粘弹性隔振器动力学性能理论及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粘弹性隔振器在航天领域具有广泛的应用,但由于粘弹性材料的高度非线性,在粘弹性隔振器动力学性能建模、设计及计算等方面一直存在困难。为此,本文对粘弹性隔振器动力学性能涉及的关键问题进行全面而深入的理论与实验研究,包括粘弹性材料的温度谱模型、时温叠加方法,结构等强度力学模型及修正模态应变能法,温升计算方法。
     粘弹性隔振器的关键要素之一是粘弹性材料。基于频率谱五参数分数微分模型和温频镜像关系数学形式,提出了粘弹性材料的动力学性能六参数分数微分温度谱模型(Six-Parameter Fractional Derivative Model,简称SPFDM)。SPFDM能直接利用动态机械分析实验结果,对于损耗模量和损耗因子具有对称性或非对称性的情形均适用。SPFDM的参数具有明确的物理含义,推导了温度谱模型参数的初值公式,并给出了参数辨识步骤。
     粘弹性材料的动力学性能不仅与温度有关,还与频率有关,通常以时温叠加平移得到的主曲线表征。为获得更准确的时温叠加曲线,提出了一个基于广义Maxwell模型的时温平移方法(Generalized Maxwell Model Based Shifting,简称GMMBS)。与传统基于重叠窗口的时温叠加方法相比,GMMBS不需要首先判断重叠窗口的大小及存在性,能利用所有的实验数据中包含的有用信息来计算平移因子。
     在粘弹性材料研究的基础上,首先建立了关于隔振器支架结构的等强度力学模型,然后提出了计算隔振器动力学参数的ZMSE (Zhang Modal Strain Energy,简称ZMSE)模态应变能法。关于隔振器支架结构,基于小变形假设、莫尔定理及等强度梁理论,建立了隔振器结构参数与性能参数的等强度力学模型。等强度力学模型能够由隔振器的结构参数直接预测性能参数,并且可按需要的安全系数设计具有等强度特性的隔振器。关于粘弹性隔振器动力学参数,在分析了模态应变能法和已有修正方法的原理及其相互关系的基础上,提出了一种基于损耗因子幅值的修正模态应变能法ZMSE。ZMSE的修正因子随粘弹性隔振器对应模态阶次损耗因子幅值变化。以可等价为粘弹性夹层梁/板的四参数原型系统和新型高阻尼航天载荷隔振器作为算例,通过与已有方法的对比分析了所提ZMSE的准确性。
     粘弹性隔振器在振动过程中,会导致粘弹性材料温度升高,尤其是当粘弹性材料具有高阻尼特性时,热动力耦合现象明显。针对一般的任意激励,基于五参数分数微分本构模型,建立了热动力学耦合的控制微分方程,并推出了差分形式。针对工程上常见的稳态谐波激励,控制微分方程通过傅立叶变换可显著简化,文中建立了相应的温升计算方法。
     对粘弹性隔振器动力学性能提出的相关理论与方法还需要充分的实验进行验证。针对为多种粘弹性材料,进行了大量的动态机械分析实验。定频变温实验验证了SPFDM温度谱模型的准确性,并揭示了当材料存在次级转变区时,温度谱模型在该区域的误差可能较大。变频变温实验用以验证GMMBS时温叠加方法的准确性,同时发现粘弹性材料在变频、变温下的力学性能除了水平向平移关系外,还可能存在较小的纵向平移。针对一种新型等强度高阻尼粘弹性隔振器,正弦、随机实验表明,ZMSE模态应变能法计算的隔振器动力学参数预测准确,隔振器具有设计的刚度和优良的阻尼性能,在中高频范围内能有效抑制振动能量的传递。温升实验结果表明,热动力耦合温升计算理论结果与实验温升曲线趋势基本相同;对于高阻尼粘弹性隔振器,温升幅值十分显著,在设计时应计入温升对隔振器性能的影响,使隔振器发挥最大的隔振性能。
Although viscoelastic isolators have been widely used in aerospace and other engineering fields, due to the high nonlinear properties of viscoelastic materials, it remains difficult in some aspects about dynamic performance, such as modeling, design and calculation, etc. Therefore, in this thesis, the involved key problems of viscoelastic isolators'dynamic performance have been investigated by comprehensive theoretical and experimental study, including viscoelastic temperature spectrum model, time-temperature superposition method, vibration isolators'support structure design and dynamics performance calculating method, temperature rise calculation.
     Viscoelastic materials are one of the most important elements of viscoelastic isolators. Based on the Five-Parameter Fractional Derivative Model of frequency spectrum and mathematic temperature-frequency mirror relationship, Six-Parameter Fractional Derivative Model of the temperature spectrum, hereinafter referred to as SPFDM, has been proposed. SPFDM can directly use the experimental results of dynamic mechanical analysis, is applicable to loss modulus and the loss factor with both symmetry and asymmetry. SPFDM' parameters have clear physical meaning, whose initial values can be deteminated by some deduced formulas. Parameter identification steps are also given.
     Viscoelastic materials'dynamic performance depends not only on temperature, but also on frequency, is commonly characterized with the master curve obtained by the time-temperature superposition. To obtain more accurate Time-Temperature shift, a Generalized Maxwell Model Based Shifting method, hereinafter referred to as GMMBS, has been put forward. Compared with those traditional methods based on the overlapping window, GMMBS doesn't need first judgment of the size and existence of the overlapping window, can use all the experimental data which contains useful information to calculate the shift factor.
     Based on viscoelastic materials' research, the equal strength mechanical model and new mode strain energy method have been established for viscoelastic isolators'bracket and whole dynamic parameters, respectively. Based on the assumption of small deformation, Mohr's law, equal strength theory, the equal strength mechanical model is suggested for isolators'bracket. The model can directly predict isolators'performance parameters, and can help to design isolators'bracket with the needed safety factor. Based on the analysis of the principle and the correction of existed modal strain energy methods, Zhang Modal Strain Energy, hereinafter referred to as ZMSE, have been proposed, of which the correction factor depends on the amplitude of the loss factor. Taking the four-parameter prototype system, which is equivalent to viscoelastic laminated beam/board, and a new type isolator as an example, ZMSE's accuracy is discussed through the comparison with the existing methods.
     In vibration process, viscoelastic isolators'temperature will rise due to energy dissipation, especially when the viscoelastic materials have high damping characteristics. For the general input, the thermal dynamic coupling differential equations are established based on the Five-Parameter Fractional Derivative Model, and the corresponding difference form is introduced too. For the steady-state harmonic input, which is very common in engineering application, the established differential equations can be significantly simplified by Fourier transformation. The calculation method of the temperature rise has also been deduced for the steady-state case.
     The proposed theories and methods above for viscoelastic isolators'dynamic performance still need to be fully verified by experiments. With the condition of fixed frequency and temperature, experiments have verified the accuracy of the SPFDM, and reveal that the SPFDM's error may be relatively big when there is a subprime transition region. With the condition of variable frequency and temperature, experiments have proven the accuracy of the GMMBS, and reveal that there may be both vertical shift and horizontal shift for the dynamic performance of viscoelastic materials. Sine and random experiments show that the ZMSE can calculate the dynamic parameters of the isolators with reasonable accuracy. The isolator with desired stiffness and damping can effectively restrain the vibration energy transfer in the wide bandwidth. Experiments of the temperature rise show that the thermal dynamic coupling calculation method is basically accurate. For those high damping viscoelastic isolators, the amplitude of the temperature rise is notable, which is necessary to be considered in the design of isolators in order to maximize the performance of vibration isolation.
引文
[1]Henderson B K, Denoyer K K. Recent transitions of smart structures technologies through flight experiments[C]. Proceedings of SPIE 4332. California:2001.
    [2]Cobb R G, Sullivan J M, Das A, et al. Vibration isolation and suppression system for precision payloads in space[J]. Smart Materials and Structures.1999,8(6):798-812.
    [3]Sullivan L A, Erwin R S, Denoyer K K. Experiences with smart structures for on-orbit vibration isolation[C]. Proc. SPIE 3991. California:2000.
    [4]Anderson E H, Evert M E, Glaese R M, et al. Satellite ultraquiet isolation technology experiment (suite):electromechanical subsystems[C]. SPIE Conference on Industrial and Commercial Applications of Smart Structures Technologies. Newport Beach:1999.
    [5]Quenon D, Boyd J, Buchele P, et al. Miniature vibration isolation system for space applications[C]. Proceedings of SPIE-The International Society for Optical Engineering. Newport Beach, CA, United states:2001.
    [6]Jacobs J H, Ross J A, Hadden S, et al. Miniature vibration isolation system for space applications:phase ii[C]. Proc. SPIE 5388. Bellingham:2004.
    [7]Liu L K, Zheng G T. Parameter analysis of paf for whole-spacecraft vibration isolation[J]. Aerospace Science and Technology.2007,11(6):464-472.
    [8]Chen Y, Fang B, Yang T, et al. Study of whole-spacecraft vibration isolators based on reliability method[J]. Chinese Journal of Aeronautics.2009,22(2):153-159.
    [9]马兴瑞,于登云,韩增尧,等.星箭力学环境分析与试验技术研究进展[J].宇航学报.2006,27(3):323-331.
    [10]张军,谌勇,骆剑,等.整星隔振技术的研究现状和发展[J].航空学报.2005,26(2):179-183.
    [11]Denoyer K. K, Johnson C D. Recent achievements in vibration isolation systems for space launch and on-orbit applications[C]. International Astronautical Congress,52nd. Toulouse:2001.
    [12]Wilke P S, Decker T A, Hal L C. Highly-damped exactly-constrained mounting of an x-ray telescope[C]. Proceedings of Smart Structures and Materials:Passive Damping. California:1995.
    [13]Johnson C D, Wilke P S. Whole-spacecraft shock isolation system[C]. Smart Structures and Materials Damping and Isolation. California:2002.
    [14]Wilke P S, Johnson C D, Pendleton S C. Passive, multi-axis, highly damped, shock isolation mounts for spacecraft[P]. US:6,202,961 B1.2001/03/20.
    [15]Wilke P S, Johnson C D. Whole-spacecraft passive isolation devices[P]. US: 6,199,801 B1.2001/03/13.
    [16]Johnson C D, Wilke P S, Pendleton S C. Softride vibration and shock isolation systems that protect spacecraft from launch dynamic environments[C]. Proceedings of the 38th Aerospace Mechanisms Symposium. Virginia:2006.
    [17]Johnson C D, Wilke P S, Pendleton S C. Three-axis, six degree -of-freedom, whole-spacecraft passive vibration isolation system[P]. US:6,199,801 B1.2001/09/18.
    [18]Wilke P S, Johnson C D. Recent launches using the softride whole-spacecraft vibration isolation system[C]. The AIAA Space Conference. Albuquerque, USA:2001.
    [19]张军,谌勇,张志谊,等.一种整星隔振器的研制[J].振动与冲击.2005,24(5):35-38.
    [20]张针粒,李世其,朱文革,等.新型近等强度高阻尼航天载荷隔振器研究[J].振动与冲击.2012。
    [21]Vasques C M A, Moreira R A S, Rodrigues J D. Viscoelastic damping technologies-part ⅰ:modeling and finite element implementation[J]. Journal of Advanced Research in Mechanical Engineering.2010,1(2):76-95.
    [22]Vasques C M A, Moreira R A S, Rodrigues J D. Viscoelastic damping technologies-part ⅱ:experimental identification procedure and validation[J]. Journal of Advanced Research in Mechanical Engineering.2010,1(2):96-110.
    [23]赵云峰.高性能黏弹性阻尼材料及其应用[J].宇航材料工艺.2009,39(5):1-6.
    [24]Ferry J D. Viscoelastic properties of polymers[M].3rd ed. New York:Wiley,1980.
    [25]Nashif A D, Jones D I G, Henderson J P. Vibration damping[M]. New York:John Wiley and Sons,1985.
    [26]Riande E, Calleja R D, Prolongo M G, et al. Polymer viscoelasticity:stress and strain in practice[M]. Marcel Dekker,2000.
    [27]Jones D I G. Handbook of viscoelastic vibration damping[M]. New York:John Wiley and Sons,2001.
    [28]Schapery R A. Application of thermodynamics to thermomechanical, fracture, and birefringent phenomena in viscoelastic media[J]. Journal of Applied Physics.1964,35(5): 1451-1465.
    [29]Biot M A. Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena[J]. Journal of Applied Physics.1954,25(11):1385-1391.
    [30]Biot M A. Variational principles in irreversible thermodynamics with application to viscoelasticity[J]. Physical Review.1955,97(6):1463-1469.
    [31]Lesieutre G A, Bianchini E, Maiani A. Finite element modeling of one-dimensional viscoelastic structures using anelastic displacement fields[J]. Journal of Guidance, Control, and Dynamics.1996,19(3):520-527.
    [32]Brackbill C R, Lesieutre G A, Smith E C, et al. Thermomechanical modeling of elastomeric materials[J]. Smart Materials and Structures.1996,5(5):529-539.
    [33]Baz A. Robust control of active constrained layer damping[J]. Journal of Sound and Vibration.1998,211(3):467-480.
    [34]Friswell M I, Inman D J. Hybrid damping treatments in thermal environments[C]. International conference on micromechanics, intelligent materials and robotics. Bristol: IOP Publishing,1998.
    [35]Trindade M A, Benjeddou A, Ohayon R. Finite element analysis of frequency-and temperature-dependent hybrid active-passive vibration damping[J]. Revue Europeenne Des Elements Fini.2000,13(9):89-111.
    [36]Silva L A, Austin E M, Inman D J. Time-varying controller for temperature-dependent viscoelasticity[J]. Journal of Vibration and Acoustics.2005, 127(3):215-222.
    [37]Pradeep V, Ganesan N. Vibration behavior of acid treated beams under thermal environment[J]. Journal of Sound and Vibration.2006,292(3-5):1036-1045.
    [38]Snowdon J C. Vibration and shock in damped mechanical systems[M]. New York: John Wiley & Sons,1968.
    [39]Braun S G, Ewins D J, Rao S S. Encyclopedia of vibration[M]. Oxford:Academic Press,2002.
    [40]张义同.热粘弹性理论[M].天津:天津大学出版社,2002.
    [41]Zener C. Elasticity and anelasticity of metals[M]. Chicago:University of Chicago Press,1948.
    [42]Park S W. Analytical modeling of viscoelastic dampers for structural and vibration control[J]. International Journal of Solids and Structures.2001,38(44-45):8065-8092.
    [43]杨挺青,罗文波,徐平,等.黏弹性理论与应用[M].北京:科学出版社,2004.
    [44]Williams M L. Structural analysis of viscoelastic materials[J]. AIAA Journal.1964, 2(5):785-808.
    [45]Park S W, Schapery R A. Methods of interconversion between linear viscoelastic material functions. Part i—a numerical method based on prony series[J]. International Journal of Solids and Structures.1999,36(11):1653-1675.
    [46]Slanik M L, Nemes J A, Potvin M, et al. Time domain finite element simulations of damped multilayered beams using a prony series representation[J]. Mechanics of Time-Dependent Materials.2000,4(3):211-230.
    [47]Johnson A R. Modeling viscoelastic materials using internal variables[J]. Shock and Vibration Digest.1999,31(2):91-100.
    [48]Fung Y, Tong P. Classical and computational solid mechanics[M]. Singapore: World Scientific,2001.
    [49]Ottosen N S, Ristinmaa M. The mechanics of constitutive modeling[M]. Amsterdam: Elsevier,2005.
    [50]Bagley R L. Power law and fractional calculus model of viscoelasticity[J]. AIAA Journal.1989,27(10):1412-1417.
    [51]Debnath L. Recent applications of fractional calculus to science and engineering[J]. International Journal of Mathematics and Mathematical Sciences.2003,2003(54): 3413-3442.
    [52]Schiessel H, Metzler R, Blumen A, et al. Generalized viscoelastic models:their fractional equations with solutions[J]. Journal of Physics a:Mathematical and General. 1995,28(23):6567-6584.
    [53]Rossikhin Y A, Shitikova M V. Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids[J]. Applied Mechanics Reviews.1997,50(1):15-67.
    [54]Rossikhin Y, Shitikova M. Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass systems[J]. Acta Mechanica.1997,120(1): 109-125.
    [55]Bagley R L, Torvik P J. On the fractional calculus model of viscoelastic behavior[J]. Journal of Rheology.1986,30(1):133-155.
    [56]Bagley R L, Torvik P J. A theoretical basis for the application of fractional calculus to viscoelasticity[J]. Journal of Rheology.1983,27(3):201-210.
    [57]Bagley R L, Torvik P J. Fractional calculus-a different approach to the analysis of viscoelastically damped structures [J]. American Institute of Aeronautics and Astronautics Journal.1983,21(5):741-748.
    [58]Pritz T. Analysis of four-parameter fractional derivative model of real solid materials[J]. Journal of Sound and Vibration.1996,195(1):103-115.
    [59]林松,杨显杰,高庆,等.ZN-17黏弹材料动态阻尼特性实验研究及其数据拟合分析[J].宇航材料工艺.2006,36(z1):73-78.
    [60]于增亮,张立军,余卓平.橡胶衬套力学特性半经验参数化模型[J].机械工程 学报.2010,46(14):115-123.
    [61]吴杰,上官文斌,潘孝勇.采用超弹性一粘弹性一弹塑性本构模型的橡胶隔振器动态特性计算方法[J].机械工程学报.2010,46(14):109-114.
    [62]Lewandowski R, Chorazyczewski B. Identification of the parameters of the kelvin-voigt and the maxwell fractional models, used to modeling of viscoelastic dampers[J]. Computers & Structures.2010,88(1-2):1-17.
    [63]Libertiaux V, Pascon F. Differential versus integral formulation of fractional hyperviscoelastic constitutive laws for brain tissue modelling[J]. Journal of Computational and Applied Mathematics.2010,234(7):2029-2035.
    [64]Pritz T. Five-parameter fractional derivative model for polymeric damping materials[J]. Journal of Sound and Vibration.2003,265(5):935-952.
    [65]过梅丽.高聚物与复合材料的动态力学热分析[M].北京:化学工业出版社,2002.
    [66]Menard K P. Dynamic mechanical analysis:a practical introduction[M].2 ed. Boca Raton:CRC Press,2008.
    [67]张针粒,李世其,朱文革.粘弹性阻尼材料动态力学性能温度谱模型[J].机械工程学报.2011,47(20):135-140.
    [68]李世其,胡线会,朱文革,等.定频变温下粘弹材料动力学特性数据拟合分析[J].材料科学与工程学报.2010,28(6):839-842.
    [69]Tschoegl N W, Knauss W G, Emri I. The effect of temperature and pressure on the mechanical properties of thermo-and/or piezorheologically simple polymeric materials in thermodynamic equilibrium-a critical review[J]. Mechanics of Time-Dependent Materials.2002,6(1):53-99.
    [70]Knauss W. The sensitivity of the time-temperature shift process to thermal variations—a note[J]. Mechanics of Time-Dependent Materials.2008,12(2):179-188.
    [71]Zhao J, Knauss W, Ravichandran G. Applicability of the time-temperature superposition principle in modeling dynamic response of a polyurea[J]. Mechanics of Time-Dependent Materials.2007,11(3):289-308.
    [72]Alwis K, Burgoyne C. Time-temperature superposition to determine the stress-rupture of aramid fibres[J]. Applied Composite Materials.2006,13(4):249-264.
    [73]Barbero E J, Ford K J. Equivalent time temperature model for physical aging and temperature effects on polymer creep and relaxation [J]. Journal of Engineering Materials and Technology.2004,126(4):413-419.
    [74]Buttlar W G, Roque R, Reid B. Automated procedure for generation of creep compliance master curve for asphalt mixtures [J]. Journal of the Transportation Research Board.1998(1630):28-36.
    [75]Elster C, Honerkamp J. Modified maximum entropy method and its application to creep data[J]. Macromolecules.1991,24(1):310-314.
    [76]Caracciolo R, Giovagnoni M. Frequency dependence of poisson's ratio using the method of reduced variables[J]. Mechanics of Materials.1996,24(1):75-85.
    [77]Hermida E B, Povolo F. Analytical-numerical procedure to determine if a set of experimental curves can be superimposed to form a master curve[J]. Polymer Journal. 1994,26(9):981-992.
    [78]Cho K S. Geometric interpretation of time-temperature superposition [J]. Korea-Australia Rheology Journal.2009,21(1):13-16.
    [79]Gergesova M, Zupancic B, Saprunov I, et al. The closed form t-t-p shifting (cfs) algorithm[J]. Journal of Rheology.2011,55(1):1-16.
    [80]Zhang Z, Li S, Zhu W, et al. GMMBS method for time-temperature superposition of viscoelastic materials[J]. International Journal of Plant Engineering and Management. 2011,16(4):193-199.
    [81]徐超,李瑞杰,游少雄.卫星飞轮支架的共固化阻尼减振设计[J].宇航学报.2010,21(3):907-911.
    [82]徐超,田伟.卫星飞轮安装支架的粘弹性阻尼减振设计[J].噪声与振动控制.2010,30(3):1-4.
    [83]林松,徐超,吴斌.共固化粘弹性复合材料的结构多目标进化优化设计[J].宇航学报.2010,31(8):1900-1905.
    [84]邱亮,姜哲,袁国清.基于声辐射模态分析粘弹性阻尼板的声功率灵敏度[J].噪声与振动控制.2009,29(5):131-135.
    [85]Park C H, Inman D J, Lam M J. Model reduction of viscoelastic finite element models[J]. Journal of Sound and Vibration.1999,219(4):619-637.
    [86]Scarpa F, Landi F P, Rongong J A, et al. Improving the MSE method for viscoelastic damped structures[C]. Smart Structures and Materials:Damping and Isolation. Gregory S. Agnes:2002.
    [87]Torvik P J, Runyon B. Modifications to the method of modal strain energy for improved estimates of loss factors for damped structures [J]. Shock and Vibration.2007, 14(5):339-353.
    [88]Ungar E E, Kerwin J E M. Loss factors of viscoelastic systems in terms of energy concepts[J]. The Journal of the Acoustical Society of America.1962,34(7):954-957.
    [89]Johnson C D, Kienholz D A. Finite element prediction of damping in structures with constrained viscoelastic layers[J]. AIAA Journal.1982,20(9):1284-1290.
    [90]吕刚,陆锋,张景绘.桁架结构阻尼控制的绝对值模态应变能法[J].宇航学报.1999,20(2):113-118.
    [91]Rongong J A. Reducing vibration levels using 'smart joint' concepts[C]. Proceedings of IMSA 25, Noise and Vibration Engineering. Leuven, Belgium:2000.
    [92]李世其,张针粒,朱文革,等.计算粘弹结构动力学参数的新模态应变能方法[J].噪声与振动控制.2011,31(6):47-52.
    [93]高东,唐治安,李朝旭.粘弹阻尼减振技术的工程应用[J].电子机械工程.2001,17(6):39-42.
    [94]Dinzart F, Molinari A, Herbach R. Thermomechanical response of a viscoelastic beam under cyclic bending:self-heating and thermal failure[J]. Archives of Mechanics. 2008,60(1):59-85.
    [95]Karnaukhov V, Kirichok I. Forced harmonic vibrations and dissipative heating-up of viscoelastic thin-walled elements (review)[J]. International Applied Mechanics.2000, 36(2):174-195.
    [96]Muliana A, Sawant S. Responses of viscoelastic polymer composites with temperature and time dependent constituents [J]. Acta Mechanica.2009,204(3):155-173.
    [97]Muliana A H. Multi-scale framework for the thermo-viscoelastic analyses of polymer composites[J]. Mechanics Research Communications.2008,35(1-2):89-95.
    [98]Sawant S, Muliana A. A thermo-mechanical viscoelastic analysis of orthotropic materials[J]. Composite Structures.2008,83(1):61-72.
    [99]Hutter K. The foundations of thermodynamics, its basic postulates and implications. A review of modern thermodynamics [J]. Acta Mechanica.1977,27(1):1-54.
    [100]Coleman B D, Noll W. The thermodynamics of elastic materials with heat conduction and viscosity[J]. Archive for Rational Mechanics and Analysis.1963,13(1): 167-178.
    [101]Coleman B D. Thermodynamics of materials with memory[J]. Archive for Rational Mechanics and Analysis.1964,17(1):1-46.
    [102]Coleman B D. On thermodynamics, strain impulses, and viscoelasticity[J]. Archive for Rational Mechanics and Analysis.1964,17(3):230-254.
    [103]Holzapfel G A, Simo J C. A new viscoelastic constitutive model for continuous media at finite thermomechanical changes[J]. International Journal of Solids and Structures.1996,33(20-22):3019-3034.
    [104]Takahara A, Yamada K, Kajiyama T, et al. Analysis of fatigue behavior of high-density polyethylene based on dynamic viscoelastic measurements during the fatigue process[J]. Journal of Applied Polymer Science.1981,26(4):1085-1104.
    [105]Takahara A, Yamada K, Kajiyama T, et al. Evaluation of fatigue lifetime and elucidation of fatigue mechanism in plasticized poly(vinyl chloride) in terms of dynamic viscoelasticity[J]. Journal of Applied Polymer Science.1980,25(4):597-614.
    [106]Yi S, Ahmad M F, Hilton H H. Dynamic responses of plates with viscoelastic free layer damping treatment[J]. Journal of Vibration and Acoustics.1996,118(3):362-367.
    [107]Eu B C. Generalized thermodynamics:thermodynamics of irreversible processes and generalized hydrodynamics (fundamental theories of physics)[M]. New York: Springer,2010.
    [108]Bataille J, Kestin J. Irreversible processes and physical interpretation of rational thermodynamics[J]. Journal of Non-Equilibrium Thermodynamics.1979,4(4):229-258.
    [109]Muller I. Thermodynamics[M]. London:Pitman,1985.
    [110]Chazal C, Arfaoui M. Further development in thermodynamic approach for thermoviscoelastic materials[J]. Mechanics of Time-Dependent Materials.2001,5(2): 177-198.
    [111]Kovalenko A D, Karnaukhov V G. On heat generation in viscoelastic bodies under periodic action[J]. International Applied Mechanics.1969,5(2):129-134.
    [112]Galin L A. The action of a vibration load on polymer materials[M]. Virginia: Defense Technical Information Center,1967.
    [113]Constable I, Williams J G, Burns D J. Fatigue and cyclic thermal softening of thermoplastics[J]. Journal of Mechanical Engineering Science.1970,12(1):20-29.
    [114]Huang N C, Lee E H. Thermomechanical coupling behavior of viscoelastic rods subjected to cyclic loading[J]. Journal of Applied Mechanics.1967,34(1):127-132.
    [115]Schapery R A. Effect of cyclic loading on the temperature in viscoelastic media with variable properties[J]. AIAA Journal.1964,2(5):827-835.
    [116]Schapery R A, Cantey D E. Thermomechanical response studies of solid propellants subjected to cyclic and random loading[J]. AIAA Journal.1966,4(2):255-264.
    [117]Kovalenko A D, Karnaukhov V G. On heat generation in viscoelastic bodies under periodic action[J]. International Applied Mechanics.1969,5(2):129-134.
    [118]Kishkilov M. The finite-element method for investigation of a beam under the effect of continuous vibrational loading[J]. Prikladnaya Mekhanika.1990,26(2):74-80.
    [119]Gumenyuk B P, Kamaukhov V G, Senchenkov I K. Influence of thermomechanical coupling on the dynamic behavior of viscoelastic bodies[J]. Zh. Prikl. Mekh. Tekh. Fiz. 1980(3):148-155.
    [120]Gumenyuk B P, Karnaukhov V G. Effect of thermomechanical conjugation on the dynamic behavior of a viscoelastic rod subject to forced longitudinal vibrations[J]. Dop. Akad. Nauk Ukr. Rsr, Ser. A.1978(2):128-132.
    [121]Kamaukhov V G, Gumenyuk B P. Vibrations of a viscoelastic rod with thermomechanical conjugation[J]. Lnzh. Fiz. Zh.1978,35(4):692-697.
    [122]吴波,郭安薪.粘弹性阻尼器的性能研究[J].地震工程与工程振动.1998,18(2):108-116.
    [123]Da Silva L A. Internal variable and temperature modeling behavior of viscoelastic structures-a control analysis[D]. Virginia Polytechnic Institute and State University,2003.
    [124]Jeyaraj P, Ganesan N, Padmanabhan C. Vibration and acoustic response of a composite plate with inherent material damping in a thermal environment[J]. Journal of Sound and Vibration.2009,320(1-2):322-338.
    [125]Jeyaraj P, Padmanabhan C, Ganesan N. Vibration and acoustic response of an isotropic plate in a thermal environment[J]. Journal of Vibration and Acoustics.2008, 130(5):51005-51011.
    [126]Pesek L, Pust L, Sulc P. Fem modeling of thermo-mechanical interaction in pre-pressed rubber block[J]. Engineering Mechanics.2007,14(1-2):3-11.
    [127]Bronowicki A J. Constrained multi-layer damping:a semi-analytic solution[C].48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Hawaii:2007.
    [128]Gandhi F. Constrained-layer damping with gradient polymers for effectiveness over broad temperature ranges[J]. AIAA Journal.2007,45(8):1885-1893.
    [129]Bronowicki A J. Vibration isolator for large space telescopes[J]. Journal of Spacecraft and Rockets.2006,43(1):45-53.
    [130]王跃,刘志敏,李世其,等.约束阻尼型隔振器粘弹材料振动温升研究[J].振动工程学报.2010,23(5):585-590.
    [131]Hao M, Rao M D. Optimum design of multiple-constraint-layered systems for vibration control[J]. AIAA Journal.2004,42(12):2448-2461.
    [132]张卫,徐华,清水信行.分数算子描述的粘弹性体力学问题数值方法[J].力学学报.2004,36(5):617-621.
    [133]Zhang W, Shimizu N, Xu H. Thermal effects of the viseoelastic materials described by fractional caleulus constructive law[C]. The First Asian conference on Multibody dynamics. Shanghai:2002.
    [134]Zhang W, Shimizu N. Damping properties of the viscoelastic material described by fractional kelvin-voigt model[J]. Jsme International Journal Series C.1999,42(1):1-9.
    [135]唐麟.分数算子描述的热粘弹性杆耦合问题研究[D].暨南大学,2006.
    [136]Alcoutlabi M, Martinez-Vega J J. Modeling of the viscoelastic behavior of amorphous polymers by the differential and integration fractional method:the relaxation spectrum[J]. Polymer.2003,44(23):7199-7208.
    [137]黄华昌.分数微分型粘弹性体热动力学耦合问题研究[D].暨南大学,2008.
    [138]Zhang Z, Li S, Zhu W, et al. Thermoviscoelastic difference model of viscoelastic damper subjected to cyclic loading conditions[C]. International Conference on Computer Application and System Modeling. Taiyuan:2010.
    [139]师汉民.机械振动系统一分析·测试·建模·对策[M].第2版.武汉:华中科技大学出版社,2004.
    [140]Baumgaertel M, Winter H H. Determination of discrete relaxation and retardation time spectra from dynamic mechanical data[J]. Rheologica Acta.1989,28(6):511-519.
    [141]Mead D W. Numerical interconversion of linear viscoelastic material functions[J]. Journal of Rheology.1994,38(6):1769-1795.
    [142]Shen K. L, Soong T T. Modeling of viscoelastic dampers for structural applications[J]. Journal of Engineering Mechanics.1995,121(6):694-701.
    [143]Crawley M J. The r book[M]. Chichester:John Wiley and Sons,2007.
    [144]Boukamel A, Meo S, Debordes O, et al. A thermo-viscoelastic model for elastomeric behaviour and its numerical application[J]. Archive of Applied Mechanics. 2001,71(12):785-801.
    [145]Podlubny I. Fractional differential equations[M]. New York:Academic Press,1999.
    [146]赵培仲,文庆珍,朱金华.时温等效方程的研究[J].橡胶工业.2005,52(3):142-145.
    [147]李世其,张针粒,朱文革,等.航天精密电子设备隔振器[P].ZL200810197283.2009/12/23.
    [148]刘棣华.粘弹阻尼减振降噪应用技术[M].北京:宇航出版社,1990.