动连杆机构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:本研究属于机器人机构学领域,是对移动连杆机构进行的研究。连杆是腿足式、蛇形及不规则形态(非生物外形)机器人的基本构件;其尺寸、形状设计自由度大:连接铰链的种类和配置方式多;故移动连杆机构具有深厚的研究内涵。
     本文首次提出网格式移动连杆机构的概念,该类机构由若干连杆组合而成,在外形形态上类似于生物学领域中的网格,如蜂窝截面的网格形状。网格的一条边在连杆机构中是一个连杆,网格的结点在连杆机构中是连杆间的连接铰链。
     论文从基本的开链式三连杆机构出发开展研究;而后,用连杆构造出具有三边、四边闭环图形形态的移动连杆机构,即三边、四边网格单元移动连杆机构;再以平行四边形网格单元移动连杆机构为基本单元,采用不同的组合方式,构造新型的网格式移动连杆机构,分析其运动特性。主要研究工作如下:
     (1)根据三边式移动连杆机构的拓扑,构造了3个子类的具有步行或爬行能力的三杆开链式移动连杆机构;提出了直线步行的三边网格单元移动连杆机构,分析其稳定性、步高、步长等运动性能;从杆件形状与铰链连接的角度,提出改进方案,增加了三边网格单元移动连杆机构的转向功能。
     (2)增加网格单元的边数,提出滚动的四边网格单元移动连杆机构,利用机构学中四杆机构的知识及拓扑学的理论,从铰链方位、驱动个数、驱动位置等方面考虑,拓展出7种子构型,分析各构型的结构特点和运动轨迹,并使用差动方式实现了中心单动力型平行四边形网格单元连杆机构差动系统的转向。
     (3)将两个平行四边形网格单元进行平面或空间组合,分别研究了平面型、空间正交型双平行四边形网格式移动连杆机构,采用差动方式实现前者的转向,分析了后者空间任意方位转向的特性。
     (4)将三个平行四边形网格单元进行平面组合,构成的三平行四边形网格式移动连杆机构的结构具有对称性,研究其质心波动与驱动函数的关系,并以最小化质心波动为优化目标求解驱动函数,使用差动方式实现了差动系统的转向。
     (5)将四个平行四边形网格单元进行平面组合,开发了四平行四边形网格式移动连杆机构,深入发掘其运动方式,发现其类履带的边触地的滚动方式和类步行的两点触地的滚动方式,对其差动系统进行了转向和侧翻自救能力的探索。
     (6)讨论并总结了采用共中心点的组合方式对平行四边形网格单元进行组合后,平行四边形网格单元的个数与移动连杆机构的运动方式的关系。
ABSTRACT:This research is in the field of robotic mechanism and it is about mobile linkage mechanism. Links are the components of legged robots, snake-like robots and some other kinds of robots without the configuration of creatures. The size and shape of a link can be designed in many ways. There are also many kinds and assembling ways of links. Therefore, the research on mobile linkage mechanism can be done deeply.
     The concept of mobile linkage mechanism with lattice configuration is proposed firstly in this paper. This kind of mechanism is composed of some links and the configuration is similar to lattice in the field of biology, such as the configuration of section of honeycombs. A side of a lattice means a link of a mechanism. A node of a lattice represents a joint of a mechanism.
     The study starts from the basic open chain linkage mechanism with three links. Then, the mobile linkage mechanisms are composed of links, with the configurations of closed loops with three sides or four sides, namely, a unit lattice with three sides or four sides. After that, based on the mechanism with the configuration of a unit lattice with four sides, that is, a parallelogram mechanism, novel mobile linkage mechanisms with lattice configuration are constructed through different ways to be studied on. The main work is listed as following:
     (1) According to the topology of a mobile linkage mechanism with three links, the walking or crawling mobile open chain linkages mechanisms are proposed and classified to three sub-groups. A straight walking mobile linkage mechanism with three-side lattice configuration is put forward, i. e., a walking linkage mechanism with triangle configuration. The stability, the length and height of a stride, and some other mobile characters are analyzed. From the point of view of shapes of links and kinds of joints, a modified mechanism is constructed to turn around.
     (2) Adding the number of sides of a unit lattice, a rolling mobile linkage mechanism with four-side lattice configuration is generated. With the knowledge of four bar linkage in mechanism and topology theory, seven kinds of mechanisms are derived after considering the directions of joints, number of actuations, position of actuations, and so on. The features of every mechanism and moving trajectories are analyzed. The turning motion of the differential system composed of two mobile linkage mechanisms with parallelogram configuration is realized.
     (3) Combining two parallelogram mechanisms in a plane or spatially, the planar mobile linkage mechanism with two parallelograms configuration and the mobile linkage mechanism with two spatial-crossed parallelograms configuration are produced and analyzed. The former can turn by the differential way and the latter can do omnidirectional rolling motion by itself.
     (4) After combining three parallelogram mechanisms in a plane, a mobile linkage mechanism with three parallelograms configuration are formed and it has symmetric structure. The relation between the vibration of its center of mass and the driving functions is studied. Aiming at minimizing the vibration, the driving functions are optimized. Its differential system can turn around.
     (5) Four parallelogram mechanisms are combined in a plane. The mobile linkage mechanism with four parallelograms configuration is created. Considering its ways of moving deeply, two are found. One is the rolling motion with sides support, like a tracklayer. The other is the rolling motion with two points support, like a biped. Its differential system is found out to turn and recover from side-falling.
     (6) Discuss and sum up the relation between the number of parallelograms and moving methods of mobile linkage mechanisms, which are generated by combining the parallelogram mechanisms with a common vertex.
引文
[1]Armour R. H., Vincent J. F. V. Rolling in nature and robotics:A review. Journal of Bionic Engineering,2006,3(4):195-208.
    [2]Joshi V. A., Ravi N. B., Rohit H. Design and analysis of a spherical mobile robot. Mechanism and Machine Theory,2010,45(2):130-136.
    [3]Halme A., Schonberg T., Wang Y. Motion control of a spherical mobile robot. Proceedings of IEEE International Workshop on Advanced Motion Control, Piscataway, NJ, USA:IEEE, 1996:259-264.
    [4]王亮清,孙汉旭,贾庆轩.球形机器人的爬坡与弹跳能力.北京邮电大学学报,2007,29(2):11-14.
    [5]王广,莫锦秋.全对称球形机器人的设计及动力学分析.上海交通大学学报,2007,41(8):1271-1275.
    [6]岳明,邓宗全.基于坐标变换下的球形机器人稳定平台控制.机械工程学报,2009,45(5):271-275.
    [7]Yan H. S. Creative design of mechanical devices. Singapore:Springer-Verlag Singapore, Pte. Ltd.,1998.
    [8]Garcia M., Chatterjee A., Ruina A., et al. The simplest walking model:stability, complexity and scaling. ASME Journal of Biomechanical Engineering,1998,120(2):281-288.
    [9]Mcgeer T. Passive dynamic walking. The International Journal of Robotics Research,1993, 9(2):68-82.
    [10]McGeer, T. Passive bipedal running. Proceedings of the Royal Society of London. B. Biological Sciences,1990,240(1297):107-134.
    [11]Kiefer J., Bale R. Walking viability and gait synthesis for a novel class of dynamically-simple bipeds. Informatica,1993,17:145-155.
    [12]Spong M. W., Lozano R., Mahony R. An almost linear biped. Proceedings of the 39th IEEE Conference on Decision and Control. Sydney, Australia,2000:4803-4808.
    [13]McGee T. G., Spong M. W. Trajectory planning and control of a novel walking biped. Proceedings of the 2001 IEEE International Conference on Control Applications. Mexico City, Mexico.2001:1099-1104.
    [14]Kuo A. D. Stabilization of lateral motion in passive dynamic walking. The International Journal of Robotics Research,1999,18(9):917-930.
    [15]王曦鸣,姚燕安.一种单动力三杆两足移动机构.机器人,2009,31(3):262-269.
    [16]Ono K., Takahashi R., Imadu A., Shimada T. Self-excitation control for biped walking mechanism. Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, Takamatsu,2000:1143-1148.
    [17]McGeer T. Passive walking with knees. Proceedings of IEEE International Conference on Robotics and Automation,1990,3:1640-1645.
    [18]Narukawa T., Takahashi M., Yoshida K. Numerical simulations of level-ground walking based on passive walk for planar biped robots with torso by hip actuators. Journal of System Design and Dynamics,2008,2(2):463-474.
    [19]Manoonpong P., Geng T., Kulvicius T., et al. Adaptive, fast walking in a biped robot under neuronal control and learning. PLoS Computational Biology,2007,3(7):1305-1320.
    [20]Grishin A. A., Formal'sky A. M., Lensky A. V., et al. Dynamic walking of a vehicle with two telescopic legs controlled by two drives. The International Journal of Robotics Research,1994, 13(2):137-147.
    [21]Ono K., Liu R. Q. Optimal biped walking locomotion solved by trajectory planning method. Journal of Dynamic Systems, Measurement, and Control,2002,124:554-565.
    [22]Collins S. H., Wisse M., Ruina A. A three-dimensional passive-dynamic walking robot with two legs and knees. The International Journal of Robotics Research,2001,20(7):607-615.
    [23]Collins S. H., Ruina A. A bipedal walking robot with efficient and human-like gait. Robotics and Automation,2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on.2005.1983-1988.
    [24]Collins S., Ruina A., Tedrake R.,Wisse M. Efficient bipedal robots based on passive-dynamic walkers. Science.2005,307(5712):1082-1085.
    [25]Shih C. L. The dynamics and control of a biped walking robot with seven degrees of freedom. Journal of Dynamic Systems, Measurement, and Control,1996,118:683-690.
    [26]Ching-Long, S. Ascending and descending stairs for a biped robot. Systems, Man and Cybernetics, Part A:Systems and Humans, IEEE Transactions on.1999,29(3):255-268.
    [27]Furusho J, Sano A. Sensor-based control of a nine-link Biped. The International Journal of Robotics Research,1990,9(2):83-98.
    [28]Chestnutt J., Lau M., et al. Footstep planning for the Honda ASIMO humanoid. Proceedings of the IEEE International Conference on Robotics and Automation, April,2005:629-634.
    [29]Chestnutt J., Michel P., Kuffner J., Kanade T. Locomotion among dynamic obstacles for the honda ASIMO. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems,2007:2572-2573.
    [30]Sugahara Y., Endo T., Lim H., et al. Design of a battery-powered multi-purpose bipedal locomotor with parallel mechanism. Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, Sept.30-Oct.5,2002: 2658-2663.
    [31]Sugahara Y., Endo T., Lim H., et al. Control and experiments of a multi-purpose bipedal locomotor with parallel mechanism. Proesedings of the 2003 IEEE International Conference on Robotics and Automation, Taipei, Taiwan, September 14-19,2003. Vol.3:4342-4347.
    [32]Hashimoto K., Sugahara Y., Sunazuka H., et al, Human-carrying biped walking vehicle. Proceedings of the 6th International Conference of the International Society for Gerontechnology,2008.
    [33]Hirose S., Umetani Y.. Some consideration on a feasible walking mechanism as a terrain vehicle, Proceedings of 3rd RoManSy Symposia, Udine, Italy,1978:357-375.
    [34]Hirose S., Umetani Y.. The basic motion regulation system for a quadruped walking vehicle. ASME Publication 80-DET-34,1980:1-6.
    [35]Hirose S., Umetani Y. A cartesian coordinates manipulator with articulated structure. Proceedings of 11th International Symposia on Industrial Robots, Tokyo,1981:603-609.
    [36]Hirose S., Nose M., Kikuchi H.,et al. Adaptive gait control of a quadruped walking vehicle. Robotics Research (1st International Symposia), The MIT Press,1984:253-277.
    [37]Hirose S. A study of design and control of a quadruped walking vehicle. The International Journal of Robotics Research,1984,3(2):113-133.
    [38]Hirose S., Masui T., Kikuchi H. TITAN Ⅲ:A quadruped walking vehicle-Its structure and basic characteristics. Robotics Research (2nd International Symposia), The MIT Press,1985: 325-331.
    [39]Hirose S., Kikuchi H., Umetani Y. The standard circular gait of a quadruped walking vehicle. Advanced Robotics,1986,1(2):143-164.
    [40]Yoneda K., Hirose S. Dynamic and static fusion gait of quadruped walking vehicle on winding path. Proceedings of IEEE International Conference on Robotics and Automation, 1992:143-148.
    [41]Hirose S., Yoneda K., Arai K., Ibel T. Design of prismatic quadruped walking vehicle TITAN VI, Proc.5th Wt. Conf. Advanced Robotics, Pisa, Italy,1991:723-728.
    [42]Tsukagoshi H., Hirose,S., Yoneda, K. Maneuvering operations of a quadruped walking robot,Advanced Robotics,1997,11(4):359-375.
    [43]Hirose S., Yoneda K., Tsukagoshi H. TITAN Ⅶ:quadruped walking and manipulating robot on a steep slope, Proceedings of International Conference on Robotics and Automation, Albuquerque, New Mexico,1997:494-500.
    [44]Doi T., Tsukagoshi H., Hirose S.3D visual information processing and gait control of a quadruped robot. Journal of Robotics and Mechatronics,15(3).
    [45]Arikawa K., Hirose S. Study of walking robot for 3 demensional terrain. Proceedings of International Conference on Robotics and Automation, Nagoya,1995:703-708.
    [46]Arikawa K., Hirose S. Development of quadruped walking robot TITAN-Ⅷ, Proc.IROS 96, Osaka,1996:208-214.
    [47]Hirose S., Tsukagoshi H., et al. Development of quadruped walking robots, TITAN-Ⅶ and TITAN Ⅷ. Final Report, Research Program on Mechanism for Emergent Machine Intelligence,1999:535-545.
    [48]Zhang X. L., Zheng H. J., Guan X., et al. A biological inspired quadruped robot:structure and control. Proceedings of IEEE International Conference on Robotics and Biomimetics. Hong Kong & Macau,2005:387-392.
    [49]Zhang X. L., Zheng H. J., Liu P., et al. Designing a quadrupedal robot mimicking cat locomotion. Proceedings of IEEE International Conference on Systems, Man and Cybernetics, Taipei, Taiwan,2006,6:4471-4474.
    [50]Buehler M., Battaglia R., Cocosco A., Hawker G., et al. SCOUT:A simple quadruped that walks, climbs, and runs. Proceedings of the 1998 International Conference on Robotics and Automation, Leuven, Belgium,1998:1707-1712.
    [51]Papadopoulos D., Buehler M. Stable running in a quadruped robot with compliant legs. Proceedings of the 2000 International Conference on Robotics and Automation, San Francisco, California, USA,2000:444-449.
    [52]Poulakakis I., Smith J. A., Buehler M. Modeling and experiments of untethered quadrupedal running with a bounding gait:the Scout Ⅱ robot. International Journal of Robotics Research, 2005,24:239-256.
    [53]Smith J. A., Sharf I., Trentini M., Bounding gait in a hybrid wheeled-leg robot, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems,2006,1:5750-5755.
    [54]Smith J. A., Sharf I.,et al. PAW:a hybrid wheeled-leg robot. Proceedings of the 2006 International Conference on Robotics and Automation, Orlando, FL, USA,2006:4043-4048.
    [55]Playter R., Buehler M., Raibert M. Bigdog. In Proc. SPIE, volume 6230, May 2006.
    [56]Raibert M., Blankespoor K., Nelson G., Playter R., et al. Bigdog, the rough-terrain quaduped robot. Proceedings of the 17th World Congress ofthe International Federation of Automatic Control, Seoul, Korea,2008.
    [57]Wooden D., Malchano M., Blankespoor K., et al. Autonomous navigation for BigDog. Proceedings of IEEE International Conference on Robotics and Automation, Anchorage Convention District, Anchorage, Alaska, USA.2010:4736-4741.
    [58]Espenschied K. S., Quinn R. D., Chiel H. J., Beer, R. D. Biologically-Based distributed control and local reflexes improve rough terrain locomotion in a hexapod robot. Robotics and Autonomous Systems,1996,18:59-64.
    [59]Beer R. D., Quinn R. D., Chiel H. J., Ritzmann R. E., Biologically-Inspired approaches to robotics, Communications of the ACM,1997,40(3).
    [60]Nelson G. M., Quinn R. D. Posture control of a cockroach-like robot. Proceedings of International Conference on Robotics and Automation,1998, pp.157-162.
    [61]Quinn R. D., Nelson G. M., Bachmann R.J., et al. Parallel complementary strategies for implementing biological principles into mobile robots, International Journal of Robotics Research,2003,22:169-186.
    [62]Cham J. G., Bailey S. A., Clark J. E., Full R. J., Cutkosky M. R., Fast and robust:hexapedal robots via shape deposition manufacturing. International Journal of Robotics Research,2002, 21(10-11):869-882.
    [63]Komsuoglu H., McMordie D., Saranli U., et al. Proprioception based behavioral advances in a hexapod robot. Proceedings of International Conference on Robotics and Automation,2001: 3650-3655.
    [64]Moore E. Z., Buehler M. RHex leg design, MS Thesis, Department of Mechanical Engineering, McGill University, Montreal.
    [65]Saranli U., Buehler M., et al. RHex:A simple and highly mobile hexapod robot. The International Journal of Robotics Research,2001,20(7):616-631.
    [66]Koditscheka D. E., Full R. J., Buehlerc M. Mechanical aspects of legged locomotion control, Arthropod Structure & Development,2004,33:251-272.
    [67]Quinn R. D., Offi J. T, Kingsley D. A., et al. Improved mobility through abstracted biological principles. Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems,2003:2652-2657.
    [68]Gasparetto A., Seidl T., Vidoni R., Kinematic study of the spider locomotor system in a biomimetic perspective. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France,2008.
    [69]Gasparetto A., Seidl T., Vidoni R., Passive control of attachment in legged space robots, Applied Bionics and Biomechanics,2009,7(1):69-81.
    [70]Vidoni R., Gasparetto A. Efficient force distribution and leg posture for a bio-inspired spider robot. Robotics and Autonomous Systems.2011,59(2):142-150.
    [71]Flannigan W. C., Nelson G. M., et al. Locomotion controller for a crab-like robot. Proceedings of 1998 IEEE International Conference on Robotics and Automation,1998.
    [72]王沫楠,孙立宁,孟庆鑫.仿生机器蟹运动系统能量分析.机械设计.2005,22(8):19-21.
    [73]王立权,孙磊,陈东良,张玲,孟庆鑫.仿生机器蟹样机研究.哈尔滨工程大学学报.2005,26(5):591-595.
    [74]Wang L. Q, Meng Q. X., et al. Motor driving leg design for bionics crab-liked robot. Journal of Marine Science and Application,2002,1(2):72-77.
    [75]http://www.robotster.org/tags/halluc-ii/
    [76]Twickel V. A., Hild M., et al. Neural control of a modular multi-legged walking machine: Simulation and hardware. Robotics and Autonomous Systems.60(2):227-241.
    [77]Yim M. A reconfigurable modular robot with many modes of locomotion. Proceedings of JSME Int. Conf. on Advanced Mechatronics,1993, pp:283-288.
    [78]Yim M. New locomotion gaits. Proceedings of IEEE International Conference on Robotics and Automation,1994:2508-2514.
    [79]Yim M., et al. PolyBot:a modular reconfigurable robot. Proceedings of the 2000 IEEE International Conference on Robotics & Automation, San Francisco, CA, Apr.2000, pp: 514-520.
    [80]Yim M., Ying Z. et al. Modular robots. Spectrum, IEEE 2002,39(2):30-34.
    [81]Salemi B., Moll M., Shen W. M. SUPERBOT:A deployable, multi-functional, and modular self-reconfigurable robotic system. IROS 2006:3636-3641.
    [82]Shen W. M., Krivokon M., Chiu H., et al. Multimode locomotion via SuperBot robots. Proceedings of 2006 IEEE International Conference on Robotics and Automation, Orlando, FL,2006, pp:2552-2557.
    [83]Shen W. M., Krivokon M., et al. Multimode locomotion for reconfigurable robots. Autonomous Robots,2006,20(2):165-177.
    [84]Kurokawa H., Yoshida E., et al. Self-reconfigurable M-TRAN structures and walker generation. Robotics and Autonomous Systems,2006,54(2):142-149.
    [85]Kurokawa H., Kamimura A., et al. M-TRAN Ⅱ:metamorphosis from a four-legged walker to a caterpillar. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems,2003.
    [86]Murata, S., Yoshida E., et al. M-TRAN:self-reconfigurable modular robotic system. IEEE/ASME Transactions on Mechatronics,2002,7(4):431-441.
    [87]赵杰.万向式关节的模块化白重构机器人.机器人,2010,32(5).
    [88]Shufeng T., Yanhe Z., et al. The UBot modules for self-reconfigurable robot. Proceedings of ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots,2009.
    [89]Sadjadi H., Al-Jarrah M. A. et al. Morphology for planar hexagonal modular self-reconfigurable robotic systems.6th International Symposium on Mechatronics and its Applications,2009.
    [90]Sadjadi H., Mohareri O., et al. Design and implementation of HexBot:a modular self-reconfigurable robotic system.6th International Symposium on Mechatronics and its Applications,2009.
    [91]Hamlin G. J., SandersonA. C., A novel concentric multilink spherical joint with parallel robotics applications. Proceedings of IEEE International Conference on Robotics and Automation, San Diego, CA,1994,2:1267-1272.
    [92]Hamlin G. J., et al. Tetrobot modular robotics:prototype and experiments. Proceedings of International Conference on Intelligent Robots and Systems,1996:390-395.
    [93]Lee W. H., Sanderson A. C., Dynamic rolling locomotion and control of modular robots. IEEE Transactions on Robotics and Automation,2002,18:32-41.
    [941 Sebens C., Truszkowski W., An agent based tetrahedral walker. Proceedings of 2006 Aerospace Conference, Big Sky, MT,2006:7-13.
    [95]Clark, P. E., et al., BEES for ANTS:space mission applications for the autonomous nanotechnology swarm, AIAA 2004-6303, AIAA I Intelligent Systems Technical Conference, Chicago, Illinois, September 20-22,2004
    [96]Curtis S. A., Truszkowski W., Rilee M. L., Clark P. E. ANTS for human exploration and development of space. Proceedings of IEEE Aerospace Conference,2003,1:255-261.
    [97]Gifford C. M., Agah A., Carmichael B. L., Wade U. B., Ruiz-Carrion I., Seismic TETwalker mobile robot design and modeling. Proceedings of IEEE International Conference on Technologies for Practical Robot Applications,2008:7-12.
    [98]Clark P. E., Kessel S., Rilee M. L., et al. Extreme mobility:gaits for tetrahedral rovers,38th Lunar and Planetary Science Conference, (Lunar and Planetary Science XXXVIII), League City, Texas. LPI Contribution,2007, (1338):1172.
    [99]Curtis S., Brandt M., Bowers G., et al. Tetrahedral robotics for space exploration. Aerospace and Electronic Systems Magazine, IEEE.2007,22(6):22-30.
    [100]Izadi M., Mahjoob M. J., et al. A motion planning for toppl ing-motion of a TET walker. The 2nd International Conference on Computer and Automation Engineering,2010.
    [101]Abrahantes M., Doom P., et al. Implementation and control of a reconfigurable 4-tetrahedral robot.41st Southeastern Symposium on System Theory,2009.
    [102]Abrahantes M., Nelson L., et al. Modeling and gait design of a 6-tetrahedron walker robot. 42nd Southeastern Symposium on System Theory (SSST),2010.
    [103]徐礼钜,范守文,雷勇.七重四而体变几何桁架机器人工作空间分析的解析法.四川大学学报(工程科学版),2001,33(6):6-9.
    [104]罗佑新.八面体变儿何桁架机构综合的神经网络超混沌牛顿迭代法研究.机械设计,2008,25(11):26-28.
    [105]范守文,徐礼钜,甘泉.二重八而体变几何桁架机器人工作空间解析.电子科技大学学报.2001,30(2):134-138.
    [106]徐礼钜,段肠,杨随先.三重八面体变几何桁架机器人间接位置分析的符号解.机械传动.2000,24(1):1-3.
    [107]杨随先,徐礼钜.N重八面体变儿何桁架机器人速度、加速度分析.机械科学与技术.2002,21(60):954-956.
    [108]姚进.十而体变几何桁架机构位置正解分析.机械科学与技术.1994,1:51-54.
    [109]姚进,房海蓉.十:面体变几何桁架机器人位置正解分析.中国机械工程.1996,7(6):50-52.
    [110]岁佑新,车晓毅,何哲明,李晓峰.十二面体变儿何桁架位置正解的病毒传播算法.中北大学学报(白然科学版).2009,30(4):333-337.
    [111]Nakanishi H., Hirai S., Passive crawling of a soft robot,2007 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, ETH Zurich, Switzerland, September.4-7,2007:1-6.
    [112]Sugiyama Y., Hirai S. Crawling and jumping of deformable soft robot. Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems,2004:3276-3281.
    [113]Sugiyama Y., Shiotsu A., Yamakita M., et al. Circular/spherical robots for crawling and jumping, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain,2005:3606-3611.
    [114]邓孔书,姚燕安,查建中.一种空间四杆两足步行机构.工程设计学报,2005,12(6):364-365.
    [115]苗志怀,姚燕安,田耀斌.4U平行四边形机构的一类新用途——整体设计为两足步行机构.机器人,2011,33(4):394-404.
    [116]田耀斌,姚燕安.一种单动力滑行四杆机构.第8届中国机构与机器科学应用会议,机械设计与研究,2009,25(25):82-84.
    [117]Tian Y. B., Guo Y. Z., Yao Y. A. An antiparallelogram mobile mechanism. CCMMS 2010. 7.21-25, Shanghai,2010.
    [118]Vukobratovic M., Frank A. A., Juricic D. On the stability of biped locomotion. IEEE Transactions on Biomedical Engineering,1970,17(1):25-36.
    [119]Takanishi A., Tochizawa M., Takeya T., et al. Realization of dynamic biped walking stabilized with trunk motion under known external force. Proceedings of the 4th International Conference on Advanced Robotics, Columbus, Ohio, USA, June 13-15,1989. Berlin: Springer-Verlag,1989:299-310.
    [120]Bennett G. T., A new mechanism. Engineering,1903,76:777-778.
    [121]Robert L. N., Design of machinery:an introduction to the synthesis and analysis of mechanisms and machines. McGraw-Hill Education Company.2003
    [122]Li Q. C., Huang Z. Mobility analysis of a 3-5R parallel mechanism family, IEEE ICRA, Taipei, Taiwan, Sep.14-19,2003:1887-1890.
    [123]黄真,赵永生,赵铁石.高等机构学[M].北京:高等教育出版社,2006.
    [124]Kong X., Gosselin C. M., Richard P. L. Type synthesis of parallel mechanisms with multiple operation modes. ASME Journal of Mechanical Design,2007,129 (7):595-601.