REGγ的SUMO化修饰及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球癌症发病率不断升高的今天,人们不断寻找肿瘤预防和治疗的手段。在过去几十年里,尽管在肿瘤研究中取得令人鼓舞的进展,肿瘤的预防和治疗却尚未完善。最近几年来,研究发现蛋白酶体抑制剂是一种有效而令人鼓舞的抗癌治疗手段。蛋白酶体是一种催化蛋白水解的复合体。而REGy是一种11S蛋白酶体激活因子,它的许多生物学功能目前还不清楚。实验证明,REGy/蛋白酶体能降解在乳腺癌中经常发生过表达的蛋白SRC-3,这提示REGy在肿瘤进展中具有调节作用。而且有实验证实p21为REGy/蛋白酶体的另一个靶目标,揭示了REGy可能在肿瘤形成各个阶段均起着重要作用。因此,进一步认识REGy/蛋白酶体将有助于发现新的肿瘤治疗方法。蛋白质翻译后修饰是细胞内蛋白质发挥生物学功能的重要调节机制之一。SUMO分子是一种泛素样分子,也参与蛋白质的翻译后修饰。与泛素化不同的是,SUMO化修饰并不介导靶蛋白的蛋白酶体降解,而是可逆性修饰靶蛋白。现已有多项研究表明,SUMO化修饰可以改变蛋白质的稳定性,并影响蛋白质的定位、功能以及蛋白质之间的相互作用。
     我们研究发现REGy的SUMO化修饰在体内和体外均能发生。于是我们用多种专业软件对REGy氨基酸序列进行分析,并预测了多个潜在的SUMO化修饰位点。SUMO化修饰连接酶PIAS1与REGy有着相互作用,而且能够促进其SUMO化修饰。我们还发现REGy的SUMO化修饰发生在多个位点,包括K6,K14以及K12。通过对突变体的分析,我们发现这些SUMO化修饰位点同时影响着细胞内REGy的SUMO修饰。SUMO化修饰介导了REGy的亚细胞定位,并增加了这种蛋白酶体激活因子的稳定性。因为SUMO化修饰使得REGy与p21 Waf/Cipl之间的相互作用减弱,所以SUMO化修饰缺陷型REGy突变体表现出降解p21能力的下降。总体来说,我们发现了之前从未被报道的一种调节蛋白酶体激活因子REGy活性的机制。这种调节机制可能使REGy能够更为广泛的在蛋白质降解过程中起到作用。
We are constantly looking for the methods for cancer prevention and therapy when the cancer morbidities in the world are increasing. In the past decades, cancer research has made encouraging progress; but prevention and treatment of cancers have not been perfected. Recent years, proteasome inhibitors have been shown to be an exciting and effective treatment for cancers. Proteasome is a complex which can catalyze proteolysis. REGγis a 11s proteasome activator. The biological roles of REGγare yet to be explored. We previously demonstrated that REGγ/proteasome could degrade SRC-3 which is an oncogene frequently amplified and overexpressed in breast cancers. It's suggested that REGγcan regulate the process of tumor development. Moreover, we also found p21 is another target protein of REGγ/proteasome, which revealed REGγalso had a role in the regulation of the cell cycle through its ability to influence the level of a cell-cycle regulator(s). Thus further studies on REGγ/proteasome may lead to novel therapeutics for cancer. Posttranslational modifications are modifications that cells used to control the function of proteins. SUMO modification is one kind of posttranslational modification. SUMO is a small poly-peptide which is structurally related to ubiquitin. Unlike the situation with ubiquitination, SUMO modification does not appear to target proteins for proteasome-mediated degradation and it is a reversible process. A number of studies show that SUMO modification can alter the stability of the target protein and will also affect protein subcellular distribution, protein function, protein-protein interaction.
     In our study we found that REGγcan be SUMOylated in vitro and in vivo. So we analyzed the amino acid sequence of REGγusing different professional software and predicted several sites as potential SUMOylation sites. The SUMO-E3 protein inhibitor of activated STAT (PIAS)1 physically associates with REGγand promotes SUMOylation of REGγ. SUMO modification of REGγwas found to occur at multiple sites, including K6, K14, and K12. Mutation analysis indicated that these SUMO sites simultaneously contributed to the SUMOylation status of REGγin cells. SUMO modification of REGγwas revealed to mediate subcellular distribution of REGγand also increased stability of this proteasome activator. SUMOylation-deficient REGγdisplayed attenuated ability to degrade p21Waf//Cip1 due to reduced affinity of the REGγSUMOylation-defective mutant for p21. Taken together, we report a previously unrecognized mechanism regulating the activity of the proteasome activator REGγ. This regulatory mechanism may enable REGγto function as a more potent factor in protein degradation with a broader substrate spectrum.
引文
[1]T. Nikaido, K. Shimada, M. Shibata, M. Hata, M. Sakamoto, Y. Takasaki, C. Sato, T. Takahashi and Y. Nishida. Cloning and nucleotide sequence of cDNA for Ki antigen, a highly conserved nuclear protein detected with sera from patients with systemic lupus erythematosus [J]. Clin Exp Immunol,1990, 79(2):209-214.
    [2]C. P. Ma, C. A. Slaughter and G. N. DeMartino. Identification, purification, and characterization of a protein activator (PA28) of the 20 S proteasome (macropain) [J]. J Biol Chem,1992,267 (15):10515-10523.
    [3]W. Dubiel, G. Pratt, K. Ferrell and M. Rechsteiner. Purification of an 11 S regulator of the multicatalytic protease [J]. J Biol Chem,1992,267 (31):22369-22377.
    [4]P. M. Kloetzel and F. Ossendorp. Proteasome and peptidase function in MHC-class-I-mediated antigen presentation [J]. Curr Opin Immunol,2004,16 (1):76-81.
    [5]M. Rechsteiner, C. Realini and V. Ustrell. The proteasome activator 11 S REG (PA28) and class I antigen presentation [J]. Biochem J,2000,345 Pt 1:1-15.
    [6]A. J. Rivett and A. R. Hearn. Proteasome function in antigen presentation: immunoproteasome complexes, Peptide production, and interactions with viral proteins [J]. Curr Protein Pept Sci,2004,5 (3):153-161.
    [7]L. F. Barton, H. A. Runnels, T. D. Schell, Y. Cho, R. Gibbons, S. S. Tevethia, G. S. Deepe, Jr. and J. J. Monaco. Immune defects in 28-kDa proteasome activator gamma-deficient mice [J]. J Immunol,2004, 172(6):3948-3954.
    [8]M. J. Matunis, E. Coutavas and G. Blobel. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex [J]. J Cell Biol,1996,135 (6 Pt 1):1457-1470.
    [9]W. Baumeister, J. Walz, F. Zuhl and E. Seemuller. The proteasome: paradigm of a self-compartmentalizing protease [J]. Cell,1998,92 (3):367-380.
    [10]X. Li, D. Lonard, S. Jung, A. Malovannaya, Q. Feng, J. Qin, S. Tsai, M. Tsai and B. O'Malley. The SRC-3/AIB1 coactivator is degraded in a ubiquitin-and ATP-independent manner by the REG [gamma] proteasome [J]. Cell,2006,124 (2):381-392.
    [11]X. Li, L. Amazit, W. Long, D. M. Lonard, J. J. Monaco and B. W. O'Malley. Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REGgamma-proteasome pathway [J]. Mol Cell,2007, 26 (6):831-842.
    [12]X. Chen, L. F. Barton, Y. Chi, B. E. Clurman and J. M. Roberts. Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome [J]. Mol Cell,2007,26 (6):843-852.
    [13]R. Suzuki, K. Moriishi, K. Fukuda, M. Shirakura, K. Ishii, I. Shoji, T. Wakita, T. Miyamura, Y. Matsuura and T. Suzuki. Proteasomal turnover of hepatitis C virus core protein is regulated by two distinct mechanisms: a ubiquitin-dependent mechanism and a ubiquitin-independent but PA28gamma-dependent mechanism [J]. J Virol,2009,83 (5):2389-2392.
    [14]B. Dahlmann. Proteasomes [J]. Essays Biochem,2005,41:31-48.
    [15]J. Li and M. Rechsteiner. Molecular dissection of the 11S REG (PA28) proteasome activators [J]. Biochimie,2001,83 (3-4):373-383.
    [16]Z. Zhang and R. Zhang. Proteasome activator PA28 gamma regulates p53 by enhancing its MDM2-mediated degradation [J]. EMBO J,2008,27 (6):852-864.
    [17]C. Realini, C. C. Jensen, Z. Zhang, S. C. Johnston, J. R. Knowlton, C. P. Hill and M. Rechsteiner. Characterization of recombinant REGalpha, REGbeta, and REGgamma proteasome activators [J]. J Biol Chem,1997,272 (41):25483-25492.
    [18]J. Li, X. Gao, J. Ortega, T. Nazif, L. Joss, M. Bogyo, A. C. Steven and M. Rechsteiner. Lysine 188 substitutions convert the pattern of proteasome activation by REGgamma to that of REGs alpha and beta [J]. EMBO J,2001,20 (13):3359-3369.
    [19]P. Masson, D. Lundin, F. Soderbom and P. Young. Characterization of a REG/PA28 proteasome activator homolog in Dictyostelium discoideum indicates that the ubiquitin- and ATP-independent REGgamma proteasome is an ancient nuclear protease [J]. Eukaryot Cell,2009,8 (6):844-851.
    [20]J. Li, X. Gao, L. Joss and M. Rechsteiner. The proteasome activator 11 S REG or PA28: chimeras implicate carboxyl-terminal sequences in oligomerization and proteasome binding but not in the activation of specific proteasome catalytic subunits [J]. J Mol Biol,2000,299 (3):641-654.
    [21]X. Gao, J. Li, G. Pratt, S. Wilk and M. Rechsteiner. Purification procedures determine the proteasome activation properties of REG gamma (PA28 gamma) [J]. Arch Biochem Biophys,2004,425 (2):158-164.
    [22]J. Nie, M. Wu, J. Wang, G. Xing, F. He and L. Zhang. REGgamma proteasome mediates degradation of the ubiquitin ligase Smurfl [J]. FEBS Lett,2010,584 (14):3021-3027.
    [23]C. W. Liu, M. J. Corboy, G. N. DeMartino and P. J. Thomas. Endoproteolytic activity of the proteasome [J]. Science,2003,299 (5605):408-411.
    [24]P. Zhou. REGgamma: a shortcut to destruction [J]. Cell,2006,124 (2):256-257.
    [25]S. Saffarian, I. E. Collier, B. L. Manner, E. L. Elson and G. Goldberg. Interstitial collagenase is a Brownian ratchet driven by proteolysis of collagen [J]. Science,2004,306 (5693):108-111.
    [26]G. Bar-Nahum, V. Epshtein, A. E. Ruckenstein, R. Rafikov, A. Mustaev and E. Nudler. A ratchet mechanism of transcription elongation and its control [J]. Cell,2005,120 (2):183-193.
    [27]T. Nikaido, K. Shimada, Y. Nishida, R. S. Lee, A. B. Pardee and Y. Nishizuka. Loss in transformed cells of cell cycle regulation of expression of a nuclear protein recognized by SLE patient antisera [J]. Exp Cell Res,1989,182 (1):284-289.
    [28]S. Murata, H. Kawahara, S. Tohma, K. Yamamoto, M. Kasahara, Y. Nabeshima, K. Tanaka and T. Chiba. Growth retardation in mice lacking the proteasome activator PA28gamma [J]. J Biol Chem,1999, 274 (53):38211-38215.
    [29]P. Masson, J. Lundgren and P. Young. Drosophila proteasome regulator REGgamma: transcriptional activation by DNA replication-related factor DREF and evidence for a role in cell cycle progression [J]. J Mol Biol,2003,327 (5):1001-1012.
    [30]M. Rechsteiner and C. P. Hill. Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors [J]. Trends Cell Biol,2005,15 (1):27-33.
    [31]C. Hagemann, R. Patel and J. L. Blank. MEKK3 interacts with the PA28 gamma regulatory subunit of the proteasome [J]. Biochem J,2003,373 (Pt1):71-79.
    [32]R. Araya, R. Takahashi and Y. Nomura. Yeast two-hybrid screening using constitutive-active caspase-7 as bait in the identification of PA28gamma as an effector caspase substrate [J]. Cell Death Differ, 2002,9(3):322-328.
    [33]S. L. Anzick, J. Kononen, R. L. Walker, D. O. Azorsa, M. M. Tanner, X. Y. Guan, G. Sauter, O. P. Kallioniemi, J. M. Trent and P. S. Meltzer. A1B1, a steroid receptor coactivator amplified in breast and ovarian cancer [J]. Science,1997,277 (5328):965-968.
    [34]I. B. Roninson. Oncogenic functions of tumour suppressor p21(Wafl/Cipl/Sdil):association with cell senescence and tumour-promoting activities of stromal fibroblasts [J]. Cancer Lett,2002,179 (1):1-14.
    [35]N. E. Sharpless and R. A. DePinho. p53:good cop/bad cop [J]. Cell,2002,110 (1):9-12.
    [36]V. Baldin, M. Militello, Y. Thomas, C. Doucet, W. Fic, S. Boireau, I. Jariel-Encontre, M. Piechaczyk, E. Bertrand, J. Tazi and O. Coux. A novel role for PA28gamma-proteasome in nuclear speckle organization and SR protein trafficking [J]. Mol Biol Cell,2008,19 (4):1706-1716.
    [37]L. Zannini, D. Lecis, G. Buscemi, L. Carlessi, P. Gasparini, E. Fontanella, S. Lisanti, L. Barton and D. Delia. REGgamma proteasome activator is involved in the maintenance of chromosomal stability [J]. Cell Cycle,2008,7 (4):504-512.
    [38]L. Zannini, G. Buscemi, E. Fontanella, S. Lisanti and D. Delia. REGgamma/PA28gamma proteasome activator interacts with PML and Chk2 and affects PML nuclear bodies number [J]. Cell Cycle, 2009,8(15):2399-2407.
    [39]N. Nakahata and M. Saito. [Regulation of G protein-coupled receptor function by its binding proteins] [J]. Yakugaku Zasshi,2007,127 (1):3-14.
    [40]M. Roessler, W. Rollinger, L. Mantovani-Endl, M. Hagmann, S. Palme, P. Bemdt, A. Engel, M. Pfeffer, J. Karl and H. Bodenm"1ller. Identification of PSME3 as a novel serum tumor marker for colorectal cancer by combining two-dimensional polyacrylamide gel electrophoresis with a strictly mass spectrometry-based approach for data analysis [J]. Molecular & Cellular Proteomics,2006,5 (11):2092.
    [41]T. Okamura, S. Taniguchi, T. Ohkura, A. Yoshida, H. Shimizu, M. Sakai, H. Maeta, H. Fukui, Y. Ueta, I. Hisatome and C. Shigemasa. Abnormally high expression of proteasome activator-gamma in thyroid neoplasm [J]. J Clin Endocrinol Metab,2003,88 (3):1374-1383.
    [42]X. Wang, S. Tu, J. Tan, T. Tian, L. Ran, J. F. Rodier and G. Ren. REG gamma: a potential marker in breast cancer and effect on cell cycle and proliferation of breast cancer cell [J]. Med Oncol,2011,28 (1):31-41.
    [43]J. Yan, S. Y. Tsai and M. J. Tsai. SRC-3/AIB1:transcriptional coactivator in oncogenesis [J]. Acta Pharmacol Sin,2006,27 (4):387-394.
    [44]C. Sakakura, A. Hagiwara, R. Yasuoka, Y. Fujita, M. Nakanishi, K. Masuda, A. Kimura, Y. Nakamura, J. lnazawa, T. Abe and H. Yamagishi. Amplification and over-expression of the AIB1 nuclear receptor co-activator gene in primary gastric cancers [J]. Int J Cancer,2000,89 (3):217-223.
    [45]R. T. Henke, B. R. Haddad, S. E. Kim, J. D. Rone, A. Mani, J. M. Jessup, A. Wellstein, A. Maitra and A. T. Riegel. Overexpression of the nuclear receptor coactivator AIB1 (SRC-3) during progression of pancreatic adenocarcinoma [J]. Clin Cancer Res,2004,10 (18 Pt 1):6134-6142.
    [46]H. J. Zhou, J. Yan, W. Luo, G. Ayala, S. H. Lin, H. Erdem, M. Ittmann, S. Y. Tsai and M. J. Tsai. SRC-3 is required for prostate cancer cell proliferation and survival [J]. Cancer Res,2005,65 (17):7976-7983.
    [47]H. Ying, F. Furuya, L. Zhao, O. Araki, B. L. West, J. A. Hanover, M. C. Willingham and S. Y. Cheng. Aberrant accumulation of PTTG1 induced by a mutated thyroid hormone beta receptor inhibits mitotic progression [J]. J Clin Invest,2006,116 (11):2972-2984.
    [48]K. Moriishi, T. Okabayashi, K. Nakai, K. Moriya, K. Koike, S. Murata, T. Chiba, K. Tanaka, R. Suzuki, T. Suzuki, T. Miyamura and Y. Matsuura. Proteasome activator PA28gamma-dependent nuclear retention and degradation of hepatitis C virus core protein [J]. J Virol,2003,77 (19):10237-10249.
    [49]M. Tian, W. Xiaoyi, L. Xiaotao and R. Guosheng. Proteasomes reactivator REG gamma enchances oncogenicity of MDA-MB-231 cell line via promoting cell proliferation and inhibiting apoptosis [J]. Cell Mol Biol (Noisy-le-grand),2009,55 Suppl:OL1121-1131.
    [50]S. W. Lowe and C. J. Sherr. Tumor suppression by Ink4a-Arf: progress and puzzles [J]. Curr Opin Genet Dev,2003,13 (1):77-83.
    [51]S. Meiners, A. Ludwig, V. Stangl and K. Stangl. Proteasome inhibitors:poisons and remedies [J]. Med Res Rev,2008,28 (2):309-327.
    [52]S. Jentsch and G. Pyrowolakis. Ubiquitin and its kin:how close are the family ties? [J]. Trends Cell Biol,2000,10 (8):335-342.
    [53]D. C. Schwartz and M. Hochstrasser. A superfamily of protein tags: ubiquitin, SUMO and related modifiers [J]. Trends Biochem Sci,2003,28 (6):321-328.
    [54]R. Mahajan, C. Delphin, T. Guan, L. Gerace and F. Melchior. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2 [J]. Cell,1997,88 (1):97-107.
    [55]R. Mahajan, L. Gerace and F. Melchior. Molecular characterization of the SUMO-1 modification of RanGAP1 and its role in nuclear envelope association [J]. J Cell Biol,1998,140 (2):259-270.
    [56]G. W. Lee, F. Melchior, M. J. Matunis, R. Mahajan, Q. Tian and P. Anderson. Modification of Ran GTPase-activating protein by the small ubiquitin-related modifier SUMO-1 requires Ubc9, an E2-type ubiquitin-conjugating enzyme homologue [J]. J Biol Chem,1998,273 (11):6503-6507.
    [57]M. J. Matunis, J. Wu and G. Blobel. SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex [J]. J Cell Biol,1998,140 (3):499-509.
    [58]H. Saitoh, D. B. Sparrow, T. Shiomi, R. T. Pu, T. Nishimoto, T. J. Mohun and M. Dasso. Ubc9p and the conjugation of SUMO-1 to RanGAPl and RanBP2 [J]. Curr Biol,1998,8 (2):121-124.
    [59]A. Pichler, A. Gast, J. S. Seeler, A. Dejean and F. Melchior. The nucleoporin RanBP2 has SUMO1 E3 ligase activity [J]. Cell,2002,108 (1):109-120.
    [60]M. N. Boddy, K. Howe, L. D. Etkin, E. Solomon and P. S. Freemont. PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia [J]. Oncogene,1996,13 (5):971-982.
    [61]T. Okura, L. Gong, T. Kamitani, T. Wada, I. Okura, C. F. Wei, H. M. Chang and E. T. Yeh. Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin [J]. J Immunol,1996,157 (10):4277-4281.
    [62]P. B. Meluh and D. Koshland. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C [J]. Mol Biol Cell, 1995,6 (7):793-807.
    [63]Z. Shen, P. E. Pardington-Purtymun, J. C. Comeaux, R. K. Moyzis and D. J. Chen. UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins [J]. Genomics,1996,36 (2):271-279.
    [64]E. S. Johnson, I. Schwienhorst, R. J. Dohmen and G. Blobel. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aoslp/Uba2p heterodimer [J]. EMBO J,1997,16 (18):5509-5519.
    [65]K. Tanaka, J. Nishide, K. Okazaki, H. Kato, O. Niwa, T. Nakagawa, H. Matsuda, M. Kawamukai and Y. Murakami. Characterization of a fission yeast SUMO-1 homologue, pmt3p, required for multiple nuclear events, including the control of telomere length and chromosome segregation [J]. Mol Cell Biol, 1999,19(12):8660-8672.
    [66]H. Saitoh and J. Hinchey. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3 [J]. J Biol Chem,2000,275 (9):6252-6258.
    [67]E. M. Eaton and L. Sealy. Modification of CCAAT/enhancer-binding protein-beta by the small ubiquitin-like modifier (SUMO) family members, SUMO-2 and SUMO-3 [J]. J Biol Chem,2003,278 (35):33416-33421.
    [68]Y. Azuma, A. Arnaoutov and M. Dasso. SUMO-2/3 regulates topoisomerase II in mitosis [J]. J Cell Biol,2003,163 (3):477-487.
    [69]K. M. Bohren, V. Nadkarni, J. H. Song, K. H. Gabbay and D. Owerbach. A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus [J]. J Biol Chem,2004,279 (26):27233-27238.
    [70]J. Kurepa, J. M. Walker, J. Smalle, M. M. Gosink, S. J. Davis, T. L. Durham, D. Y. Sung and R. D. Vierstra. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress [J]. J Biol Chem,2003,278 (9):6862-6872.
    [71]P. Bayer, A. Arndt, S. Metzger, R. Mahajan, F. Melchior, R. Jaenicke and J. Becker. Structure determination of the small ubiquitin-related modifier SUMO-1 [J]. J Mol Biol,1998,280 (2):275-286.
    [72]E. Mossessova and C. D. Lima. Ulpl-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast [J]. Mol Cell,2000,5 (5):865-876.
    [73]G. R. Bylebyl, I. Belichenko and E. S. Johnson. The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast [J]. J Biol Chem,2003,278 (45):44113-44120.
    [74]K. P. Bencsath, M. S. Podgorski, V. R. Pagala, C. A. Slaughter and B. A. Schulman. Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation [J]. J Biol Chem,2002,277 (49):47938-47945.
    [75]F. Melchior, M. Schergaut and A. Pichler. SUMO: ligases, isopeptidases and nuclear pores [J]. Trends Biochem Sci,2003,28 (11):612-618.
    [76]E. S. Johnson. Protein modification by SUMO [J]. Annu Rev Biochem,2004,73:355-382.
    [77]C. M. Pickart. Mechanisms underlying ubiquitination [J]. Annu Rev Biochem,2001,70:503-533.
    [78]E. S. Johnson and A. A. Gupta. An E3-like factor that promotes SUMO conjugation to the yeast septins [J]. Cell,2001,106 (6):735-744.
    [79]M. H. Kagey, T. A. Melhuish and D. Wotton. The polycomb protein Pc2 is a SUMO E3 [J]. Cell, 2003,113 (1):127-137.
    [80]N. Kotaja, U. Karvonen, O. A. Janne and J. J. Palvimo. PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases [J]. Mol Cell Biol,2002,22 (14):5222-5234.
    [81]S. Sachdev, L. Bruhn, H. Sieber, A. Pichler, F. Melchior and R. Grosschedl. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies [J]. Genes Dev,2001,15(23):3088-3103.
    [82]K. Takahashi, T. Taira, T. Niki, C. Seino, S. M. Iguchi-Ariga and H. Ariga. DJ-1 positively regulates the androgen receptor by impairing the binding of PIASx alpha to the receptor [J]. J Biol Chem, 2001,276 (40):37556-37563.
    [83]Y. Takahashi, A. Toh-e and Y. Kikuchi. A novel factor required for the SUMO1/Smt3 conjugation of yeast septins [J]. Gene,2001,275 (2):223-231.
    [84]A. Hershko and A. Ciechanover. The ubiquitin system [J]. Annu Rev Biochem,1998,67:425-479.
    [85]M. H. Tatham, E. Jaffray, O. A. Vaughan, J. M. Desterro, C. H. Botting, J. H. Naismith and R. T. Hay. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9 [J]. J Biol Chem,2001,276 (38):35368-35374.
    [86]E. T. Yeh. SUMOylation and De-SUMOylation: wrestling with life's processes [J]. J Biol Chem, 2009,284 (13):8223-8227.
    [87]T. Gan-Erdene, K. Nagamalleswari, L. Yin, K. Wu, Z. Q. Pan and K. D. Wilkinson. Identification and characterization of DEN1, a deneddylase of the ULP family [J]. J Biol Chem,2003,278 (31):28892-28900.
    [88]H. M. Mendoza, L. N. Shen, C. Botting, A. Lewis, J. Chen, B. Ink and R. T. Hay. NEDP1, a highly conserved cysteine protease that deNEDDylates Cullins [J]. J Biol Chem,2003,278 (28):25637-25643.
    [89]K. I. Kim, S. H. Baek, Y. J. Jeon, S. Nishimori, T. Suzuki, S. Uchida, N. Shimbara, H. Saitoh, K. Tanaka and C. H. Chung. A new SUMO-1-specific protease, SUSP1, that is highly expressed in reproductive organs [J]. J Biol Chem,2000,275 (19):14102-14106.
    [90]L. Gong, S. Millas, G. G. Maul and E. T. Yeh. Differential regulation of sentrinized proteins by a novel sentrin-specific protease [J]. J Biol Chem,2000,275 (5):3355-3359.
    [91]D. Bailey and P. O'Hare. Characterization of the localization and proteolytic activity of the SUMO-specific protease, SENP1 [J]. J Biol Chem,2004,279 (1):692-703.
    [92]T. Nishida, F. Kaneko, M. Kitagawa and H. Yasuda. Characterization of a novel mammalian SUMO-1/Smt3-specific isopeptidase, a homologue of rat axam, which is an axin-binding protein promoting beta-catenin degradation [J]. J Biol Chem,2001,276 (42):39060-39066.
    [93]J. L. Best, S. Ganiatsas, S. Agarwal, A. Changou, P. Salomoni, O. Shirihai, P. B. Meluh, P. P. Pandolfi and L. I. Zon. SUMO-1 protease-1 regulates gene transcription through PML [J]. Mol Cell,2002, 10(4):843-855.
    [94]T. Kadoya, H. Yamamoto, T. Suzuki, A. Yukita, A. Fukui, T. Michiue, T. Asahara, K. Tanaka, M. Asashima and A. Kikuchi. Desumoylation activity of Axam, a novel Axin-binding protein, is involved in downregulation of beta-catenin [J]. Mol Cell Biol,2002,22 (11):3803-3819.
    [95]J. Hang and M. Dasso. Association of the human SUMO-1 protease SENP2 with the nuclear pore [J]. J Biol Chem,2002,277 (22):19961-19966.
    [96]H. Zhang, H. Saitoh and M. J. Matunis. Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex [J]. Mol Cell Biol,2002,22 (18):6498-6508.
    [97]J. M. Desterro, M. S. Rodriguez and R. T. Hay. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation [J]. Mol Cell,1998,2 (2):233-239.
    [98]T. Maniatis. A ubiquitin ligase complex essential for the NF-kappaB, Wnt/Wingless, and Hedgehog signaling pathways [J]. Genes Dev,1999,13 (5):505-510.
    [99]J. S. Steffan, N. Agrawal, J. Pallos, E. Rockabrand, L. C. Trotman, N. Slepko, K. Illes, T. Lukacsovich, Y. Z. Zhu, E. Cattaneo, P. P. Pandolfi, L. M. Thompson and J. L. Marsh. SUMO modification of Huntingtin and Huntington's disease pathology [J]. Science,2004,304 (5667):100-104.
    [100]K. M. Comerford, M. O. Leonard, J. Karhausen, R. Carey, S. P. Colgan and C. T. Taylor. Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia [J]. Proc Natl Acad Sci U S A,2003,100 (3):986-991.
    [101]M. Liang, F. Melchior, X. Feng and X. Lin. Regulation of Smad4 Sumoylation and transforming growth factor-(?)A signaling by protein inhibitor of activated STAT1 [J]. Journal of Biological Chemistry, 2004,279 (22):22857.
    [102]S. R. Chakrabarti, R. Sood, S. Nandi and G. Nucifora. Posttranslational modification of TEL and TEL/AML1 by SUMO-1 and cell-cycle-dependent assembly into nuclear bodies [J]. Proc Natl Acad Sci U S A,2000,97 (24):13281-13285.
    [103]Y. Hong, R. Rogers, M. J. Matunis, C. N. Mayhew, M. L. Goodson, O. K. Park-Sarge and K. D. Sarge. Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification [J]. J Biol Chem,2001,276 (43):40263-40267.
    [104]A. Sobko, H. Ma and R. A. Firtel. Regulated SUMOylation and ubiquitination of DdMEK1 is required for proper chemotaxis [J]. Dev Cell,2002,2 (6):745-756.
    [105]Y. Zhao, S. W. Kwon, A. Anselmo, K. Kaur and M. A. White. Broad spectrum identification of cellular small ubiquitin-related modifier (SUMO) substrate proteins [J]. J Biol Chem,2004,279 (20):20999-21002.
    [106]A. C. Vertegaal, S. C. Ogg, E. Jaffray, M. S. Rodriguez, R. T. Hay, J. S. Andersen, M. Mann and A.I. Lamond. A proteomic study of SUMO-2 target proteins [J]. J Biol Chem,2004,279 (32):33791-33798.
    [107]W. Zhou, J. J. Ryan and H. Zhou. Global analyses of sumoylated proteins in Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses [J]. J Biol Chem,2004,279 (31):32262-32268.
    [108]V. G. Panse, U. Hardeland, T. Werner, B. Kuster and E. Hurt. A proteome-wide approach identifies sumoylated substrate proteins in yeast [J]. J Biol Chem,2004,279 (40):41346-41351.
    [109]J. A. Wohlschlegel, E. S. Johnson, S. I. Reed and J. R. Yates,3rd. Global analysis of protein sumoylation in Saccharomyces cerevisiae [J]. J Biol Chem,2004,279 (44):45662-45668.
    [110]Y. Miyauchi, S. Yogosawa, R. Honda, T. Nishida and H. Yasuda. Sumoylation of Mdm2 by protein inhibitor of activated STAT (PIAS) and RanBP2 enzymes [J]. J Biol Chem,2002,277 (51):50131-50136.
    [111]J. A. Tan, J. Song, Y. Chen and L. K. Durrin. Phosphorylation-dependent interaction of SATB1 and PIAS1 directs SUMO-regulated caspase cleavage of SATB1 [J]. Mol Cell Biol,2010,30 (11):2823-2836.
    [112]Y. Galanty, R. Belotserkovskaya, J. Coates, S. Polo, K. M. Miller and S. P. Jackson. Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks [J]. Nature,2009, 462 (7275):935-939.
    [113]T. Kahyo, T. Nishida and H. Yasuda. Involvement of PIAS1 in the sumoylation of tumor suppressor p53 [J]. Mol Cell,2001,8 (3):713-718.
    [114]D. Lin, Y. Huang, J. Jeng, H. Kuo, C. Chang, T. Chao, C. Ho, Y. Chen, T. Lin and H. Fang. Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors [J]. Molecular Cell,2006,24 (3):341-354.
    [115]C. Figueroa-Romero, J. A. Iniguez-Lluhi, J. Stadler, C. R. Chang, D. Arnoult, P. J. Keller, Y. Hong, C. Blackstone and E. L. Feldman. SUMOylation of the mitochondrial fission protein Drp1 occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle [J]. FASEB J,2009,23 (11):3917-3927.
    [116]I. Mao, J. Liu, X. Li and H. Luo. REGgamma, a proteasome activator and beyond? [J]. Cell Mol Life Sci,2008,65 (24):3971-3980.
    [117]L. D. Wood, B. J. Irvin, G. Nucifora, K. S. Luce and S. W. Hiebert. Small ubiquitin-like modifier conjugation regulates nuclear export of TEL, a putative tumor suppressor [J]. Proc Natl Acad Sci U S A, 2003,100 (6):3257-3262.
    [118]G. Gao, J. Wong, J. Zhang, I. Mao, J. Shravah, Y. Wu, A. Xiao, X. Li and H. Luo. Proteasome activator REGgamma enhances coxsackieviral infection by facilitating p53 degradation [J]. J Virol,2010, 84 (21):11056-11066.