SPAG8(Sperm associated antigen 8),一个新的睾丸特异性共激活子
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精子发生是指从精原干细胞经过一系列的有丝分裂和减数分裂产生单倍体的圆形精子细胞,这些细胞再经过巨大的形态重构而最终分化成成熟精子的过程。这一复杂过程受到多种阶段特异性和细胞特异性蛋白质的调节。因而,揭示生精细胞中参与基因调控的、睾丸特异性表达的蛋白质的特征及其功能对于阐明精子发生的机理具有极其重要的价值。
     本实验室曾应用含抗精子抗体、可引起精子凝集的不孕妇女患者的血清筛选人睾丸λgtll cDNA表达型文库获得了一个新基因,命名为HSD-1,其GenBank接受号为U12978。该基因编码523个氨基酸,编码蛋白质被命名为hSMP-1。2003年人类基因命名数据库将其统一命名为SPAG8 (Sperm associated antigen)。荧光原位杂交实验显示SPAG8基因位于人类第9号染色体短臂1区2带至1区3带,由7个外显子和6个内含子组成,其在mRNA水平上存在多种剪接方式。多组织Northern blot分析显示SPAG8基因仅仅在睾丸组织中特异性高表达,大鼠睾丸组织的免疫组织化学结果显示SPAG8蛋白定位于圆形精子细胞和长形精子细胞内,这些结果提示SPAG8可能参与了精子发生过程。以SPAG8蛋白的C端序列作为诱饵,筛选人睾丸cDNA表达文库,获得多个与SPAG8蛋白可能存在相互作用的有意义克隆,其中一个克隆经序列比对后分析发现,与activator of CREM in testis (ACT)基因吻合。
     在雄性生殖细胞分化过程中,减数分裂后活化的许多基因的启动子区都含有cAMP应答元件(CREs),这些元件可以募集转录因子CREB (CRE-binding protein)家族中的一个成员cAMP应答元件调节子(CREM)。由于选择性的转录起始点和选择性的剪接等因素,crem基因编码的产物包括激活型CREM(CREMτ)和抑制型的CREM。CREMτ从粗线期精母细胞开始大量表达,它调控多种减数分裂后特异的、关键基因的转录。已证实CREM靶向突变小鼠的精子发生完全停滞于圆形精子细胞阶段,说明了它在生殖细胞的分化过程发挥了极其重要的作用。CREMτ的活化方式在体细胞和在生殖细胞内是不同的:在体细胞中它的活化依赖其P-box结构域中117Ser被蛋白激酶A磷酸化后与CBP (CREB-binding protein)或p300等共激活子结合而激活下游基因的转录;在生殖细胞中它则是通过与其睾丸特异性表达的激活子ACT结合形成转录激活物来调节特异性靶基因的转录,这种活化过程并不依赖CREMτ的磷酸化以及与CBP等蛋白质的结合,从而为CREMτ提供了一条组织特异性的活化途径。
     本论文在酵母双杂交结果的基础上,着重通过对SPAG8与ACT蛋白之间关系的研究来探讨SPAG8蛋白在ACT调节的CREM的转录激活过程中发挥的功能。
     研究显示,SPAG8在睾丸发育过程中的表达以及在生精细胞中的分布与ACT蛋白存在着时间和空间上的吻合。SPAG8蛋白在小鼠出生后第三周的睾丸中开始出现表达,第四周时急剧增多并一直升高到成年时期。ACT蛋白主要从第四周时大量表达直至成年。这表明两者在发育时间上是有重合的。SPAG8蛋白定位在圆形精子细胞的胞浆和胞核内、长形精子细胞的胞浆内,这与ACT蛋白在精子细胞中的表达分布也有重合。但SPAG8并不仅限于ACT蛋白所存在的细胞内,我们还发现SPAG8蛋白在成熟精子的头部背侧以及尾部均有表达,这说明SPAG8在成熟精子中也发挥着作用。
     在进一步的研究中,我们分别选用了体外和体内两种体系确证了SPAG8和ACT的相互作用。首先,利用原核表达系统表达和纯化了融合蛋白GST-ACT,将等量的小鼠睾丸组织抽提液分别与纯化的GST-ACT和GST进行孵育,再加入Glutathione Sepharose4B树脂进行GST pulldown实验,结果发现睾丸组织中的SPAG8蛋白与GST-ACT能够同时被Glutathione Sepharose 4B树脂结合下来,说明这两种蛋白质在体外能发生相互作用。为了在体内系统中验证SPAG8和ACT蛋白的相互作用,我们将Myc-SPAG8和Flag-ACT的表达质粒共同转染HEK293T细胞。分别用抗Flag和抗Myc的抗体进行沉淀,结果显示过表达的SPAG8能与ACT蛋白相结合。通过将SPAG8与ACT分别进行缺失突变后寻找彼此的结合位点,免疫共沉淀结果显示,SPAG8蛋白除了N端的140个氨基酸长度区域不参与同ACT蛋白的结合外,其它区域均与ACT蛋白结合。而ACT蛋白中的第2个LIM结构域是介导ACT与SPAG8蛋白结合的主要部位。
     由于ACT通过与CREMτ蛋白结合而有力地激活了CREMτ的转录活性,我们又证实SPAG8能够与ACT相互结合,所以我们推测SPAG8可能影响ACT-CREMτ复合物的转录调控过程。为了支持这一观点,我们用双荧光素酶报告基因分析的方法进行验证。以Gal4DBD-CREMτAD可自动结合并激活含Gal4结合元件的报告基因活性建立报告基因体系平台。在ACT存在的条件下加入剂量逐渐增加的SPAG8表达质粒,结果发现SPAG8能够以剂量依赖的方式增强ACT调节的Gal4DBD-CREMτ的转录活性。将报告基因上游的启动子区换成CREMτ靶基因上游的特异性结合元件CREs时,SPAG8同样能够增强ACT-CREMτ的转录激活活性。这些结果提示SPAG8具有增强ACT-CREMτ转录激活的能力。我们进一步用免疫共沉淀的方法研究了SPAG8蛋白是如何发挥作用的?通过免疫共沉淀的方法发现SPAG8与CREMτ之间并不相互结合;当SPAG8, ACT和CREMτ三者共存在时,SPAG8能够明显地增强ACT和CREMτ之间的结合。结果提示SPAG8可能是通过增强ACT与CREMτ蛋白质的结合而使ACT-CREMτ复合物的转录激活活性增强的。由于CREMτ在体细胞内的活化方式与生殖细胞不同,因此为了观察在体细胞内过表达的SPAG8对ACT与CREMτ的转录激活作用是否受到CREMτ的磷酸化影响,我们将CREMτ的117位丝氨酸位点突变成甘氨酸后进行研究。报告基因分析结果提示SPAG8增强ACT与CREMτ的转录激活作用并不依赖于CREMτ磷酸化位点。免疫共沉淀的结果同样提示SPAG8对ACT与CREMτ的结合增强也不受CREMτ磷酸化位点突变的影响。综合上述实验结果,我们推测在生殖细胞内SPAG8蛋白可能通过增强ACT-CREMτ蛋白复合物的转录激活活性而引起它们调控的特异基因的转录增多,以满足精子形成过程中对这些基因的大量需求。因此,这个发现使我们能够更深入地了解生殖细胞内复杂的转录调控机制。
Mammalian spermatogenesis is a highly complex and ordered process in which stem cells undergo mitotic proliferation proceed into meiosis, followed by a remodeling of the haploid spermatids to form mature spermatozoa, associated with the expression of multiple genes to form essential proteins under stringent temporal and spatial regulation. So, the identification of an increasing number of transcription factors and coactivators that play specific roles during germ cells differentiation will constantly extend the understanding of spermatogenesis.
     SPAG8 (sperm-associated antigene 8), also known as HSD-1, was isolated from the human testis cDNA expression library by using the antiserum of an infertile woman which contained anti-sperm antigen antibody and led to spermatozoa agglutination. SPAG8 gene was a new gene and assigned the accession number U12978 by GeneBank and named by HUGO Gene Nomenclature Committee in 2003. It is located on the 9th chromosome by using FISH assay. There are 7 exons and 6 introns in the SPAG8 gene. The results of northern blot for sixteen different mRNAs prepared from human tissues showed that the SPAG8 mRNA was only present in human testis, and immunohistochemistry results also showed that SPAG8 protein localizes in round and elongated spermatids in rat testes. These previous results hint us that SPAG8 might involve in the program of spermatogenesis. Using yeast two-hybrid system with the C-terminal sequence of SPAG8 gene as bait to screen the human testis expression library, several potential interaction proteins with SPAG8 were obtained. One nucleotide sequence among these clones was blasted as that of activator of CREM in testis (ACT).
     During germ cell differentiation, many genes activated postmeiotically contain CREs (cAMP-responsive elements), which recruit a member of the CREB family of transcription factors, CREM. Due to alternative transcriptional initiation and alternative splicing process, the products coded by crem gene contain activator CREM (CREMτ) and repressor CREM. From the pachytene spermatocyte stage onward, the transcript corresponding to CREMτis expressed at very high level. CREMτregulates the transcription of many specific and important genes postmeiotically. Crem-null mice completely blocks spermatogenesis at early spermatid stage, indicating that CREM is essential for germ cell differentiation. There is a difference on CREMτactivation in somatic cells and germ cells:activated CREMτin somatic calls is dependent on the phosphorylation of Ser117 in P-box by PKA and consequently binding to CBP or p300, wherase in germ cells CREMτbinds to testis-specific ACT to act as a powerful transcriptional activator in a phosphorylation and CBP-independent manner, which points to a tissue-specific modulation mechanism of CREM transcriptional activity.
     In this paper, we focus on the function of SPAG8 protein by studing the association of SPAG8 with ACT, basing on the previous yeast two-hybrid result about SPAG8.
     During testis development, the expression of SPAG8 partially overlaps with that of ACT in a spatial and temporal manner. SPAG8 protein is very low in mouse testes at the age of 3 weeks after birth, whereas a robust increase occurs at the fourth week, at the time of accumulation of ACT expression. Using cell immunofluorescence assay, we find that SPAG8 protein localizes in both cytoplasm and nucleus of round spermatid and the cytoplasm of elongated sptermatid. The distribution of SPAG8 protein in spermatids partially overlaps with that of ACT. However, SPAG8 expression in male germ cells is not restricted to the stages involving ACT function, but it is also present later in elongating spermatids and mature sperm at a time when the expression of ACT has already disappeared. At these stages of sperm development, SPAG8 accumulates in the region of sperm head and tail, indicating that SPAG8 might have other function in these cells.
     In vitro and in vivo systems had been used to comfirm the interaction between SPAG8 and ACT. GST-ACT fusion protein had been expressed in E coli cells, and purified by affinity chromatography. GST pull-down assay was performed by incubating GST-ACT fusion protein or GST with testis lysate. The result showed that SPAG8 protein can be co-precipitated with GST-ACT using Glutathione Sepharose 4B agarose, but not with GST alone. To further examine whether SPAG8 can interact with ACT in physiological condition, pcDNA6-HisB-Myc-SPAG8 and p3×Flag-CMV-14-ACT plasmids were co-transfected into HEK293T cells. Lysates of transfected cells had been immunoprecipitated by anti-Flag and anti-Myc antibody respectively. The result showed that overexpressed SPAG8 protein could interact with ACT in vivo. Besides, we also found that 140-412aa region of SPAG8 involves in association with ACT, and that the second LIM domain of ACT plays an important role in the binding of ACT to SPAG8.
     Since ACT powerfully activates the transcriptional activity of CREMτand ACT can interact with SPAG8, we wondered whether SPAG8 can influence the transcriptional activation of ACT-CREMτcomplex. To confirm this hypothesis, we used dual luciferase reporter gene assay. We constructed Gal4DBD-CREMτAD expressing vector encoding chimeric CREMτAD protein, provided with an autonomous DNA-binding capability. In the presence of ACT, it seems to be that SPAG8 could enhance the transcription activation of ACT-medicated CREMτin a dose-dependent manner. Analogical result was obtained with full length CREMτon a CRE-driven somatostatin reporter promoter.These results suggested that SPAG8 possesses a potential ability to enhancing the transcriptional activation of ACT-CREMτ. To further study the mechanism of transcriptional activation enhanced by SPAG8, we firstly observed the association of SPAG8 with CREMτby cell co-immunoprecipitation assay. The result showed that SPAG8 does not interact with CREMτ. ACT, SPAG8 and CREMτexpression vectors were co-transfected into HEK293T cells to perform co-immunoprecipitation experiments. The result showed that SPAG8 could obviously enhance the binding of ACT to CREMτ. So, we suggest that the transcriptional activity of ACT-medicated CREMτenhanced by SPAG8 is due to the binding of ACT to CREMτenhanced by SPAG8. In order to exclude that enhanced transcriptional activation by SPAG8 was influenced by the phosphorylation of CREMτSer117 in somatic cells, serine117 in CREMτwas mutanted into alanine. CREMτSer117Ala was used in luciferase reporter gene assay and co-immunoprecipitation experiments. The results indicated that SPAG8 enhanced the transcriptional activation of ACT-medicated CREMτindependent on the the phosphorylation of CREMτSer117 and the enhancement of the binding of ACT to CREMτby SPAG8 is also not influenced as the phosphorylation site mutant. In closing, we suggest that SPAG8 plays roles in the transcription regulation of cell-stage specific genes by ACT-CREMτcomplex by interaction with ACT in germ cells, which provides a deeper understanding for the complex transcriptional mechanism in post-meiosis germ cells.
引文
1. Heidaran, M. A.,& Kistler, W. S. (1987) "Transcriptional and translational control of the message for transition protein 1, a major chromosomal protein of mammalian spermatids." Journal of Biological Chemistry 262
    2. Brewer, L., Corzett, M,& Balhorn, R. (2002) "Condensation of DNA by spermatid basic nuclear proteins." Journal of Biological Chemistry 277
    3. Upadhyaya, A. B., Lee, S. H., and DeJong, J. (1999) "Identification of a general transcription factor TFIIAalpha/beta homolog selectively expressed in testis."The Journal of biological chemistry 274(25),18040-18048
    4. Ozer, J., Moore, P. A., and Lieberman, P. M. (2000) "A testis-specific transcription factor IIA (TFIIAtau) stimulates TATA-binding protein-DNA binding and transcription activation. "The Journal of biological chemistry 275(1),122-128
    5. Sassone-Corsi, P., Visvader, J., Ferland, L., Mellon, P. L., and Verma, I. M. (1988) "CREM:a master-switch governing male germ cells differentiation and apoptosis." Genes & development 2(12A),1529-1538
    6. Lonze, B. E., and Ginty, D. D. (2002) "Function and regulation of CREB family transcription factors in the nervous system."Neuron 35(4),605-623
    7. Sassone-Corsi, P. (1995) "Transcription factors responsive to cAMP."Annu Rev Cell Dev Biol,355-377
    8. D. M. Thomson, S. T. Herway, N. Fillmore, H. Kim, J. D. Brown, J. R. Barrow, and W. W. Winder. (2008) "AMP-activated protein kinase phosphorylates transcription factors of the CREB family."J Appl Physiol 104:429-438.
    9. Sun, Z., Sassone-Corsi, P., and Means, A. R. (1995) "Calspermin gene transcription is regulated by two cyclic AMP response elements contained in an alternative promoter in the calmodulin kinase IV gene."Molecular and cellular biology 15(1),561-571
    10. Foulkes, N. S., Mellstrom, B., Benusiglio, E., and Sassone-Corsi, P. (1992) "Developmental switch of CREM function during spermatogenesis:from antagonist to activator.”Nature 355(6355),80-84
    11. Foulkes, N. S., Borrelli, E., and Sassone-Corsi, P. (1991) "CREM gene:use of alternative DNA-binding domains generates multiple antagonists of cAMP-induced transcription." Cell 64(4),739-749
    12. Molina, C. A., Foulkes, N. S., Lalli, E., and Sassone-Corsi, P. (1993) "Inducibility and negative autoregulation of CREM:an alternative promoter directs the expression of ICER, an early response repressor." Cell 75(5),875-886
    13. Monaco, L., Foulkes, N. S., and Sassone-Corsi, P. (1995) "Pituitary follicle-stimulating hormone (FSH) induces CREM gene expression in Sertoli cells:involvement in long-term desensitization of the FSH veceptor.”Proceedings of the National Academy of Sciences of the United States ofAmerica 92(23),10673-10677
    14. Gellersen, B., Kempf, R., Sandhowe, R., Weinbauer, G. F., and Behr, R. (2002) "Novel leader exons of the cyclic adenosine 3',5'-monophosphate response element modulator (CREM) gene, transcribed from promoters P3 and P4, are highly testis-specific in primates." Molecular human reproduction 8(11),965-976
    15. Don, J., and Stelzer, G. (2002) "The expanding family of CREB/CREM transcription factors that are involved with spermatogenesis."Molecular and cellular endocrinology 187(1-2),115-124
    16. Nantel, F., and Sassone-Corsi, P. (1996) "CREM:a transcriptional master switch during the spermatogenesis differentiation program."Front Biosci 1, d266-269
    17. Daniel, P. B., Rohrbach, L., and Habener, J. F. (2000) "Novel cyclic adenosine 3',5'-monophosphate (cAMP) response element modulator theta isoforms expressed by two newly identified cAMP-responsive promoters active in the testis." Endocrinology 141(11),3923-3930
    18. De Cesare, D., Fimia, G. M., and Sassone-Corsi, P. (2000) "CREM, a master-switch of the transcriptional cascade in male germ cells.”Journal of endocrinological investigation
    23(9),592-596
    19. Behr, R., and Weinbauer, G. F. (1999) "Germ cell-specific cyclic adenosine 3',5'-monophosphate response element modulator expression in rodent and primate testis is maintained despite gonadotropin deficiency." Endocrinology 140(6),2746-2754
    20. Blocher S, Fink L, Bohle RM, Bergmann M, Steger K. (2005)“CREM activator and repressor isoform expression in human male germ cells." Int J Androl 28,215-223.
    21. Sassone-Corsi, P. (1998) "CREM:a master-switch governing male germ cells differentiation and apoptosis." Seminars in cell & developmental biology 9(4),475-482
    22. De Cesare, D., Jacquot, S., Hanauer, A.,& Sassone-Corsi, P. (1998) "RSK-2 activity is necessary for EGF-induced CREB phosphorylation and c-fos transcription." Proceedings of the National Academy of Sciences of the USA 95,12202-12207
    23. De Cesare, D., Fimia, G. M., and Sassone-Corsi, P. (1999) "Signaling routes to CREM and CREB:plasticity in transcriptional activation." Trends in biochemical sciences 24(7), 281-285
    24. Fimia, G M., De Cesare, D., and Sassone-Corsi, P. (1999) "CBP-independent activation of CREM and CREB by the LIM-only protein ACT." Nature 398(6723),165-169
    25. Palermo, I., Litrico, L., Emmanuele, G, Giuffrida, V., Sassone-Corsi, P., De Cesare, D., Maria Fimia, G, D'Agata, R., Calogero, A. E., and Travali, S. (2001) "Cloning and expression of activator of CREM in testis in human testicular tissue." Biochemical and biophysical research communications 283(2),406-411
    26. Hogeveen, K. N., and Sassone-Corsi, P. (2006) "Regulation of gene expression in post-meiotic male germ cells:CREM-signalling pathways and male fertility." Human fertility (Cambridge, England) 9(2),73-79
    27. Kotaja, N., De Cesare, D., Macho, B., Monaco, L., Brancorsini, S., Goossens, E., Tournaye, H., Gansmuller, A., and Sassone-Corsi, P. (2004) "Abnormal sperm in mice with targeted deletion of the act (activator of cAMP-responsive element modulator in testis) gene." Proceedings of the National Academy of Sciences of the United States of America 101(29),10620-10625
    28. Macho, B., Brancorsini, S., Fimia, G. M., Setou, M., Hirokawa, N., and Sassone-Corsi, P. (2002) "CREM-dependent transcription in male germ cells controlled by a kinesin." Science (New York, N.Y 298(5602),2388-2390
    29. Liu, Q. Y., Wang, L. F., Miao, S. Y., and Catterall, J. F. (1996) "Expression and characterization of a novel human sperm membrane protein." Biology of reproduction 54(2),323-330
    30. Tang, X., Zhang, J, Cai, Y, Miao, S, Zong, S, Koide, S. S, and Wang, L. (2004) "Sperm membrane protein (hSMP-1) and RanBPM complex in the microtubule-organizing centre." Journal of molecular medicine (Berlin, Germany) 82(6),383-388
    31. Zhang, X. D., Miao, S. Y, Wang, L. F., Li, Y, Zong, S. D., Yan, Y C., and Koide, S. S. (2000) "Human sperm membrane protein (hSMP-1):a developmental testis-specific component during germ cell differentiation." Archives of andrology 45(3),239-246
    32. Wu, Y W., Chen, D. H., Miao, S. Y, Wang, L. F., Zong, S. D., and Koide, S. S. (1999) "Eliciting an immune response by plasmid DNA encoding a human sperm protein (HSD-1)." Archives of andrology 42(3),127-136
    33.陈大虎.(1997)中国协和医科大学博士研究生论文
    34.才迎.(2002)中国协和医科大学博士研究生论文
    35.唐晓玲.(2004)中国协和医科大学博士研究生论文
    36.陈迎春.(2005)中国协和医科大学博士研究生论文
    37. Aguiar, R. C., Chase, A., Coulthard, S., Macdonald, D. H., Carapeti, M., Reiter, A., Sohal, J., Lennard, A., Goldman, J. M., and Cross, N. C. (1997) "Abnormalities of chromosome band 8p11 in leukemia:two clinical syndromes can be distinguished on the basis of MOZ involvement." Blood 90(8),3130-3135
    38. Klaus Steger, R. B., Ingrid Kleiner, Gerhard F.Weinbauer and Martin Bergmann. (2004) "Expression of activator of CREM in the testis (ACT) during normal and impaired spermatogenesis:correlation with CREM expression." Molecular human reproduction 10(2)
    39. Ippei Nagamori, Kentaro Yomogida, Peter D. Adams, Paolo Sassone-Corsi, and Hiroshi
    Nojima. (2006) "Transcription Factors, cAMP-responsive Element Modulator (CREM) and Tisp40, Act in Concert in Postmeiotic Transcriptional Regulation." Journal of Biological Chemistry 281(22) 15073-15081
    40. Kotaja, N., Macho, B., and Sassone-Corsi, P. (2005) "Microtubule-independent and protein kinase A-mediated function of kinesin KIF17b controls the intracellular transport of activator of CREM in testis (ACT)." The Journal of biological chemistry 280(36), 31739-31745
    41. Wang, Y., Song, W., Li, S., Guan, X., Miao, S., Zong, S., Koide, S. S., and Wang, L. (2009) "GC-1 mRHBDD1 knockdown spermatogonia cells lose their spermatogenic capacity in mouse seminiferous tubules." BMC cell biology 10,25
    42.狄茜.(2006)中国协和医科大学博士研究生论文
    43.李树春.(2008)中国协和医科大学博士研究生论文
    44. Wang, H., Miao, S., Chen, D., Wang, L., and Koide, S. S. (1999) "Assignment of chromosomal locus and evidence for alternatively spliced mRNAs of a human sperm membrane protein (hSMP-1).” Biochimica et biophysica acta 1447(1),119-124
    45. Kuang, Y., Yan, Y. C., Gao, A. W., Zhai, Y. M., Miao, S. Y., Wang, L. F., and Koide, S. S. (2000) "Immune responses in rats following oral immunization with attenuated Salmonella typhimurium expressing human sperm antigen." Archives of andrology 45(3), 169-180
    46. De Cesare, D., Fimia, G. M., Brancorsini, S., Parvinen, M., and Sassone-Corsi, P. (2003) "Transcriptional control in male germ cells:general factor TFIIA participates in CREM-dependent gene activation." Molecular endocrinology (Baltimore, Md 17(12), 2554-2565
    47. Guo-Yan Cheng, Jian-Li Shi, Min Wang, Yan-Qin Hu, Chun-Meng Liu, Yi-Fei Wang, Chen Xu.(2007) "Inhibition of mouse acrosome reaction and sperm-zona pellucida binding by anti-human sperm membrane protein 1 antibody." Asian J Androl,9(1): 23-29
    48. Fimia, G M., De Cesare, D., and Sassone-Corsi, P. (2000) "A family of LIM-only transcriptional coactivators:tissue-specific expression and selective activation of CREB and CREM." Molecular and cellular biology 20(22),8613-862
    49. Steger, K., Behr, R., Kleiner, I., Weinbauer, G. F., and Bergmann, M. (2004) "Expression of activator of CREM in the testis (ACT) during normal and impaired spermatogenesis: correlation with CREM expression." Molecular human reproduction 10(2),129-135
    50. Sassone-Corsi, P. (2002) "Unique chromatin remodeling and transcriptional regulation in spermatogenesis." Science (New York, N.Y 296(5576),2176-2178
    51. Sarah Kimmins, Noora Kotaja, Irwin Davidson and Paolo Sassone-Corsi (2004) "Testis-specific transcription mechanisms promoting male germ-cell differentiation." Reproduction 128 5-12
    52. R.L., B. (2002) "Germline stem cell transplantation and transgenesis.”Science (New York, N.Y296,3
    53. Shoji M., C. S., Yoshida K., et al. (2005) "RNA interference during spermatogenesis in mice."Developmental biology 282,11
    54. Hofmann MC, N. S., Hess RA and Millan JL. (1992) "Immortalization of germ cells and somatic testicular cells using the SV40 large T antigen." Experimental cell research 201, 417-435.
    55. Shuchun Li, YuanQiao, QianDi, XiuningLe, LeiZhang, XiaosongZhang, Changyong Zhang, JieCheng, ShudongZong, SamuelS.Koide, ShiyingMiao, Lingfang Wang. (2009) “Interaction of SH3P13 and DYDC1 protein:a germ cell component that regulates acrosome biogenesis during spermiogenesis." Eur J Cell Biol, June 20.
    1. Sassone-Corsi P.Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science.2002,296:2176-2178.
    2. Masquilier D, Foulkes NS, Mattei MG & Sassone-Corsi P Human CREM gene: evolutionary conservation, chromosomal localization and inducibility of the transcript. Cell Growth and Differentiation.1993,4:931-937.
    3. Skinner MK, Norton JN, Mullaney BP, Rosselli M, Whaley PD & Anthony CT. ell-cell interactions and the regulation of testis function. Annals of the New York Academy of Sciences.1991,637:354-363.
    4. Griswold MD. The central role of Sertoli cells in spermatogenesis. Seminars in Cell and Developmental Biology.1998,9:411-416.
    5. de Rooij DG. Proliferation and differentiation of spermatogonial stem cells. Reproduction. 2001,121:347-354.
    6. Parra MT, Viera A, Gomez R, Page J, Carmena M, Earnshaw WC, Rufas JS & Suja JA. Dynamic relocalization of the chromosomal passenger complex proteins inner centromere protein (INCENP) and aurora-B kinase during male mouse meiosis. Journal of Cell Science.2003,116:961-974.
    7. Carpenter AT. Gene conversion, recombination nodules, and the initiation of meiotic synapsis. Bioessays.1987,6:232-236.
    8. Rosenberg MP, Aversa CR, Wallace R & Propst F. Expression of the v-Mos oncogene in male meiotic germ cells of transgenic mice results in metaphase arrest. Cell Growth and Differentiation.1995,6:325-336.
    9. Yuan L, Liu JG, Zhao J, Brundell E, Daneholt B & Hoog C. The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Molecular Cell.2000,5:73-83.
    10. Guardavaccaro D, Kudo Y, Boulaire J, Barchi M, Busino L, Donzelli M, Margottin-Goguet F, Jackson PK, Yamasaki L & Pagano M. Control of meiotic and mitotic progression by the F box protein beta-Trcpl in vivo. Developmental Cell.2003,4: 799-812.
    11. Ortega S, Prieto I, Odajima J, Martin A, Dubus P, Sotillo R, Barbero JL, Malumbres M & Barbacid M. Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nature Genetics.2003,35:25-31.
    12. Wouters-Tyrou D, Martinage A, Chevaillier P & Sautiere P. Nuclear basic proteins in spermiogenesis. Biochimie.1998,80:117-128.
    13. Sassone-Corsi P, Visvader J, Ferland L, Mellon PL & Verma IM. Induction of proto-oncogene fos transcription through the adenylate cyclase pathway:characterization of a cAMP-responsive element. Genes and Development.1988,2:1529-1538.
    14. Nantel F, Monaco L, Foulkes NS, Masquilier D, LeMeur M, Henriksen K, Dierich A, Parvinen M & Sassone-Corsi P. Spermiogenesis deficiency and germ-cell apoptosis in CREM-mutant mice. Nature.1996,380:159-162.
    15. Blendy JA, Kaestner KH, Weinbauer GF, Nieschlag E & Schutz G. Severe impairment of spermatogenesis in mice lacking the CREM gene. Nature.1996,380:162-165.
    16. Nantel F & Sassone-Corsi P. CREM:a transcriptional master switch during the spermatogenesis differentiation program. Frontiers in Bioscience.1996,1:266-269.
    17. Sun Z, Sassone-Corsi P & Means AR. Calspermin gene transcription is regulated by two cyclic AMP response elements contained in an alternative promoter in the calmodulin kinase IV gene. Molecular and Cellular Biology.1995,15:561-571.
    18. Sassone-Corsi P. CREM:a master-switch governing male germ cells differentiation and apoptosis. Seminars in Developmental Biology.1998,9:475-482.
    19. Kistler MK, Sassone-Corsi P & Kistler WS. Identification of a functional cyclic adenosine 30,50-monophosphate response element in the 50-flanking region of the gene for transition protein 1 (TP1), a basic chromosomal protein of mammalian spermatids. Biology of Reproduction.1994,51:1322-1329.
    20. Sun Z, Sassone-Corsi P & Means AR 1995 Calspermin gene transcription is regulated by two cyclic AMP response elements contained in an alternative promoter in the calmodulin kinase IV gene. Molecular and Cellular Biology 15 561-571.
    21. Steger K, Klonisch T, Gavenis K, Behr R, Schaller V, Drabent B, Doenecke D, Nieschlag E, Bergmann M & Weinbauer GF. Round spermatids show normal testis-specific H1t but reduced c AMP-responsive element modulator and transition protein 1 expression in men with round-spermatid maturation arrest. Andrology.1999,20:747-754.
    22. Radhakrishnan I, Perez-Alvarado GC, Parker D, Dyson HJ, Montminy MR & Wright PE. Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB:a model for activator:co-activator interactions. Cell.1997,91:741-752.
    23. De Cesare D, Fimia GM & Sassone-Corsi P. Signaling routes to CREM and CREB: plasticity in transcriptional activation. Trends in Biochemical Sciences.1999,24: 281-285.
    24. Fimia GM, De Cesare D & Sassone-Corsi P. CBP-independent activation of CREM and CREB by the LIM-only protein ACT. Nature.1999,398:165-169.
    25. Molina CA, Foulkes NS, Lalli E & Sassone-Corsi P. Inducibility and negative autoregulation of CREM:an alternative promoter directs the expression of ICER, an early response repressor. Cell.1993,75:875-886.
    26. Stehle JH, Foulkes NS, Molina CA, Simonneaux V, Pe'vet P & Sassone-Corsi P. Adrenergic signals direct rhythmic expression of transcriptional repressor CREM in the pineal gland. Nature.1993,365:314-320.
    27. Monaco L, Foulkes NS & Sassone-Corsi P. Pituitary follicle-stimulating hormone (FSH) induces CREM gene expression in Sertoli cells:involvement in long-term desensitization of the FSH receptor. PNAS.1995,92:10673-10677.
    28. Daniel PB, Rohrbach L & Habener JF. Novel cyclic adenosine 3',5'-monophosphate (cAMP) response element modulator theta isoforms expressed by two newly identified cAMP-responsive promoters active in the testis. Endocrinology.2000,141:3923-3930.
    29. Foulkes NS, Borrelli E & Sassone-Corsi P. CREM gene:use of alternative DNA-binding domains generates multiple antagonists of camp-induced transcription. Cell.1991,64: 739-749.
    30. Foulkes NS, Mellstrom B, Benusiglio E & Sassone-Corsi P. Developmental switch of CREM function during spermatogenesis:from antagonist to activator. Nature.1992,355: 80-84.
    31. Delmas V, van der Hoorn F, Mellstrom B, Jegou B & Sassone-Corsi P. Induction of CREM activator proteins in spermatids:down-stream targets and implications for haploid germ cell differentiation.Molecular Endocrinology.1993,7:1502-1514.
    32. Waeber G, Meyer TE, LeSieur M, Hermann HL, Gerard N & Habener JF. Developmental stage-specific expression of cyclic adenosine 3',5'-monophosphate response element-binding protein CREB during spermatogenesis involves alternative exon splicing Molecular Endocrinology.1991,5:1418-1430.
    33. Scobey M, Bertera S, Somers J, Watkins S, Zeleznik A & Walker W. Delivery of a cyclic adenosine 3',5'-monophosphate response element-binding protein (creb) mutant to seminiferous tubules results in impaired spermatogenesis. Endocrinology.2001,142: 948-954.
    34. Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G & Silva AJ. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell.1994,79:59-68.
    35. Foulkes NS, Schlotter F, Pevet P & Sassone-Corsi M. Pituitary hormone FSH directs the CREM functional switch during spermatogenesis. Nature.1993,362:264-267.
    36. Eckner R, Ewen ME, Newsome D, Gerdes M, DeCaprio JA, Lawrence JB & Livingston DM. Molecular cloning and functional analysis of the adenovirus E1A-associated 300kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes and Development.1994,8:869-884.
    37. Sassone-Corsi P. Transcription factors responsive to cAMP. Annual Review of Cell and Developmental Biology.1995,11:355-377.
    38. Palermo I, Litrico L, Emmanuele G, Giuffrida V, Sassone-Corsi P, De Cesare D, Maria Fimia G, D'A'Agata R, Calogero AE & Travali S. Cloning and expression of activator of CREM in testis in human testicular tissue. Biochemical and Biophysical Research Communications.2001,283:406-411.
    39. Ishizuka M, Ohshima H, Tamura N, Nakada T, Inoue A, Hirose S & Hagiwara H. Molecular cloning and characteristics of a novel zinc finger protein and its splice variant whose transcripts are expressed during spermatogenesis. Biochemical and Biophysical Research Communications.2003,301:1079-1085.
    40. Macho B, Brancorsini S, Fimia GM, Setou M, Hirokawa N & Sassone-Corsi P. CREM-dependent transcription in male germ cells controlled by a kinesin. Science.2002, 298:2388-2390.
    41. Kotaja, N., Macho, B. and Sassone-Corsi, P. Microtubule-independent and protein kinase A-mediated function of kinesin KIF17b controls the intracellular transport of activator of CREM in testis (ACT). J. Biol. Chem.2005,280:31739-31745.
    42. Hernandez N. TBP a universal eukaryotic transcription factor? Genes and Development. 1993,7:1291-1308.
    43. Wieczorek E, Brand M, Jacq X & Tora L. Function of TAF (Ⅱ)-containing complex without TBP in transcription by RNA polymerase Ⅱ. Nature.1998,393:187-191.
    44. Schmidt EE & Schibler U. High accumulation of components of the RNA polymerase Ⅱ transcription machinery in rodent spermatids. Development.1995,121:2373-2383.
    45. Upadhyaya AB, Lee SH & DeJong J. Identification of a general transcription factor TFIIAalpha/beta homolog selectively expressed in testis. Journal of Biological Chemistry. 1999,274:18040-18048.
    46. Moore PA, Ozer J, Salunek M, Jan G, Zerby D, Campbell S & Lieberman PM. A human TATA binding protein-related protein with altered DNA binding specificity inhibits transcription from multiple promoters and activators. Molecular and Cellular Biology. 1999,19:7610-7620.
    47. Berk AJ. TBP-like factors come into focus. Cell,2000:1035-8.
    48. Kaltenbach L, Homer MA, Rothman JH & Mango SE. The TBPlike factor CeTLF is required to activate RNA polymerase Ⅱ transcription during C elegans embryogenesis. Molecular Cell.2000,6:705-713.
    49. Rozman D, Fink M, Fimia GM, Sassone-Corsi P & Waterman MR. Cyclic adenosine 3',5'-monophosphate(cAMP)/cAMP-responsive element modulator (CREM)-dependent regulation of cholesterogenic lanosterol 14alpha-demethylase (CYP51) in spermatids. Molecular Endocrinology.1999,13:1951-1962.
    50. Martianov I, Fimia GM, Dierich A, Parvinen M, Sassone-Corsi P & Davidson I. Late arrest of spermiogenesis and germ cell apoptosis in mice lacking the TBP-like TLF/TRF2 gene. Molecular Cell.2001,7:9-15.
    51. Zhang D, Penttila TL, Morris PL, Teichmann M & Roeder RG. Spermiogenesis deficiency in mice lacking the Trf2 gene. Science.2001,292:1153-1155.
    52. Martianov I, Brancorsini S, Gansmuller A, Parvinen M, Davidson I & Sassone-Corsi P. Distinct functions of TBP and TLF/TRF2 during spermatogenesis:requirement of TLF for heterochromatic chromocenter formation in haploid round spermatids. Development. 2002,129:945-955.
    53. De Cesare D, Fimia GM, Brancorsini S, Parvinen M & Sassone-Corsi P. Transcriptional control in male germ cells:general factor TFIIA participates in CREM-dependent gene expression. Molecular Endocrinology.2003,17:2554-2565.
    54. Pointud JC, Mengus G, Brancorsini S, Monaco L, Parvinen M, Sassone-Corsi P & Davidson I. The intracellular localization of TAF7L, a paralogue of transcription factor TFIID subunit TAF7, is developmentally regulated during male germ-cell differentiation. Journal of Cell Science.2003,116:1847-1858.
    1 Kierszenbaum AL (1994) Mammalian spermatogenesis in vivo and in vitro:a partnership of spermatogenic and somatic cell lineages. Endocr Rev 15,116-134.
    2 Griswold MD (1998) The central role of Sertoli cells in spermatogenesis. Cell Dev Biol 9,411-416.
    3 Meachem S, von Schonfeldt V and Schlatt S (2001) Spermatogonia:stem cells with a great perspective. Reproduction 121,825-834.
    4 Orth JM, Gunsalus GL and Lamperti AA (1988) Evidence from Sertoli cell-depleted rats indicates that spermatid number in adults depends on numbers of Sertoli cells produced during perinatal development. Endocrinology 122,787-794.
    5 Hess RA, Cooke PS, Bunick D and Kirby JD (1993) Adult testicular enlargement induced by neonatal hypothyroidism is accompanied by increased Sertoli and germ cell numbers. Endocrinology 132,2607-2613.
    6 Simorangkir DR, de Kretser DM and Wreford NG (1995) Increased numbers of Sertoli and germ cells in adult rat testes induced by synergistic action of transient neonatal hypothyroidism and neonatal hemicastration. J Reprod Fertil 104,207-213.
    7 Debeljuk L, Rao JN and Bartke A (2003) Tachykinins and their possible modulatory role in testicular function:a review. Int J Androl 26,202-210.
    8 Allard EK, Blanchard KT and Boekelheide K (1996) Exogenous stem cell factor (SCF) compensates for altered endogenous SCF expression in 2,5-hexanedione-induced testicular atrophy in rats. Biol Reprod 55,185-193.
    9 Blanchard KT, Lee J and Boekelheide K (1998) Leuprolide, a gonadotropinreleasing hormone agonist, reestablishes spermatogenesis after 2,5-hexanedione-induced irreversible testicular injury in the rat, resulting in normalized stem cell factor. Endocrinology 139,236-244.
    10 Marziali G, Lazzaro D and Sorrentino V (1993) Binding of germ cells to mutant Sld Sertoli cells is defective and is rescued by expression of the transmembrane form of the c-kit ligand. Dev Biol 157,182-190.
    11 Monsees TK, Blocher S, Heidorn F, Winkler A, Siems WE, Muller-Esterl W, Hayatpour J, Miska W and Schill WB (2002) Expression and location of the bradykinin B2 receptor in rat testis. Biol Reprod 67,1832-1839.
    12 Monsees TK, Blocher S, Loddo C, Steger K and Schill WB (2003) Tissue kallikrein and bradykinin B2 receptors in the reproductive tract of the male rat. Andrologia 35,24-31.
    13 Atanassova N, Kancheva L and Somlev B (1998) Bradykinin stimulates prepubertal rat germ cell proliferation in vitro. Immunopharmacology 40,173-178.
    14 Tapanainen JS, Aittomaki K, Min J, Vaskivuo T and Huhtaniemi IT (1997) Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene present variable suppression of spermatogenesis and fertility. Nat Genet 15,205-206.
    15 Marshall GR, Zorub DS and Plant TM (1995) Follicle-stimulating hormone amplifies the population of differentiated spermatogonia in the hypophysectomized Testosterone-replaced adult Rhesus monkey (Macaca mulatta). Endocrinology 136,3504-3511.
    16 Erkkila K, Henriksen K, Hirvonen V, Rannikko S, Salo J, Parvinen M and Dunkel L (1997) Testosterone regulates apoptosis in adult human seminiferous tubules in vitro. J Clin Endocrinol Metab 82,2314-2321.
    17 Tesarik J, Greco E and Mendoza C (2001) Assisted reproduction with in vitro cultured testicular spermatozoa in cases of severe germ cell apoptosis:a pilot study. Hum Reprod 16,2640-2645.
    18 Lee J, Richburg JH, Younkin SC and Boekelheide K (1997) The Fas system is a key regulator of germ cell apoptosis in the testis. Endocrinology 138,2081-2088.
    19 Lee K, Haugen HS, Clegg CH and Braun RE (1995) Premature translation of protamine-1 mRNA causes precocious nuclear condensation and arrests spermatid differentiation in mice. Proc Natl Acad Sci 92,12451-12455.
    20 Wu JY, Ribar TJ, Cummings DE, Burton KA, McKnight GS and Means AR (2000) Spermiogenesis and exchange of basic nuclear proteins are imaired in male germ cells lacking Camk4. Nat Genet 25,448-452.
    21 Yu YE, Zhang Y, Unni E, Shirley CR, Deng JM, Russell LD, Weil MM, Behringer RR and Meistrich ML (2000) Abnormal spermatogenesis and reduced fertility in transition nuclear protein 1-deficient mice. Proc Natl Acad Sci USA 97,4683-4688.
    22 Steger K, Klonisch T, Gavenis K, Behr R, Schaller V, Drabent B, Doenecke D, Nieschlag E, Bergmann M and Weinbauer GF (1999) Round spermatids show normal testis-specific H1t but reduced cAMP-responsive element modulator and transition protein 1 expression in men with round spermatid maturation arrest. J Androl 20,747-754.
    23 De Cesare D, Fimia GM and Sassone-Corsi P (1999) Signaling routes to CREM and CREB:plasticity in transcriptional activation. Trends Biochem Sci 24,281-285.
    24 Steger K, Behr R, Kleiner I, Weinbauer GF and Bergmann M (2004) Expression of activator of CREM in the testis (ACT) during normal and impaired spermatogenesis: correlation with CREM expression. Mol Hum Reprod 10,129-135.
    25 Yeung CH, Wagenfeld A, Nieshlag E and Cooper TG (2000) The cause of infertility of male c-ros tyrosine kinase receptor knockout mice. Biol Reprod 63,612-618.
    26 Yanaka N, Kobayashi K, Wakimoto K, Yamada E, Imahie H, Imai Y and Mori C (2000) Insertional mutation of the murine kisimo locus caused a defect in spermatogenesis. J Biol Chem 275,14791-14794.
    27 Thepot D, Weitzman JB, Barra J, Segretain D, Stinnakre MG, Babinet C and Yaniv M (2000) Targeted disruption of the murine jun D gene results in multiple defects in male reproduction function. Development 127,143-153.
    28 Escalier D (2001) Impact of genetic engineering on the understanding of spermatogenesis. Hum Reprod Update 7,191-210.
    29 Bouchard MJ, Dong Y, McDermott BM, Lam DH, Brown KR, Shelanski M, Bellve AR and Racaniello VR (2000) Defects in nuclear and cytoskeletal morphology and mitochondrial localization in spermatozoa of mice lacking nectin-2, a component of cell-cell adherens junctions. Mol Cell Biol 20,2865-2873.
    30 Komada M, McLean DJ, Griswold MD, Russell MD and Soriano P (2000) E-MAP-115, encoding a microtubule-associated protein, is a retinoic acid-inducible gene required for spermatogenesis. Genes Dev 14,1332-1342.
    31 Kierszenbaum AL (2002) Intramanchette transport (IMT):managing the making of the spermatid head, centrosome, and tail. Mol Reprod Dev 63,1-4.
    32 Steger K, Failing K, Klonisch T, Behre HM, Manning M, Weidner W, Hertle L, Bergmann M and Kliesch S (2001) Round spermatids from infertile men exhibit decreased protamine-1 and-2 mRNA. Hum Reprod 16,709-716.
    33 Steger K, Fink L, Klonisch T, Bohle RM and Bergmann M (2002) Protamine-1 and-2 mRNA in round spermatids is associated with RNA-binding proteins. Histochem Cell Biol 117,227-234.
    34 Steger K, Fink L, Failing K, Bohle RM, Kliesch S, Weidner W and Bergmann M (2003) Decreased protamine-1 transcript levels in testes from infertile men. Mol Hum Reprod 9,331-336.
    35 Sinha Hikim AP, Wang C, Lue Y, Johnson L, Wang X-H and Swerdolf RS (1998) Spontaneous Grm cell Apoptosis in Humans:Evidence for Ethnic Differences in Susceptibility of Germ Cell Death. J Clin Endocrinol 83,152-156.
    36 Print CG and Loveland KL (2000) Germ cell suicide:new insights into apoptosis during spermatogenesis. Bioessays 22,423-430.
    37 Gnessi L, Fabbri A and Spera G (1997) Gonadal peptides as mediators of development and functional control of the testis:an integrated system with hormones and local environment. Endocr Rev 18,541-609.
    38 Schlatt S, Meinhardt A and Eberhard Nieschlag E (1997) Paracrine regulation of cellular interactions in the testis:factors in search of a function. Eur J Endocrinol 137,107-117.
    39 O'Donnell L, Robertson KM, Jones ME and Simpson ER (2001) Estrogen and spermatogenesis. Endocr Rev 22,289-318.
    40 Ross AJ, Waymire KG, Moss JE, Parlow AF, Skinner MK, Russell LD and MacGregor GR (1998) Testicular degeneration in Bclw-deficient mice. Nat Genet 18,251-256.
    41 Oldereid NB, Angelis PD, Wiger R and Clausen OP (2001) Expression of Bcl-2 family proteins and spontaneous apoptosis in normal human testis. Mol Hum Reprod 7,403-408.
    42 Kimura M, Itoh N, Takagi S, Sasao T, Takahashi A, Masumori N and Tsukamoto T (2003) Balance of apoptosis and proliferation of germ cells related to spermatogenesis in aged men. J Androl 24,185-191.
    43 Holmberg C, Helin K, Sehested M and Karlstrom O (1998) E2F-1-induced p53-independent apoptosis in transgenic mice. Oncogene 17,143-155.
    44 Burgoyne PS and Baker TG (1984) Meiotic pairing and gametogenic failure. Sym Soc Exp Biol 38,349-362.
    45 Hasegawa M, Zhang Y, Niibe H, Terry NH and Meistrich ML (1998) Resistance of differentiating spermatogonia to radiation-induced apoptosis and loss in p53-deficient mice. Radiat Res 149,263-270.
    46 Grataroli R, Vindrieux D, Selva J, Felsenheld C, Ruffion A, Decaussin M and Benahmed M (2004) Characterization of tumour necrosis factoralpha-related apoptosis-inducing ligand and its receptors in the adult human testis. Mol Hum Reprod 10,123-128.
    47 Dolci S, Williams SE, Ernst MK, Resnick JL, Brannan CI, Lock LF, Lyman SD, Boswell HS and Donovan PJ (1991) Requirement for mast cell growth factor for primordial germ cell survival. Nature 352,809-811.
    48 Matsui Y, Zsebo K and Hogan BL (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70,841-847.
    49 Cooke JE, Heasman J and Wylie CC (1996) The role of interleukin-4 in the regulation of mouse primordial germ cell numbers. Dev Biol 174,14-21.
    50 Kotzbauer PT, Lampe PA, Heuckeroth RO, Golden JP, Creedon DJ, Johnson EM, Jr and Milbrandt J (1996) Neurturin, a relative of glial-cell-linederived neurotrophic factor. Nature 384,467-470.
    51 Baloh RH, Tansey MG, Lampe PA, Fahrner TJ, Enomoto H, Simburger KS, Leitner ML, Araki T, Johnson EM, Jr and Milbrandt J (1998) Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3-RET receptor complex. Neuron 21,1291-1302.
    52 Milbrandt J, de Sauvage FJ, Fahrner TJ, Baloh RH, Leitner ML, Tansey MG, Lampe PA, Heuckeroth RO, Kotzbauer PT, Simburger KS et al. (1998) Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron 20,245-253.
    53 Trupp M, Ryden M, Jornvall H, Funakoshi H, Timmusk T, Arenas E and Ibanez CF (1995) Peripheral expression and biological activities of GDNF, a new neurotrophic factor for avian and mammalian peripheral neurons. J Cell Biol 130,137-148.
    54 Meng X, Lindahl M, Hyvonen ME, Parvinen M, de Rooij DG, Hess MW, Raatikainen-Ahokas A, Sainio K, Rauvala H, Lakso M et al. (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287,1489-1493.
    55 Basciani S, Mariani S, Arizzi M, Ulisse S, Rucci N, Jannini EA, Della Rocca C, Manicone A, Carani C, Spera G and Gnessi L (2002) Expression of platelet-derived growth factor-A (PDGF-A), PDGF-B, and PDGF In vitro spermatogenesis receptor-alpha and-beta during human testicular development and disease. J Clin Endocrinol Metab 87,2310-2319.
    56 Manova K, Nocka K, Besmer P and Bachvarova RF (1990) Gonadal expression of c-kit encoded at the W locus of the mouse. Development 110,1057-1069.
    57 Orth JM, Jester WF, Jr and Qiu J (1996) Gonocytes in testes of neonatal rats express the c-kit gene. Mol Reprod Dev 45,123-131.
    58 Rossi P, Albanesi C, Grimaldi P and Geremia R (1991) Expression of the mRNA for the ligand of c-kit in mouse Sertoli cells. Biochem Biophys Res Commun 176,910-914.
    59 Mauduit C, Hamamah S and Benahmed M (1999) Stem cell factor/c-kit system in spermatogenesis. Hum Reprod Update 5,535-545.
    60 Nagata S and Golstein P (1995) The Fas death factor. Science 267,1449-1456.
    61 Watanabe-Fukunaga R, Brannan C, Itoh N, Yonehara S, Copeland N, Jenkins NA and Nagata S (1992) The cDNA structure, expression, chromosomal assignment of the mouse Fas antigen. J Immunol 148,1274-1279.
    62 Sofikitis N, Kaponis A, Mio Y, Makrydimas G, Giannakis D, Yamamoto Y, Kanakas N, Kawamura H, Georgiou J, Schrader M et al. (2003) Germ In vitro spermatogenesis cell transplantation:a review and progress report on ICSI from spermatozoa generated in xenogeneic testes. Hum Reprod Update 9,291-307.
    63 French LE, Hahne M, Viard I, Radlgruber G, Zanone R, Becker K, Muller C and Tschopp J (1996) Fas and Fas ligand in embryos and adult mice:ligand expression in several immune-privileged tissues and coexpression in adult tissues characterized by apoptotic cell turnover. J Cell Biol 133,335-343.
    64 Korbutt GS, Elliott JF and Rajotte RV (1997) Cotransplantation of allogeneic islets with allogeneic testicular cell aggregates allows long-term graft survival without systemic immunosuppression. Diabetes 46,317-322.
    65 Riccioli A, Salvati L, D'Alessio A, Starace D, Giampietri C, De Cesaris P, Filippini A and Ziparo E (2003) The Fas system in the seminiferous epithelium and its possible extra-testicular role. Andrologia 35,64-70.
    66 Pentikainen V, Erkkila K, Suomalainen L, Parvinen M and Dunkel L (2000) Estradiol acts as a germ cell survival factor in the human testis in vitro. J Clin Endocrinol Metab 85,2057-2067.
    67 Vasankari T, Kujala U, Taimela S, Torma A, Irjala K and Huhtaniemi I (1995) Effects of a long acting somatostatin analog on pituitary, adrenal, and testicular function during rest and acute exercise:unexpected stimulation of testosterone secretion. J Clin Endocrinol Metab 80,3298-3303.
    68 Goddard I, Bauer S, Gougeon A, Lopez F, Giannetti N, Susini C, Benahmed M and Krantic S (2001) Somatostatin inhibits stem cell factor messenger RNA expression by Sertoli cells and stem cell factor-induced DNA synthesis in isolated seminiferous tubules. Biol Reprod 65,1732-1742.
    69 Creemers LB, den Ouden K, van Pelt AMM and de Rooij DG (2002) Maintenance of adult mouse type A spermatogonia in vitro:influence of serum and growth factors and comparison with prepubertal spermatogonial cell culture. Reproduction 124,791-799.
    70 Van Pelt AMM, Morena AR, van Dissel-Emiliani FMF, Boitani C, Gaemers IC, de Rooij DG and Stefanini M (1996) Isolation of the synchronized A spermatogonia from adult vitamin A-deficient rat testes. Biol Reprod 55,439-444.
    71 Dirami G, Ravindranath N, Pursel V and Dym M (1999) Effects of stem cell factor and granulocyte macrophage-colony stimulating factor on survival of porcine type A spermatogonia cultured in KSOM. Biol Reprod 61,225-230.
    72 Shinohara T, Avarbock M and Brinster R (1999) b1-and a6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci USA 96,5504-5509.
    73 Hofmann MC, Narisawa S, Hess RA and Millan JL (1992) Immortalization of germ cells and somatic testicular cells using the SV40 large T antigen. Exp Cell Res 201,417-435.
    74 Hofmann MC, Hess RA, Goldberg E and Millan JL (1994) Immortalized germ cells undergo meiosis in vitro. Proc Natl Acad Sci USA 91,5533-5537.
    75 Feng LX, Chen Y, Dettin L, Reijo Pera RA, Herr JC, Goldberg E and Dym M (2002) Generation and in vitro differentiation of a spermatogonial cell line. Science 297,392-395.
    76 Marh J, Tres LL, Yamazaki Y, Yanagimachi R and Kirszenbaum AL (2003) Mouse round spermatids developed in vitro from preexisting spermatocytes can produce normal offspring by nuclear injection into in vivodeveloped mature oocytes. Biol Reprod 69,169-176.
    77 Izadyar F, den Ouden K, Creemers LB, Posthuma G, Parvinen M and de Rooij DG (2003) Proliferation and differentiation of bovine type A spermatogonia during long-term culture. Biol Reprod 68,272-281.
    78 Kierszenbaum AL and Tres LL (2002) Bypassing natural sperm selection during fertilization:the azh mutant offspring experience and the alternative of spermiogenesis in vitro. Mol Cell Endocrinol 187,133-138.