比较蛋白质组学揭示苏云金芽胞杆菌YBT-1520不同生长期代谢变化与杀虫晶体蛋白合成的翻译调控间关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏云金芽胞杆菌(Bacillus thuringiensis, Bt)是一种产生杀虫晶体蛋白的革兰氏阳性芽胞杆菌。它产生的杀虫晶体蛋白在国内外的各种害虫防治上得到了广泛应用。在研体内杀虫晶体蛋白能够积累到细胞干重的20-30%。这种芽胞杆菌体内大量表达蛋白并形成晶体的机制受到研究者的广泛关注。虽然杀虫晶体蛋白在转录调控上的机制研究的比较透彻,但是在翻译以及翻译后修饰的研究上还很欠缺。为了更加清楚地了解这个机制,我们使用了蛋白质组学方法来研究Bt杀虫晶体蛋白在翻译水平的调控与细胞代谢之间的关系。本研究通过2-DE和MALDI-TOF-MS方法建立了苏云金芽胞杆菌YBT-1520在合成培养基不同生长时期的比较蛋白质组研究。首先我们对不同pH值范围(pH4-7、pH5-8、pH3-10、pH7-11)的苏云金芽胞杆菌全细胞蛋白的双向电泳条件进行了摸索,发现pH4-7为最适蛋白分离pH范围。使用pH4-7的双向电泳分离条件,我们完成了苏云金芽胞杆菌YBT-1520在合成培养基中生长的三个时间点:对数中期(17h)、稳定期前期(20h)和稳定期后期(26h)全细胞蛋白的双向电泳分离并进行了考马斯亮蓝G-250染色。双向电泳胶上分离的蛋白数量为800-900之间,同时对三个不同生长期分离的蛋白胶进行比较分析发现不同生长期间表达差异超过2倍的蛋白在120-205之间。选取101个高丰度差异表达蛋白进行了MALDI-TOF-MS的质谱鉴定,有72个蛋白质得到了鉴定。对这些鉴定蛋白进行功能分类发现80%的蛋白都在与代谢相关。而对不同功能分类蛋白总表达量分析发现氨基酸代谢和蛋白翻译合成相关蛋白总表达量变化最为显著。接下来我们着重分析了Bt不同生长期细胞内代谢变化和杀虫晶体蛋白翻译调控之间的关系。并通过实时荧光定量PCR方法研究了糖酵解和TCA循环的关键酶基因的转录水平。通过分析我们发现从对数期到稳定期细胞内代谢途径发生了明显的改变:1)糖酵解途径中间产物向磷酸戊糖途径和丝氨酸合成途径转移;2)TCA循环受到了严重抑制;3)PHB被认为是重要的碳源和能量的载体;4)蛋白酶表达量的上升和氨基酸合成途径的抑制暗示着细胞内有大量的蛋白质降解为氨基酸,为杀虫晶体蛋白的合成提供前体;5)翻译相关因子:EF-Tu、GroEL和GatB表现出上调而核糖体抑制因子YfiA表现出下调,这说明了细胞在翻译水平上积极的响应杀虫晶体蛋白的合成。本研究首次建立了苏云金芽胞杆菌YBT-1520在合成培养基中生长的不同生长期的比较蛋白质组研究。我们发现B,细胞代谢在不同生长期发生了显著的改变,这些改变为杀虫晶体蛋白的大量合成提供了物质和能量基础。同时翻译相关因子的表达变化也说明了研细胞为杀虫晶体蛋白的大量合成进行了翻译水平的调控。这些研究结果给研杀虫晶体蛋白高表达机制提供了新的可操纵和调控的位点,为今后杀虫晶体蛋白的更高量表达和异源蛋白的高表达提供了新的理论基础。
Bacillus thuringiensis is a Gram-positive endospore forming bacterium that produces insecticidal crystal proteins (ICPs) which are principal bio-pesticides used in agricultural and sanitary pest controls. ICPs could accumulate and account for up to20to30%of the dry weight of sporulated cells. Although the transcription studies of ICPs' genes were performed a lot, very little is known about the translational regulation of ICPs' synthesis. The comparative proteomic analysis of B. thuringiensis strain YBT-1520that grew in a minimal medium was performed to understand the translational regulation of ICPs synthesis. The different pH gradient of2-DE gels included pH4-7, pH5-8, pH3-10, and pH7-11were tested before the formal experiment. The pH4-7gradient was observed well separation of whole cell protein in YBT-1520. Cell samples for protein and for total RNA isolation were collected at the time points of17h,20h and26h with corresponding OD600at0.284,0.522and0.724respectively. The three replication pH4-7gradient2-DE gels for differrent growth phases of YBT-1520were constructed. Eight to nine hundreds protein spots could be separated in pH4-7gradient2-DE gels which were stained by coomassie brilliant blue G-250. Two hundreds and four proteins changed at least two folds in spot volumes on2-DE gels between mid-log phase and stationary phase. Among them,101proteins were chosen for MALDI-TOF-MS analysis, and72of which were further identified by the MASCOT Peptide Mass Fingerprinting (PMF) search. The transcription levels of carbohydrate metabolism related genes were also studied by real-time RT-PCR. Significant changes in carbohydrate, fatty acid, acetyl-CoA, and amino acid metabolisms in the different phases were revealed in this study. Tricarboxylic acid cycle (TCA cycle), the part of glycolysis and the synthesis of most amino acids were depressed from log to stationary phases. Acetyl-CoA mainly entered into TCA cycle, PHB, fatty acid, and acetate synthesis in log phase but only converted to fatty acid in stationary phase. Metabolic changes indicated that the amino acid precursors of ICPs were mainly oBtained from the protein degradation in vivo. The energy produced from fatty acid oxidation and glycolysis in stationary phase could meet the need of ICPs synthesis. The expression changes of EF-Tu, YfiA, GroEL and GatB suggested the direct translational regulation of ICPs'synthesis in B. thuringiensis. This work was the first comparative proteomic study of B. thuringiensis grew in defined medium at different growth phases. The research contributes to better understand the relationship between metabolic changes and ICPs synthesis in B. thuringiensis. The analysis of metabolic changes provides a new sight in the translational regulation of ICPs'synthesis.
引文
1.胡志远,贺福初.蛋白质组研究进展.生物化学与生物物理进展,1999,03:9-12
    2.刘子铎,孙明,喻子牛等.苏云金芽胞杆菌以色列亚种P19基因的初步研究.微生物学报,1999,02:90-94
    3.邵宗泽,郭延奎,喻子牛.苏云金芽胞杆菌工程菌伴胞晶体的形态发生.微生物学报,2002,05:555-560+650
    4.孙明,刘子铎,喻子牛.苏云金芽胞杆菌YBT-1520杀虫晶体蛋白基因的属性.微生物学报,2000,04:365-371
    5.孙明,魏芳,刘子铎等.苏云金芽胞杆菌质粒pBMB2062的克隆及遗传稳定载体的构建.遗传学报,2000,10:932-938
    6.吴丹丹.差异蛋白质组学揭示热胁迫对苏云金芽胞杆菌YBT-1520形态和生理的影响机制及其热胁迫生存策略.[博士学位论文].武汉:华中农业大学图书馆,2011
    7.吴继星,陈在佴,张志刚.苏云金杆菌WG-001工程菌发酵培养基的筛选.微生物学杂志,2005,03:91-94
    8. 喻子牛,孙明,陈亚华等.苏云金芽胞杆菌生物活性蛋白基因在动、植物病虫害防治中的应用(综述).农业生物技术学报,1995,02:100-110
    9. 喻子牛.苏云金杆菌.科学出版社,1990
    10.朱莉,宋福平,张杰等.苏云金芽胞杆菌γ-氨基丁酸代谢途径相关功能基因的克隆、表达及同源性分析.微生物学通报,2007,06:1031-1036
    11.朱天生,熊仁次,万传星等.高效基因工程菌WG-001防治新疆二代棉铃虫药效试验.农药,2008,04:292-293+296
    12. Agaisse H, and Lereclus D. Expression in Bacillus subtilis of the Bacillus thuringiensis cryⅢA toxin gene is not dependent on a sporulation-specific sigma factor and is increased in a spoOA mutant. J Bacteriol,1994,176 (15) 4734-4741
    13. Agaisse H, and Lereclus D. How does Bacillus thuringiensis produce so much insecticidal crystal protein?. J Bacteriol,1995,177 (21):6027-6032
    14. Antelmann H, Scharf C, and Hecker M. Phosphate starvation-inducible proteins of Bacillus subtilis:proteomics and transcriptional analysis. J Bacteriol,2000, 182 (16):4478-4490
    15. Antelmann H, Williams R C, and Miethke M, et al. The extracellular and cytoplasmic proteomes of the non-virulent Bacillus anthracis strain UM23C1-2. Proteomics,2005,5 (14):3684-3695
    16. Aronson J N, Borris D P, and Doerner J F, et al. Gamma-aminobutyric acid pathway and modified tricarboxylic acid cycle activity during growth and sporulation of Bacillus thuringiensis. Appl Microbiol,1975,30 (3):489-492
    17. Baum J A, and Malvar T. Regulation of insecticidal crystal protein production in Bacillus thuringiensis. Mol Microbiol,1995,18 (1):1-12
    18. Baum J A, Coyle D M, and Gilbert M P, et al. Novel cloning vectors for Bacillus thuringiensis. Appl Environ Microbiol,1990,56 (11):3420-3428
    19. Becher D, Buttner K, and Moche M, et al. From the genome sequence to the protein inventory of Bacillus subtilis. Proteomics,2011,11 (15):2971-2980
    20. Bindschedler L V, and Cramer R. Quantitative plant proteomics. Proteomics, 2011,11 (4):756-775
    21. Bulla L A, Bennett G A, and Shotwell O L. Physiology of Sporeforming Bacteria Associated with Insects II. Lipids of Vegetative Cells. J Bacteriol.1970, 104:1246-1253.
    22. Candas M., Loseva O. and Oppert B, et al. Insect resistance to Bacillus thuringiensis:alterations in the indianmeal moth larval gut proteome. Mol Cell Proteomics,2003,2 (1):19-28
    23. Casado-Vela J, Cebrian A, and Gomez D P M, et al. Lights and shadows of proteomic technologies for the study of protein species including isoforms, splicing variants and protein post-translational modifications. Proteomics,2011, 11 (4):590-603
    24. Catalano F A, Meador-Parton J, and Popham D L, et al. Amino acids in the Bacillus subtilis morphogenetic protein SpoIVA with roles in spore coat and cortex formation. J Bacteriol,2001,183 (5):1645-1654
    25. Chakravarti D N, Fiske M J, and Fletcher L D, et al. Mining genomes and mapping proteomes:identification and characterization of protein subunit vaccines. Dev Biol (Basel),2000,103:81-90
    26. Chao L, Qiyu B, and Fuping S, et al. Complete nucleotide sequence of pBMB67, a 67-kb plasmid from Bacillus thuringiensis strain YBT-1520. Plasmid,2007, 57 (1):44-54
    27. Chen F C, Shen L F, and Tsai M C, et al. The IspA protease's involvement in the regulation of the sporulation process of Bacillus thuringiensis is revealed by proteomic analysis. Biochem Biophys Res Commun,2003,312 (3):708-715
    28. De Backer M. D., de Hoogt R. A. and Froyen G, et al. Single allele knock-out of Candida albicans CGT1 leads to unexpected resistance to hygromycin B and elevated temperature. Microbiology,2000,146 (Pt 2):353-365
    29. De Souza M T, Lecadet M M, and Lereclus D. Full expression of the cryⅢA toxin gene of Bacillus thuringiensis requires a distant upstream DNA sequence affecting transcription. J Bacteriol,1993,175 (10):2952-2960
    30. Deiwick J, and Hensel M. Regulation of virulence genes by environmental signals in Salmonella typhimurium. Electrophoresis,1999,20 (4-5):813-817
    31. Delvecchio V G, Connolly J P, and Alefantis T G, et al. Proteomic profiling and identification of immunodominant spore antigens of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Appl Environ Microbiol,2006,72 (9) 6355-6363
    32. Donovan W P, Dankocsik C, and Gilbert M P. Molecular characterization of a gene encoding a 72-kilodalton mosquito-toxic crystal protein from Bacillus thuringiensis subsp. israelensis. J Bacteriol,1988.170 (10):4732-4738
    33. Dowling P, and Clynes M. Conditioned media from cell lines:a complementary model to clinical specimens for the discovery of disease-specific biomarkers. Proteomics,2011,11 (4):794-804
    34. Endo A, and Kurusu Y. Identification of in vivo substrates of the chaperonin GroEL from Bacillus subtilis. Biosci Biotechnol Biochem,2007,71 (4) 1073-1077
    35. Errington J. Bacillus subtilis sporulation:regulation of gene expression and control of morphogenesis. Microbiol Rev,1993,57 (1):1-33
    36. Eymann C, Dreisbach A, and Albrecht D, et al. A comprehensive proteome map of growing Bacillus subtilis cells. Proteomics,2004,4 (10):2849-2876
    37. Eyrich B, Sickmann A, and Zahedi R P. Catch me if you can:mass spectrometry-based phosphoproteomics and quantification strategies. Proteomics,2011,11 (4):554-570
    38. Fedhila S, Msadek T, and Nel P, et al. Distinct clpP genes control specific adaptive responses in Bacillus thuringiensis. J Bacteriol,2002,184 (20) 5554-5562
    39. Fischer C, Geourjon C, and Bourson C, et al. Cloning and characterization of the Bacillus subtilis prkA gene encoding a novel serine protein kinase. Gene,1996, 168 (1):55-60
    40. Frees D, Savijoki K, and Varmanen P, et al. Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Mol Microbiol.2007,63:1285-1295.
    41. Fricke B, Drossler K, and Willhardt I, et al. The cell envelope-bound metalloprotease (camelysin) from Bacillus cereus is a possible pathogenic factor. Biochim Biophys Acta,2001,1537 (2):132-146
    42. Galli E, and Gerdes K. The FtsZ-ZapA-ZapB interactome of Escherichia coli. J Bacteriol,2011
    43. Ge B, Bideshi D, and Moar W J, et al. Differential effects of helper proteins encoded by the cry2A and cryllA operons on the formation of Cry2A inclusions in Bacillus thuringiensis. FEMS Microbiol Lett,1998,165 (1):35-41
    44. Geiger S R, Bottcher T, and Sieber S A, et al. A conformational switch underlies ClpP protease function. Angew Chem Int Ed Engl,2011,50 (25):5749-5752
    45. Gianazza E, Eberini I, and Sensi C, et al. Energy matters:mitochondrial proteomics for biomedicine. Proteomics,2011,11 (4):657-674
    46. Gingold H, and Pilpel Y. Determinants of translation efficiency and accuracy. Mol Syst Biol.2011,7:481.
    47. Glatron M F, and Rapoport G. Biosynthesis of the parasporal inclusion of Bacillus thuringiensis:half-life of its corresponding messenger RNA. Biochimie, 1972,54 (10):1291-1301
    48. Gohar M, Gilois N, and Graveline R, et al. A comparative study of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis extracellular proteomes. Proteomics,2005,5 (14):3696-3711
    49. Goodchild A, Raftery M, and Saunders N F, et al. Biology of the cold adapted archaeon, Methanococcoides burtonii determined by proteomics using liquid chromatography-tandem mass spectrometry. J. Proteome Res.2004,3: 1164-1176.
    50. Goodchild A, Raftery M, and Saunders N F, et al. Cold adaptation of the Antarctic archaeon, Methanococcoides burtonii assessed by proteomics using ICAT. J. Proteome Res.2005,4:473-480.
    51. Grass G, Schierhorn A, and Sorkau E, et al. Camelysin is a novel surface metalloproteinase from Bacillus cereus. Infect Immun,2004,72 (1):219-228
    52. Gross C A, Neidhardt F C, and Curtiss R, et al. Escherichia coli and Salmonella typhimurium:Cellular and Molecular Biology, ASM Press, Washington, D.C. 1996, pp.1382-1399.
    53. Guerreiro N, Djordjevic M A, and Rolfe B G. Proteome analysis of the model microsymbiont Sinorhizobium meliloti:isolation and characterisation of novel proteins. Electrophoresis,1999,20 (4-5):818-825
    54. Guerreiro N, Ksenzenko V N, and Djordjevic M A, et al. Elevated levels of synthesis of over 20 proteins results after mutation of the Rhizobium leguminosarum exopolysaccharide synthesis gene pssA. J Bacteriol,2000,182 (16):4521-4532
    55. Gygi S P, and Aebersold R. Mass spectrometry and proteomics. Curr Opin Chem Biol,2000,4 (5):489-494
    56. Han M J, Lee J W, and Lee S Y. Understanding and engineering of microbial cells based on proteomics and its conjunction with other omics studies. Proteomics,2011,11 (4):721-743
    57. Han M J, Lee S Y. The Escherichia coli proteome:past, present, and future prospects. Microbiol. Mol. Biol. Rev.2006,70:362-439.
    58. He J, Shao X, and Zheng H, et al. Complete genome sequence of Bacillus thuringiensis mutant strain BMB171. J Bacteriol,2010,192 (15):4074-4075
    59. He J, Wang J, and Yin W, et al. Complete genome sequence of Bacillus thuringiensis subsp. chinensis strain CT-43. J Bacteriol,2011,193 (13) 3407-3408
    60. Hecker M. A proteomic view of cell physiology of Bacillus subtilis--bringing the genome sequence to life. Adv Biochem Eng Biotechnol,2003,83:57-92
    61. Herendeen S L, VanBogelen R A, and Neidhardt F C. Levels of major proteins of Escherichia coli during growth at different temperatures. J. Bacteriol.1979, 139:185-194.
    62. Houry W A, Frishman D, and Eckerskorn C, et al. Identification of in vivo substrates of the chaperonin GroEL. Nature,1999,402 (6758):147-154
    63. Huang C M, Foster K W, and DeSilva T S, et al. Identification of Bacillus anthracis proteins associated with germination and early outgrowth by proteomic profiling of anthrax spores. Proteomics,2004,4(9):2653-2661
    64. Hughes C S, Radan L, and Betts D, et al. Proteomic analysis of extracellular matrices used in stem cell culture. Proteomics,2011,11 (20):3983-3991
    65. Huot J L, Balg C, and Jahn D, et al. Mechanism of a GatCAB amidotransferase: aspartyl-tRNA synthetase increases its affinity for Asp-tRNA(Asn) and novel aminoacyl-tRNA analogues are competitive inhibitors. Biochemistry.2007,46: 13190-13198.
    66. Ibrahim M A, Griko N, and Junker M, et al. Bacillus thuringiensis:a genomics and proteomics perspective. Bioeng Bugs,2010,1 (1):31-50
    67. Icgen Y, Icgen B, and Ozcengiz G. Regulation of crystal protein biosynthesis by Bacillus thuringiensis:II. Effects of carbon and nitrogen sources. Res Microbiol, 2002,153 (9):605-609
    68. Ito T, Yokoyama S. Two enzymes bound to one transfer RNA assume alternative conformations for consecutive reactions. Nature.2010,467:612-616.
    69. Jenal U, Hengge-Aronis R. Regulation by proteolysis in bacterial cells. Curr Opin Microbiol.2003,6:163-172.
    70. Jones P G, VanBogelen R A, and Neidhardt F C. Induction of proteins in response to low temperature in Escherichia coli. J. Bacteriol.1987,169: 2092-2095.
    71. Jungblut P R, Grabher G, and Stoffler G. Comprehensive detection of immunorelevant Borrelia garinii antigens by two-dimensional electrophoresis. Electrophoresis,1999,20 (18):3611-3622
    72. Kandror O, DeLeon A, and Goldberg A L. Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc. Natl. Acad. Sci. USA 2002,99:9727-9732.
    73. Kaufmann K, Smaczniak C, and de Vries S, et al. Proteomics insights into plant signaling and development. Proteomics,2011,11 (4):744-755
    74. Kirkpatrick C, Maurer L M, and Oyelakin N E, et al., Acetate and formate stress: opposite responses in the proteome of Escherichia coli. J. Bacteriol.2001,183: 6466-6477.
    75. Klein J, Kavvadas P, and Prakoura N, et al. Renal fibrosis:insight from proteomics in animal models and human disease. Proteomics,2011,11 (4) 805-815
    76. Kunst F, Ogasawara N, and Moszer I, et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature,1997,390 (6657) 249-256
    77. Labuzek S, Radecka I. Biosynthesis of PHB tercopolymer by Bacillus cereus UW85. J Appl Microbiol.2001.90:353-357.
    78. Leboeuf C, Leblanc L, and Auffray Y, et al. Characterization of the ccpA gene of Enterococcus faecalis:identification of starvation-inducible proteins regulated by ccpA. J Bacteriol,2000,182 (20):5799-5806
    79. Lecadet M M, Chaufaux J, and Ribier J, et al. Construction of Novel Bacillus thuringiensis Strains with Different Insecticidal Activities by Transduction and Transformation. Appl Environ Microbiol,1992,58 (3):840-849
    80. Lee H S, Kim Y J, and Bae S S, et al. Overexpression and characterization of a carboxypeptidase from the hyperthermophilic archaeon Thermococcus sp. NA1. Biosci Biotechnol Biochem.2006,70:1140-1147.
    81. Lee K Y, Kang E Y, and Park S, et al. Mass spectrometric sequencing of endotoxin proteins of Bacillus thuringiensis ssp. konkukian extracted from polyacrylamide gels. Proteomics,2006,6 (5):1512-1517
    82. Lee N K, Yeo I C, and Park J W, et al. Growth inhibition and induction of stress protein, GroEL, of Bacillus cereus exposed to antibacterial peptide isolated from Bacillus subtilis SC-8. Appl Biochem Biotechnol,2011,165 (1):235-242
    83. Lemaux P G, Herendeen S L, and Bloch P L, et al. Transient rates of synthesis of individual polypeptides in E. coli following temperature shifts. Cell 1978,13: 427-434.
    84. Li G, Song Y, and Xue Y, et al. Comparative proteome analysis of alkaliphilic Bacillus sp. N16-5 grown on different carbon sources. Sci China Life Sci,2011, 54 (1):90-100
    85. Li J D, Carroll J, and Ellar D J. Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature,1991,353 (6347) 815-821
    86. Lu Y, Wu K, and Jiang Y. et al. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science,2010,328 (5982):1151-1154
    87. Ly L, and Wasinger V C. Protein and peptide fractionation, enrichment and depletion:tools for the complex proteome. Proteomics,2011,11 (4):513-534
    88. Maki Y, Yoshida H, and Wada A. Two proteins, YfiA and YhbH, associated with resting ribosomes in stationary phase Escherichia coli. Genes Cells.2000, 5:965-974.
    89. Mannazzu I, Guerra E. and Ferretti R, et al. Vanadate and copper induce overlapping oxidative stress responses in the vanadate-tolerant yeast Hansenula polymorpha. Biochim Biophys Acta,2000,1475 (2):151-156
    90. Marintchev A, Wagner G. Translation initiation:structures, mechanisms and evolution. Q Rev Biophys.2004,37:197-284.
    91. Matthiesen R, Azevedo L, and Amorim A, et al. Discussion on common data analysis strategies used in MS-based proteomics. Proteomics,2011,11 (4) 604-619
    92. Methe B A, Nelson K E, and Deming J W, et al. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc. Natl. Acad. Sci. USA 2005,102: 10913-10918.
    93. Mischerikow N, and Heck A J. Targeted large-scale analysis of protein acetylation. Proteomics,2011,11 (4):571-589
    94. Misra G, Aggarwal A, and Dube D, et al. Crystal structure of the Bacillus anthracis nucleoside diphosphate kinase and its characterization reveals an enzyme adapted to perform under stress conditions. Proteins.2009;76:496-506.
    95. Munchbach M, Dainese P, and Staudenmann W, et al. Proteome analysis of heat shock protein expression in Bradyrhizobium japonicum. Eur J Biochem,1999, 264 (1):39-48
    96. Nakashima K, Kanamaru K, and Mizuno T, et al. A novel member of the cspA family of genes that is induced by cold shock in Escherichia coli. J. Bacteriol. 1996,178:2994-2997.
    97. Neidhardt F C, VanBogelen R A, and Lau E T. Molecular cloning and expression of a gene that controls the high temperature regulon of Escherichia coli. J. Bacteriol.1983,153:597-603.
    98. Neidhardt F C, VanBogelen R A. Positive regulatory gene for temperature controlled proteins in Escherichia coli. Biochem. Biophys. Res. Commun.1981, 100:894-900.
    99. Neidhardt L, Gasca S, and Wertz K, et al. Large-scale screen for genes controlling mammalian embryogenesis, using high-throughput gene expression analysis in mouse embryos. Mech Dev,2000,98 (1-2):77-94
    100.Neilson K A, Ali N A, and Muralidharan S, et al. Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics,2011,11 (4):535-553
    101.Neuhoff V, Arold N, and Taube D, et al. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis,1988,9 (6):255-262
    102.Nickerson K W, and Jr Bulla L A. Physiology of sporeforming bacteria associated with insects:minimal nutritional requirements for growth, sporulation, and parasporal crystal formation of Bacillus thuringiensis. Appl Microbiol,1974, 28 (1):124-128
    103.Nisnevitch M, Sigawi S, and Cahan R, et al. Isolation, characterization and biological role of camelysin from Bacillus thuringiensis subsp. israelensis. Curr Microbiol,2010,61 (3):176-183
    104.Osawa M, and Erickson H P. FtsZ from divergent foreign bacteria can function for cell division in Escherichia coli. J Bacteriol,2006,188 (20):7132-7140
    105.Pabst M, Grass J, and Toegel S, et al. Isomeric analysis of oligomannosidic N-glycans and their dolichol-linked precursors. Glycobiology,2011
    106.Pal A, Prabhu A, and Kumar A A, et al. Optimization of process parameters for maximum poly(-beta-)hydroxybutyrate (PHB) production by Bacillus thuringiensis IAM 12077. Pol J Microbiol.2009,58:149-154.
    107.Perrot F, Hebraud M, and Junter G A, et al. Protein synthesis in Escherichia coli at 4 degrees C. Electrophoresis 2000,21:1625-1629.
    108.Phadtare S. Recent developments in bacterial cold-shock response. Curr. Issues Mol. Biol.2004,6:125-136.
    109.Phan-Thanh L, and Gormon T. Stress proteins in Listeria monocytogenes. Electrophoresis,1997,18 (8):1464-1471
    110.Pitarch A, Pardo M, and Jimenez A, et al. Two-dimensional gel electrophoresis as analytical tool for identifying Candida albicans immunogenic proteins. Electrophoresis,1999,20 (4-5):1001-1010
    111.Proom H. and Knight B C. The minimal nutritional requirements of some species in the genus Bacillus. J Gen Microbiol,1955,13 (3):474-480
    112.Prosinecki V, Botelho H M, and Francese S, et al., A proteomic approach toward the selection of proteins with enhanced intrinsic conformational stability. J. Proteome Res.2006,5:2720-2726.
    113.Qiu Y, Kathariou S, and Lubman D M. Proteomic analysis of cold adaptation in a Siberian permafrost bacterium-Exiguobacterium sibiricum by two-dimensional liquid separation coupled with mass spectrometry. Proteomics 2006,6: 5221-5233.
    114.Raimondo F, Morosi L, and Chinello C, et al. Advances in membranous vesicle and exosome proteomics improving biological understanding and biomarker discovery. Proteomics,2011,11 (4):709-720
    115.Rasko D A, Altherr M R, and Han C S, et al. Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev,2005,29 (2):303-329
    116.Ratcliff W C, Kadam S V, and Denison R F. Poly-3-hydroxybutyrate (PHB) supports survival and reproduction in starving rhizobia. FEMS Microbiol Ecol. 2008,65:391-399.
    117.Roels S, Driks A, and Losick R. Characterization of spoⅣA, a sporulation gene involved in coat morphogenesis in Bacillus subtilis. J Bacteriol,1992,174 (2) 575-585
    118.Rosen R, Ron E Z. Proteome analysis in the study of the bacterial heat-shock response. Mass Spectrom. Rev.2002,21:244-265.
    119.Roymans D, Willems R, and Van Blockstaele D R, et al. Nucleoside diphosphate kinase (NDPK/NM23) and the waltz with multiple partners: possible consequences in tumor metastasis. Clin Exp Metastasis,2002,19 (6) 465-476
    120.Russell J B, Diez-Gonzalez F. The effects of fermentation acids on bacterial growth. Adv. Microb. Physiol.1998,39:205-234.
    121.Sakharova Z V, Ignatenko I, and Khovrychev M P, et al. [Sporulation and crystal formation in Bacillus thuringiensis during growth limitation via nutrient sources]. Mikrobiologiia,1984,53 (2):279-284
    122.Salamitou S, Agaisse H, and Bravo A, et al. Genetic analysis of cryⅢA gene expression in Bacillus thuringiensis. Microbiology,1996,142 (Pt 8): 2049-2055
    123.Sanchez-Campillo M, Bini L, and Comanducci M, et al. Identification of immunoreactive proteins of Chlamydia trachomatis by Western blot analysis of a two-dimensional electrophoresis map with patient sera. Electrophoresis,1999, 20 (11):2269-2279
    124.Scherrer P, Luthy P, and Trumpi B. Production of-endotoxin by Bacillus thuringiensis as a function of glucose concentrations. Appl Microbiol,1973,25 (4):644-646
    125.Schmitz-Spanke S, and Rettenmeier A W. Protein expression profiling in chemical carcinogenesis:a proteomic-based approach. Proteomics,2011,11(4): 644-656
    126.Schnepf E, Crickmore N, and Van Rie J, et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev,1998,62 (3):775-806
    127.Seo M C, Shin H D, and Lee Y H. Functional role of granule-associated genes, phaP and phaR, in poly-beta-hydroxybutyrate biosynthesis in recombinant E. coli harboring phbCAB operon. Biotechnol Lett.2003,25:1243-1249.
    128.Shao Z, and Yu Z. Enhanced expression of insecticidal crystal proteins in wild Bacillus thuringiensis strains by a heterogeneous protein P20. Curr Microbiol, 2004,48 (5):321-326
    129.Skalnikova H, Motlik J, and Gadher S J, et al. Mapping of the secretome of primary isolates of mammalian cells, stem cells and derived cell lines. Proteomics,2011,11(4):691-708
    130.Slonczewski J L, Foster J W, and Neidhardt F C, et al. Escherichia coli and Salmonella typhimurium:Cellular and Molecular Biology, ASM Press, Washington, D.C.1996, pp.1539-1552.
    131.Spooner R, and Yilmaz O. Nucleoside-diphosphate-kinase:a pleiotropic effector in microbial colonization under interdisciplinary characterization. Microbes Infect,2011
    132.Stancik L M, Stancik D M, and Schmidt B, et al. pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J. Bacteriol. 2002,184:4246-4258.
    133.Stevens C M, Daniel R, and Illing N, et al. Characterization of a sporulation gene, spoIVA, involved in spore coat morphogenesis in Bacillus subtilis. J Bacteriol,1992,174 (2):586-594
    134.Takaku H, Kimoto A, and Kodaira S, et al. Isolation of a Gram-positive poly(3-hydroxybutyrate) (PHB)-degrading bacterium from compost, and cloning and characterization of a gene encoding PHB depolymerase of Bacillus megaterium N-18-25-9. FEMS Microbiol Lett.2006,264:152-159.
    135.Takeshita D, Tomita K. Assembly of Q{beta} viral RNA polymerase with host translational elongation factors EF-Tu and-Ts. Proc Natl Acad Sci U S A.2010, 107:15733-15738.
    136.Tan Y, and Donovan W P. Deletion of aprA and nprA genes for alkaline protease A and neutral protease A from Bacillus thuringiensis:effect on insecticidal crystal proteins. J Biotechnol,2001,84 (1):67-72
    137.Tang M J, Yuan M J, and Chen J W, et al. [Bacillus thuringiensis helper protein P20 affects the formation of Cry1Ab]. Sheng Wu Gong Cheng Xue Bao,2003, 19 (5):566-571
    138.Thieringer H A, Jones P G, and Inouye M. Cold shock and adaptation. Bioessays 1998,20:49-57.
    139.Tjalsma H, Bolhuis A, and Jongbloed J D, et al. Signal peptide-dependent protein transport in Bacillus subtilis:a genome-based survey of the secretome. Microbiol Mol Biol Rev,2000,64 (3):515-547
    140.Tsalkova T, Zardeneta G, and Kudlicki W, et al. GroEL and GroES increase the specific enzymatic activity of newly-synthesized rhodanese if present during in vitro transcription/translation. Biochemistry.1993,32:3377-3380.
    141.Ueta M, Yoshida H, and Wada C, et al. Ribosome binding proteins YhbH and YfiA have opposite functions during 100S formation in the stationary phase of Escherichia coli. Genes Cells.2005,10:1103-1112.
    142.Voigt B, Schweder T and Sibbald M J, et al. The extracellular proteome of Bacillus licheniformis grown in different media and under different nutrient starvation conditions. Proteomics,2006,6 (1):268-281
    143.Volker U and Hecker M. From genomics via proteomics to cellular physiology of the Gram-positive model organism Bacillus subtilis. Cell Microbiol,2005,7 (8):1077-1085
    144.Wang J, Ying T, and Wang H, et al.2-D reference map of Bacillus anthracis vaccine strain A16R proteins. Proteomics,2005,5 (17):4488-4495
    145.Wang Q, Yu H, and Xia Y, et al. Complete PHB mobilization in Escherichia coli enhances the stress tolerance:a potential biotechnological application. Microb Cell Fact.2009,8:47.
    146.Wang W, Hollmann R, and Furch T, et al. Proteome analysis of a recombinant Bacillus megaterium strain during heterologous production of a glucosyltransferase. Proteome Sci,2005,3:4
    147.Washburn M P, and Jr Yates R. Analysis of the microbial proteome. Curr Opin Microbiol,2000,3 (3):292-297
    148.Weart R B., Nakano, S. and Lane, B. E, et al. The ClpX chaperone modulates assembly of the tubulin-like protein FtsZ. Mol Microbiol,2005,57 (1):238-249
    149.Willemse J, Mommaas A M, and van Wezel G P. Constitutive expression of ftsZ overrides the whi developmental genes to initiate sporulation of Streptomyces coelicolor. Antonie Van Leeuwenhoek,2011
    150.Wilson D N, Nierhaus K H. The weird and wonderful world of bacterial ribosome regulation. Crit Rev Biochem Mol Biol.2007,42:187-219.
    151.Wolff S, Otto A, and Albrecht, D, et al. Gel-free and gel-based proteomics in Bacillus subtilis:a comparative study. Mol Cell Proteomics,2006,5 (7) 1183-1192
    152.Wong H C, Schnepf H E, and Whiteley H R. Transcriptional and translational start sites for the Bacillus thuringiensis crystal protein gene. J Biol Chem,1983, 258 (3):1960-1967
    153.Wong S L, and Doi R H. Determination of the signal peptidase cleavage site in the preprosubtilisin of Bacillus subtilis. J Biol Chem,1986,261 (22) 10176-10181
    154.Wu D, and Federici B A. A 20-kilodalton protein preserves cell viability and promotes CytA crystal formation during sporulation in Bacillus thuringiensis. J Bacteriol,1993,175 (16):5276-5280
    155.Wu D, He J, and Gong Y, et al. Proteomic analysis reveals the strategies of Bacillus thuringiensis YBT-1520 for survival under long-term heat stress. Proteomics,2011,11 (13):2580-2591
    156.Wu M, and Peng X. [Progress in microbial proteomics]. Wei Sheng Wu Xue Bao,2002,42 (2):251-254
    157.Yin J, Ding X, and Xia L, et al. Transcription of gene in an acrystalliferous strain of Bacillus thuringiensis XBU001 positively regulated by the metalloprotease camelysin gene at the onset of stationary phase. FEMS Microbiol Lett,2011,318 (1):92-100
    158.Yohannes E, Barnhart D M, and Slonczewski J L. PH dependent catabolic protein expression during anaerobic growth of Escherichia coli K-12. J. Bacteriol.2004,186:192-199.
    159.Young I E, and Fitz-James P C. Chemical and Morphological Studies of Bacterial Spore Formation:I. The Formation of Spores in Bacillus cereus. J Biophys Biochem Cytol,1959.6(3):467-482
    160.Yousten A A, and Hanson R S. Sporulation of tricarboxylic acid cycle mutants of Bacillus subtilis. J Bacteriol,1972,109 (2):886-894
    161.Yousten A A. and Rogoff M H. Metabolism of Bacillus thuringiensis in relation to spore and crystal formation. J Bacteriol,1969,100 (3):1229-1236
    162.Yura T, Kanemori M, and Morita M. et al. Bacterial Stress Responses, ASM Press, Washington, D.C.2000, pp.3-18.
    163.Zhang Q, Sun M, and Xu Z, et al. Cloning and characterization of pBMB9741, a native plasmid of Bacillus thuringiensis subsp. kurstaki strain YBT-1520. Curr Microbiol,2007,55 (4):302-307
    164.Zheng S, Ponder M A, and Shih J Y, et al. A proteomic analysis of Psychrobacter arcticus adaptation to low temperature and salinity using a 2-D liquid mapping approach. Electrophoresis 2007,28:467-488.