纬编针织机编织动力学分析及控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纬编针织机编织系统在运行过程中导针片和织针与三角发生的冲击和碰撞现象,会引起导针片和织针的位移曲线偏离理论轨迹,影响编织效果。大量的冲击和碰撞还引起导针片和织针磨损,甚至疲劳断裂,极大的降低了系统的稳定性和工作效率。随着现代纬编针织机械朝着高速、高性能的方向发展,对其编织系统进行建模和动力特性分析,以及对其控制策略进行研究具有重要的理论价值和工程指导意义。
     论文首先概述了圆型针织机的织针与三角间冲击特性的理论分析和实验检测相结合的国内外研究现状和进展。以横机和无缝内衣机为例分析了纬编针织机的工作原理,得出纬编针织机的三角与织针在编织过程中的冲击和振动问题是纬编针织机研究的核心内容。
     提出了成圈、集圈、移圈工艺的理论模型,给出了织针运动的理论曲线。以单自由度系统从动件与几何封闭的凸轮机构模型为编织系统的动力学模型,研究了织针和导针片与三角之间的受力、碰撞、冲击等问题,并给出动力学方程。
     分析了在运动过程中导针针踵与三角凸轮轮槽工作表面发生的横越冲击问题。得出横越冲击速度与加速度变号点的跃度的立方根成正比;碰撞速度与凸轮轮槽间隙的大小成正比关系。建立了织针、导针片、三角的动力学模型,运用有限元软件进行瞬态动力学仿真。
     以高速成像测速实验的方法进行实验研究,使用高速摄像仪得到织针在成圈方向上的位移图像,通过图像处理得到位移、速度、加速度等实验数据,最终通过MATLAB软件进行数据处理,并得到织针针钩在成圈方向上的位移、速度、加速度、跃度等运动特征曲线。分析实验结果可知,织针与三角的冲击在初始点和最大升程点存在大量振动。
     随着纬编针织机智能化水平的不断提高,控制策略的研究已成为高性能针织机研究的核心内容。考虑到纬编针织机的织针与三角凸轮的动力学特性,提出实时针位置跟踪算法,并运用前瞻控制理论,提出一种机器变速运转的最佳控制方法。控制策略的提出进一步弥补了由于机械加工、安装等引起的动力学响应无法达到理论设计要求的缺陷。核心控制算法对纬编针织机的稳定性和可靠性将起决定性的作用。
     论文对纬编编织工艺理论分析、三角凸轮轨迹优化、导针片和织针的受力分析、编织系统动力学特性分析,以及纬编针织机核心控制算法的研究等方面具有一定的参考价值。
There are quantities of contacts and impacts between knitting needle or guide needle andcam, especially when weft-knitting machine is running at high speed. It leads to knitting needle’sdisplacement departure comparing with its theory track, and it makes system instabilityinefficient as well as fatigue fracture due to the abrasion of knitting needle and guide needle. Withthe development of weft-knitting machine towards high-speed and high-performance, it isbecoming increasingly important to analyze the modeling and dynamic of knitting mechanismssystem and control strategy.
     The domestic and international research actualities of circular weft-knitting machine’sdynamic characteristics between knitting needle and cam have been summarized; the theoreticalanalysis and experimental testing of impact properties have been discussed. Weft-knittingmachines, such as the knitting system mechanism of the flat knitting machine, glove machine,circular knitting machine, seamless underwear machine and hosiery machine, have beenanalyzed. The impact and contact of the triangle, knitting needle and guide needle is the core ofthe weft-knitting machine.The theory models of looping, tuck and loop transfer technology, as well as the theoreticaldisplacement curve of the knitting needle movement theory displacement, have been proposed.As one follower and form-closed cam mechanisms for weft knitting machine knitting systemtheory model with a single degree of freedom system; focus on the force, contacts and impactsbetween knitting needle or guide needle and cams. The kinematic equations and dynamicequations of the system model have been proposed, and then solve the equations with the Fourierseries method and mode superposition method.
     Across impact has been analyzed between guide needle-butt and working surface of thetriangular cam wheel groove. Impact velocity increases with the increase of the cam wheelgroove gap. The velocity of traversed impact and acceleration change point is proportional to thecube root of the jerk. Dynamic models of knitting needle, guide needle, needle bed and camshave been proposed. Transient dynamics simulation result is in accord with the theoretical curvein the trend using finite element software.
     On the basis of experimental study, the displacement photographs of needle in the directionof knit have been obtained. Experimental results, displacement, velocity, acceleration, etc, havebeen processed by the image processing software. Finally, the displacement, velocity,acceleration and jerk movement characteristic curve in the knitting direction of the needles hookshave been obtained by the MATLAB software. The analysis of experimental results, the impactof the needles and the cam repeatedly occur at the initial point and the point of maximum lift. The model has been improved validity by comparative analysis of the motion characteristics ofthe key points.
     With the continuous improvement of the weft knitting machine intelligence level, the controlstrategy has become the core topic of the high performance knitting machines. Taking intoaccount the dynamic characteristics of the weft knitting machine needles and triangular cam, theproposed location of the real-time needle tracking algorithm and look-ahead control theory havebeen proposed. The control strategy compensate for the theoretical design requirements cannotbe achieved due to the dynamic response caused by mechanical processing, installation and other defects. The core control algorithms will play a decisive role in the stability and reliability of theweft knitting machine.
     The study has a certain reference value on the weft knitting machine weaving theoreticalanalysis, cam trajectory optimization and stress analysis of the guide needle and knitting needles,weaving system dynamics analysis and the core of the weft knitting machine control algorithm.
引文
[1] Wray GR, Burns N D. Cam-to-needle impact forces in weft-knitting part I: the theory ofstitch-cam impact [J]. Journal of the Textile Institute,1976,67(6):189-194.
    [2] Wray GR, Burns N D. Cam-to-needle impact forces in weft-knitting part III: somemeasurements of stitch-cam impact [J]. Journal of the Textile Institute,1976,67(6):199-205.
    [3] Black D H, Munden D L. Increasing the rates of fabric production of weft-knittingmachinery part I: the design and performance of high-speed knitting cams [J]. Journal of theTextile Institute,1970,61(7):313-324.
    [4] Black D H, Munden D L. Increasing the rates of fabric production of weft-knittingmachinery part II: an analysis of high-speed knitting-cam systems [J]. Journal of the TextileInstitute,1970,61(7):325-333.
    [5] Black D H, Munden D L. Increasing the rates of fabric production of weft-knittingmachinery part III: measurement of the needle forces[J]. Journal of the Textile Institute,1970,61(7):340-348.
    [6] Black D H, Munden D L. Increasing the rates of fabric production of weft-knittingmachinery[J]. Journal of the Textile Institute,1970,61(7):179-179.
    [7] Peat D, Spicer E R. Yarn movement and tension during loop formation in circular knitting[J]. Journal of the Textile Institute,1974,65(7):388-393.
    [8] Ray Sadhan Chandra, Banerjee P K. Mechanics of1x1rib loop formation process on a dialand cylinder machine-analysis of modelled system[J]. Indian Journal of Fibre&TextileResearch,2012,37(2):138-145.
    [9] Murayama K, Yaginuma N, Onodera T, et al. Prediction of end breakage rate due to knots in1x1rib knitting zone [J]. SEN-I GAKKAISHI,2012,68(5):125-137.
    [10]Oinuma R, Murayanta K, Nishimura S. Mathematical model of weft knitting process [J].SEN-I GAKKAISHI,2008,64(6):151-158.
    [11]景建桥,马晓建.横机三角动力学特性分析及三角优化设计[J].针织工业,2006,3:15-18.
    [12]Song G, Li Y, Wu J. A study on the optimum design of non-linear cam profiles inweft-knitting machines [J]. Journal of Textile Institute,2004,95(1-6):171-182.
    [13]Oldham K, Burns N D, Simms G J.4—Non-linear cams for weft-knitting machines [J].Journal of the Textile Institute,1985,76(1):30-37.
    [14]Long H R. The effect of the shape and parameters of the knitting needle on cam-to-needleimpact forces[J]. Journal of the Textile Institute,2000,91(2):259-267.
    [15]顾维.全电脑无缝内衣针织圆纬机[J].上海针织动态,2002(1):11-14.
    [16]徐英莲,齐素梅. SM8-TOP2无缝内衣圆机织针的运动参数分析[J].纺织学报,2011,32(2):58-63.
    [17]元轶,徐先林.无缝全成型技术的现在和发展[J].纺织导报,2006,(11):26-28.
    [18]宋立胜. SM8系列设备生产的无缝内衣机产品的发展方向[J].针织工业,2001,(5):38-39.
    [19]夏风林,陈展云.针织机械的发展动向[J].纺织导报,2005,(8):36-39.
    [20]马创军.圣东尼SM8-TOP1型无缝内衣机多色提花的编织[J].针织工业,2009,(7):8-9.
    [21]朱文俊,刘艳君,禹云威,等.单面无缝内衣组织结构的特点与应用[J].针织工业,2009,4:8-11.
    [22]孙平范.无缝内衣机的导纱喂纱机构:中国,ZL200710067066.2,2007.
    [23]许兰杰,郭昕.电脑无缝针织工艺的发展与应用.现代纺织技术.2008(2):53-56.
    [24]王彦相.SANTONI SM8型电脑全成形内衣机编织全成形彩条内衣工艺.针织工业.1997(6):14-16.
    [25]曹斌.无缝针织内衣机成圈机构原理与工艺的研究与分析[D].杭州:浙江理工大学,2010.
    [26]贺炜,曹巨江,杨芙莲,等.我国凸轮机构研究的回顾与展望[J].机械工程学报,2005,41(6):1-6.
    [27] Hrones J A. Analysis of dynamic force in a cam-driven system[J]. Trans. ASME,1948,70(5):473-482.
    [28]Mitchell D B. Tests on dynamic response of cam follower systems [J]. MechanicalEngineering,1950,72(6):467-471.
    [29]孔午光.高速凸轮[M].北京:高等教育出版社,1986:3-5.
    [30]Grishanov S A, Cassidy T, Spencer D J. A model of the loop formation process on knittingmachines using finite automata theory[J]. Applied Mathematical Modelling,1997,21(7):455-465.
    [31]Grishanov S A, Cassidy T, Spencer D J. Loop formation a mathematical model of loopforming on the knitting machine [J], Textile Horizons,1996,16(1):46-47.
    [32]Jeong K Y, Kim Y B. Dynamic modelling of the latch needle cam system of weft knittingmachines[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal ofMechanical Engineering Science,2003,217(2):219-227.
    [33]Li H, Shen Y, Xu G, et al. A-operator method for nonlinear dynamic analysis of mechanicalsystem[J]. Jixie Gongcheng Xuebao(Chinese Journal of Mechanical Engineering)(China),2002,38(7):31-36.
    [34]Flocker F W. A versatile acceleration-based cam profile for single-dwell applicationsrequiring cam-follower Clearance During Dwell[J]. Journal of Mechanical Design,2012,134:084505.
    [35]Dresner T L, Barkan P. New methods for the dynamic analysis of flexible single-input andmulti-input cam-follower systems[J]. Journal of Mechanical Design,1995,117:150.
    [36]Yao Y A, Yan H S, Zhang C E. A variable-speed method for reducing residual vibrations inelastic cam-follower systems[J]. Journal of dynamic systems, measurement, and control,2003,125(3):480-482.
    [37]Flocker F W, Bravo R H. A closed-form solution for minimizing the cycle time in motionprograms with constant velocity segments[J]. Journal of Mechanical Design,2013,135:014502.
    [38]Flores P, Leine R, Glocker C. Application of the nonsmooth dynamics approach to modeland analysis of the contact-impact events in cam-follower systems[J]. Nonlinear Dynamics,2012,69(4):2117-2133.
    [39]吕强中,叶理平.复合型凸轮运动曲线[J].华东理工大学学报,1998,24(4):472-476.
    [40]夏风林,葛明桥,蒋高明.高速经编机木节梳横移运动的优化设计[J].纺织学报,2009,30(5):118-121.
    [41]杨玉琥,姚燕安.跃度连续的通用简谐梯形组合凸轮曲线的参数优化[J].大连轻工业学院学报,1995,14(3):42-45.
    [42]张策,杨玉琥.跃度连续的通用简谐梯形组合凸轮曲线[J].大连轻工业学院学报,1995,14(3):8-15.
    [43]徐俊,贺元成.凸轮机构的机械动力学分析[J].机械管理开发,2012,2:015.
    [44]程玉阶.复杂机械系统动力学分析[J].华中农业大学学报.1995,14(4):408-414.
    [45]常勇,杨富富.作平面运动滚子从动件形锁合凸轮机构的第Ⅱ类机构综合问题[J].机械工程学报,2012,48(1):39-46.
    [46]Batra U. Fracture behavior and mechanism in austempered ductile iron[J]. Journal of FailureAnalysis and Prevention,2005,5(5):75-81.
    [47]Adachi T, Tanaka T, Sastranegara A, et al. Effect of transverse impact on buckling behaviorof a column under static axial compressive force[J]. International journal of impactengineering,2004,30(5):465-475.
    [48]Bless S, Chen T. Impact damage in layered glass[J]. International Journal of Fracture,2010,162(1-2):151-158.
    [49]WAN G J, LU L H, YU Y L. Mechanical properties of bi-axial warp knitted glass fiberboardunder transverse impact [J]. Journal of Textile Research.2011,32(1):46-50.
    [50]Liu Y, Lv L, Sun B, et al. Dynamic response of3D biaxial spacer weft-knitted compositeunder transverse impact[J]. Journal of reinforced plastics and composites,2006,25(15):1629-1641.
    [51]Hosur M V, Abraham A, Jeelani S, et al. Studies on the influence of through-the-thicknessreinforcement on low-velocity and high strain rate response of woven S2-Glass/Vinyl estercomposite[J]. Journal of composite materials,2001,35(12):1111-1133.
    [52] Wray G R, Burns N D.21—Dynamic forces in weft-knitting. II. The effects of thecam-cylinder clearance and the presence of yarn on cam forces [J]. Journal of the TextileInstitute,1976,67(5):156-161.
    [53]Wray G R, Burns N D.25—Cam-to-needle impact forces in weft-knitting part II: astitch-cam impact transducer[J]. Journal of the Textile Institute,1976,67(6):195-198.
    [54]Wray G R, Burns N D.31—Cam-to-needle impact forces in weft-knitting. VIII. The effectof some knitting parameters on guard-cam impact [J]. Journal of the Textile Institute,1978,69(8):244-249.
    [55]Sun J S, Lee K H, Lee H P. Comparison of implicit and explicit finite element methods fordynamic problems[J]. Journal of Materials Processing Technology,2000,105(1):110-118.
    [56]李跃宇,刘树春,汪冰,等.用ABAQUS进行弹塑性问题的分析[J].淮海工学院学报(自然科学版),2004,13(3):18-21.
    [57]张玉峰,朱以文,丁宇明.有限元分析系统ABAQUS中的特征技术[J].工程图学学报,2006,5:142-148.
    [58]Zhao A H, Chow C L. An efficient explicit algorithm for damage-coupled viscoplasticfatigue model[J]. Finite elements in analysis and design,2007,43(9):681-690.
    [59]TENG J, LI Z, WANG X, et al. Development and application of concrete material modelbased on VUMAT platform of ABAQUS[J]. Journal of Building Structures,2009,30(1):218-223.
    [60]Rebelo N, Nagtegaal J C, Taylor L M, et al. Industrial application of implicit and explicitfinite element methods to forming processes[J]. ASME COMPUT ENG DIV CED., ASME,NEW YORK, NY(USA),1992,,1992,5:67-76.
    [61]樊莉,谭南林,沈栋平.基于显示动力学的滚动轴承接触应力有限元分析[J].北京交通大学学报,2006,30(4):109-112.
    [62]Narasimha Rao K V, Kumar R K. Simulation of tire dynamic behavior using various finiteelement techniques[J]. International Journal for Computational Methods in EngineeringScience and Mechanics,2007,8(5):363-372.
    [63]Harewood F J, McHugh P E. Comparison of the implicit and explicit finite element methodsusing crystal plasticity[J]. Computational Materials Science,2007,39(2):481-494.
    [64]Ren W, Wang J, Reinikainen T. Application of ABAQUS/Explicit submodeling technique indrop simulation of system assembly[C]//Electronics Packaging Technology Conference,2004. EPTC2004. Proceedings of6th. IEEE,2004:541-546.
    [65]Anding D K. Constitutive Equations in Finite Element Codes: The INTERATOM Model inABAQUS[J]. SID: Structural Integrity&Durability,2005,1(2):95-106.
    [66]Voyiadjis G Z, Al-Rub R K A. A finite strain plastic-damage model for high velocity impactsusing combined viscosity and gradient localization limiters: Part II-Numerical aspects andsimulations[J]. International Journal of Damage Mechanics,2006,15(4):335-373.
    [67]Ahadi A, Krenk S. Implicit integration of plasticity models for granular materials[J].Computer Methods in Applied Mechanics and Engineering,2003,192(31):3471-3488.
    [68]Li H W, Yang H, Sun Z C. Implicit algorithm and numeralisation of microscopic constitutiverelations[J]. Materials science and technology,2006,22(12):1401-1408.
    [69]Rozycki P, Mo s N, Bechet E, et al. X-FEM explicit dynamics for constant strain elementsto alleviate mesh constraints on internal or external boundaries[J]. Computer Methods inApplied Mechanics and Engineering,2008,197(5):349-363.
    [70]Borouchaki H, Laug P, Cherouat A, et al. Adaptive remeshing in large plastic strain withdamage[J]. International journal for numerical methods in engineering,2005,63(1):1-36.
    [71]黄向军,刘妹琴.基于Linux嵌入式电脑横机控制系统设计[J].纺织学报,2007,28(3):107-110.
    [72]蔡立挺,傅建中,姚鑫骅.嵌入式电脑横机花型数据的编译处理[J].纺织学报,2008,29(6):113-116.
    [73]Litvinov D, Khizroev S. Overview of magneto-resistive probe heads for nanoscale magneticrecording applications[J]. Journal of magnetism and magnetic materials,2003,264(2):275-283.
    [74]冯斌,高芬,李金柱.一种非接触型位移传感器的研究[J].传感器与微系统,2007,26(8):12-13.
    [75]Hoo C L, Haris S M, Mohamed N A N. A floating point conversion algorithm for mixedprecision computations[J]. Journal of Zhejiang University SCIENCE C,2012,13(9):711-718.
    [76]Hockert N, Compton K. Improving floating-point performance in less area: fracturedfloating point units (FFPUs)[J]. Journal of Signal Processing Systems.2012,67(1):31-46.
    [77]Kum K I, Kang J, Sung W. AUTOSCALER for C: An optimizing floating-point to integer Cprogram converter for fixed-point digital signal processors[J]. Circuits and Systems II:Analog and Digital Signal Processing, IEEE Transactions on,2000,47(9):840-848.
    [78]Gan W S, Kuo S M. Teaching DSP software development: from design to fixed-pointimplementations[J]. Education, IEEE Transactions on,2006,49(1):122-131.
    [79]Pillai R V K, Al-Khalili D, Al-Khalili A J, et al. A low power approach to floating pointadder design for dsp applications[J]. Journal of VLSI signal processing systems for signal,image and video technology,2001,27(3):195-213.
    [80] Jin H, Jianye D, Qingjun X, et al. Realization technology of FFT based on DSP and using inelectrical network harmonic analysis[C]//Information Science and Engineering (ICISE),20091st International Conference on. IEEE,2009:635-638.
    [81]张家田,刘新英,严正国. DSP的定点溢出处理技术[J].中国科技信息,2008,24(60):83-85.
    [82] Shi C, Brodersen R W. Floating-point to fixed-point conversion with decision errors due toquantization[C]//Acoustics, Speech, and Signal Processing,2004. Proceedings.(ICASSP'04).IEEE International Conference on. IEEE,2004,5: V-41-4vol.5.
    [83]刘洪鸣,邱建辉,邱奕文.定点DSP中高精度除法的实现方法[J].单片机与嵌入式系统应用,2009,1:69-71.
    [84]Belanovic P, Rupp M. Automated floating-point to fixed-point conversion with the fixifyenvironment[C]//Rapid System Prototyping,2005.(RSP2005). The16th IEEE InternationalWorkshop on. IEEE,2005:172-178.
    [85]LEE Byung eun, NGUYEN Thanh binh, CHUNG Sun tae. Improved real-timeimplementation of adaptive gassian mixture model-based object detection algorithm forfixed-point DSP processors [J]. Journal of Measurement Science and Instrumention,2010,1(2):116-120.
    [86]任锟,陈文华,潘骏等.基于高速数控前瞻控制技术的误差补偿算法[J].机械工程学报,2010,15:155-160.
    [87]任锟,傅建中,陈子辰.高速加工中速度前瞻控制新算法研究[J].浙江大学学报:工学版,2006,40(11):1985-1988.
    [88]彭芳瑜,何莹,李斌. NURBS曲线高速插补中的前瞻控制[J].计算机辅助设计与图形学学报,2006,18(5):625-629.
    [89]胡旭东,张华,彭来湖,张建义.一种横机机头高速换向控制方法及其控制系统.ZL201010262711.8,发明专利.
    [90]Liu J Q, Xu D, Wu J R, et al. Research on the Velocity Look-Ahead Algorithm in the NCSystem[J]. Advanced Materials Research,2011,311:2379-2384.
    [91]Herzberg M, Yechiali U. K-step look-ahead analysis of value iteration algorithms for markovdecision processes [J]. European Journal of Operational Research.1996,88(3):622-636.
    [92]Ren K, Fu J Z, Chen Z C. Look-ahead algorithm for velocity control based on parameterizedcurve interpolator [J]. Chinese Journal of Mechanical Engineering (English Edition),2008,21(2):23-26.
    [93]和广强,于东,张晓辉.基于速度前瞻控制的五轴NURBS曲线插补方法[J].组合机床与自动化加工技术,2011,5:38-41,45.
    [94]Pardue J H, Landry J P, Kyper E, et al. Look-ahead and look-behind shortcuts in large itemcategory hierarchies: The impact on search performance[J]. Interacting with Computers,2009,21(4):235-242.
    [95]Shi C, Ye P. The look-ahead function-based interpolation algorithm for continuousmicro-line trajectories[J]. The International Journal of Advanced Manufacturing Technology,2011,54(5-8):649-668.
    [96]赵鹏,楼佩煌,刘明灯,等.实轴空间综合约束下的数控加工速度前瞻策略[J].西安交通大学学报,2012,46(2):64-69.