XBP-1通过调控染色质大规模伸展增强ERα转录活性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人 X 盒结合蛋白(XBP-1)是非折叠蛋白应答途径(unfolded protein response,UPR)信号途径的重要调节因子,具有转录激活活性,并有两种剪切形式:XBP-1S和 XBP-1U。XBP-1 广泛参与细胞分化、增殖、凋亡等多种信号途径,但对其如何发挥功能还知之甚少。
     XBP-1 的转录调节作用提示其功能的发挥可能是通过调节染色质结构来实现的。本文中,利用大规模染色质结构检测技术,在哺乳动物细胞中观察到 XBP-1S 和XBP-1U 表达的蛋白募集,复制染色体上一段含有 lac 操纵子的区域,野生型 XBP-1S和 XBP-1U 以及它们的转录激活结构域都增强了染色质伸展活性,而没有转录激活结构域的突变体则完全消除了这种染色质伸展活性。XBP-1S 和 XBP-1U 具有染色质伸展活性的结构域与其转录激活结构域相吻合。由于蛋白质必须通过与其他蛋白相互作用来发挥功能,因此推断这一区域通过与其它蛋白质的相互作用来发挥 XBP-1 的转录调节功能。
     实验室已用酵母双杂交实验结果表明,以乳腺癌相关基因 COBRA1 为诱饵,从乳腺文库中分离到 XBP-1 基因,初步显示两者之间存在相互作用关系。GST 沉降实验表明,COBRA1 与野生型 XBP-1S 和 XBP-1U 都能结合,且与 XBP-1S 的结合结构域定位于 COBRA1 的 135-335 个氨基酸;与 XBP-1U 的结合结构域定位于 COBRA1的 135-335 和 285-480 氨基酸两个结构域。在转染含 lac 操纵子应答元件的 lac 荧光素酶报告基因实验中,COBRA1 能增强野生型 XBP-1S 和 XBP-1U 的转录活性,但对于XBP-1S 和 XBP-1U 的 DNA 结合结构域缺失突变体却没有作用,对野生型 XBP-1 的转录活性的刺激倍数低于对其只包含 DNA 结合结构域的突变体的刺激倍数。免疫共沉淀实验结果表明,COBRA1 与 XBP-1U 的结合能力大于 COBRA1 与 XBP-1S 的结合能力。染色质伸展实验表明,野生型 XBP-1S 和 XBP-1U 促进染色质伸展的区域与COBRA1 蛋白表达区域有共定位现象,但缺失突变体均无此现象。这些结果提示COBRA1 有可能参与 XBP-1 调控的信号通路。
     实验已经证明 XBP-1 能与雌激素受体 ERα相互作用,并且能以激素不依赖的形式提高 ERα的转录活性,但这种作用机制尚不清楚。根据已有文献报道,ERα能在无配体(雌激素)存在时诱导染色质大规模伸展,实验将 ERα基因与 lac 操纵子基因融合,与 XBP-1 基因共转染特殊哺乳动物细胞,结果发现野生型 XBP-1 在雌激素存在的培养基里促进 ERα诱导染色质伸展活性,但当 XBP-1 缺失了 DNA 结合结构域时,这种促进 ERα诱导染色质伸展活性的能力消失;基于 ERα可与雌激素受体应答元件 ERE(estrogen response element)结合的原理,利用 ERE-luc 荧光素酶报告基因,检测
X-box binding protein 1 (XBP-1) plays a critical role in unfolded protein responsesignaling pathway (UPR) and regulate a wide range of cellular responses, includingproliferation, differentiation, migration and apoptosis. It has two splicing variants: XBP-1Sand XBP-1U, both have transcriptional activity. However, how XBP-1 regulatesintracellular events remains largely unknown.
     XBP-1 has transcriptional activity suggest that it may play its role through regulatechromatin structure. Here, we report that wide type XBP-1S and XBP-1U protein recruitand induce large-scale chromatin unfolding by targeting XBP-1 to an amplified lacoperator-containing chromosome region in mammalian cells. The transactive domain ofXBP-1S and XBP-1U also can induce large scale chromatin unfolding, but mutants ofXBP-1 lack of transactive domain can not induce chromain unfolding. This unfoldingactivity maps to the subdomains within the transactivition domain of XBP-1. So we inferthis domain interact with some other proteins to induce the transcriptional activity ofXBP-1.
     Using yeast two-hybrid screen, XBP-1 was isolated from a human mammary library,with breast cancer relating gene COBRA1 as bait. This study suggests that XBP-1 mayinteract with COBRA1. GST pull-down assay showed that wide XBP-1S and XBP-1Uboth bound to COBRA1,The binding domain of COBRA1 with XBP-1S maps to its135-335 amino acids, and with XBP-1U maps to its 135-335 and 285-480 amino acids. Lacoperator-containing luciferase reporter assay was used to determine the effects ofCOBRA1 on the transcription activity of XBP-1S and XBP-1U, the result suggest thatCOBRA1 can increase the transcription activity of XBP-1S and XBP-1U, but not tomutants without DNA binding domain. Co-immunoprecipitation assay also show thatXBP-1S and XBP-1U both bound to COBRA1 in vivo. The binding of XBP-1U toCOBRA1 was stronger than that of XBP-1S to COBRA1. Large-scale chromatin unfoldingassay show that XBP-1S and XBP-1U induce chromatin unfolding map with the regionhaving COBRA1 expression, but not with mutants. These results showed that COBRA1may participate XBP-1-regulating pathway.
     Our laboratory has testified that XBP-1 can interact with estrogen receptor α (ERα),and increase ERα transcription activity in ligand-independent manner, but the mechanismremains unknown. On the basis of report that ERα can induce large scale chromatin
    unfolding without its ligand—estrogen. We construct lac-operator and ERα fusion plasmidand transfect it with XBP-1, and find that wide type XBP-1 can enhance ERα induce largescale chromatin unfolding activity. When XBP-1 lacks its DNA binding domain, thisactivity disappeared. Based on the principle that ERα can bind with estrogen responseelement (ERE), we detect how XBP-1 influences the transcription activity of ERα, and wefound wide type XBP-1 can enhance ERα transcriptional activity. These data show a newfunction of XBP-1 that it regulates chromatin unfolding may be the essential hypothesis toincrease the transcriptional activity of ERα, it provides a new research method to healbreast cancer.
引文
1. Liou HC, Boothby MR, et al. A new member of the leucine zipper class of proteins that binds to the HLA DR alpha promoter [J]. Science, 1990 , 247: 1581-1582
    2. Kokura K, Kishimoto T, et al. Identity between rat htf and human xbp-1 genes [J]. Gene, 2000, 2:360-366
    3. Urano F, Calfon M, et al. A survival pathway for Caenorhabditis elegans with a blocked unfolded protein response [J]. J Cell Bio, 2002, 58: 639–646
    4. K Yoshida H, Matsui T, Yamamoto A, et al. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor[J]. Cell, 2001, 107: 881
    5. Calfon M, Zeng H, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA[J]. Nature, 2002, 415: 92-94
    6. Lee AH, Iwakoshi NN,et al. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response [J]. Mol Cell Biol, 2003, 23: 7448-7459
    7. Reimold AM, Iwakoshi NN, et al. Plasma cell differentiation requires the transcription factor XBP-1[J]. Nature , 2001, 412: 300-301
    8. Iwakoshi NN, Lee AH, Vallabhajosyula P, et al. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1 [J] . Nat Immunol, 2003, 4: 321-323
    9. Iwakoshi NN, Lee AH, et al. The X-box binding protein-1 transcription factor is required for plasma cell differentiation and the unfolded protein response[J] . Immunol Rev. 2003 , 194: 29-38
    10. Reimold AM, Ponath PD, et al. Transcription factor B cell lineage-specific activator protein regulates the gene for human X-box binding protein 1[J] . J Exp Med,1996 ,1: 393-401
    11. Jennifer N. Gass, et al. Activation of an unfolded protein response during differentiation of antibody-secreting B cells[J] . J Bio Chem, 2002, 277: 49047-49054
    12. Lin KI, Tunyaplin C, et al. Transcriptional regulatory cascades controlling plasma cell differentiation [J] . Immunol Rev. 2003, 194: 19-28
    13. Reimold AM, Etkin A, et al. An essential role in liver development for transcription factor XBP-1[J] . Genes Dev, 1999,14:152-157
    14. Fujimoto T, Onda M et al. Upregulation and overexpression of human X-box binding protein 1 (hXBP-1) gene in primary breast cancers [J] . Breast Cancer, 2003, 10: 301-306
    15. Takahashi S, Suzuki S et al. Down-regulation of human X-box binding protein 1 (hXBP-1) expression correlates with tumor progression in human prostate cancers [J]. Prostate , 2002 , 50: 154-161
    16. Clauss IM, Gravallese EM, Darling JM, et el. In situ hybridization studies suggest a role for the basic region-leucine zipper protein hXBP-1 in exocrine gland and skeletal development during mouse embryo genesis [J]. Dev Dyn , 1993, 197: 146-148
    17. Jacobson S, Pillus L, et el. Modifing chromatin and concepts of cancer [J]. Curr Opin Genet Dev, 1999, 9: 175-184
    18. Workman JL, Kingston RE, et el. Alteration of nucleosome structure as a mechanism of transcriptional regulation [J]. Biochem Annu Rev 1998, 67: 545-579
    19. Verschure PJ, Kraan I, et el. Spatial Relationship between Transcription Sites and Chromosome Territories [J]. J Cell Bio, 1999, 147: 13–24
    20. Ferreira J, Paolella G, et el. Spatial Organization of Large-Scale Chromatin Domains in the Nucleus: A Magnified View of Single Chromosome Territories[J]. J Cell Bio, 1997, 139: 1597–1610
    21. Huo XF, Zhang JW, et el. Important roles of reversible acetylation in the function of hematopoietic transcription factors [J]. J Cell Mol Med 2005, 9: 103-112
    22. David P. Bazett J, et el. Visualization and analysis of unfolded nucleosomes associated with transcribing chromatin [J]. Nucleic Acids Research, 1996, 24: 2321–329
    23. Gang L, Gail S, et el. Interphase cell cycle dynamics of a late-replicating, heterochromatic homogeneously staining region: precise choreographyof condensation/decondensation and nuclear positioning [J]. J Cell Bio, 1998, 140: 975–989
    24. Driel RV, Fransz PF, et el. The eukaryotic genome: a system regulated at different hierarchical levels [J]. J Cell Sci 2003, 116: 4067-4075
    25. Noriko S, Masahito N, et el. Fluctuation of chromatin unfolding associated with variation in the level of gene expression [J]. Genes to Cells 2004, 9: 619–630
    26. Belmont AS, Dietzel S, et el. Large-scale chromatin structure and function [J]. Curr Opin Cell Biol 1999, 11: 307-311.
    27. Waltraud GM, Dawn W, et el. Large-scale chromatin decondensation and recondensation regulated by transcription from a natural promoter [J]. J Cell Bio, 2001, 154: 33–48
    28. Carmen CR, Aaron S, et el. In Vivo Localization of DNA Sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition [J]. J Cell Bio, 1996, 135: 1685-1700
    29. Tumbar T, Sudlow G, Belmont AS . Large-scale chromatin unfolding and remodeling induced by VP16 acidic activation domain [J]. J Cell Bio, 1999, 145: 1341–1354
    30. Nye AC, Rajendran RR, et el. Alteration of large-scale chromatin structure by estrogen receptor [J]. Mol Cell Biol,2002, 22: 3437–3449
    31. Ye QN, Hu YF, et el. BRCA1-induced large-scale chromatin unfolding and allele-specific effects of cancer-predisposing mutations [J]. J Cell Bio, 2001, 155: 911–921
    32. Yan JH, Fang Y, et el. Regulation of large-scale chromatin unfolding by Smad4 Biochemical Biophysical Res Com 2004, 315: 330–335
    33. Chen D ,Belmont AS, et el. Upstream binding factor association induces large scale chromatin decondensation [J]. Proc Natl Acad Sci USA , 2004, 101: 15106–15111
    34. Bange J, Zwick E, et el. Molecular targets for breast cancer therapy and prevention [J]. Nat Med., 2001, 7:548-552
    35. Narita T, Yamaguchi Y, et el. Human transcription elongation factor NELF: identification of novel subunits and reconstitution of the functionally active complex [J]. Mol Cell Biol, 2003, 23: 1863–1873
    36. Aiyar SE, Sun JL, et el. Attenuation of estrogen receptor-mediated transcription through estrogen-stimulated recruitment of a negative elongation factor [J]. Genes Dev, [J]. 2004, 18: 2134–2146
    37. Rahman N, Stratton MR, et el. The genetics of breast cancer susceptibility. Nnnu Rev Genet, 1998, 32: 95-121
    38. Venkitaraman AR, Cancer susceptibility and the functions of BRCA1 and BRCA2 [J]. Cell, 2002, 108: 171-182
    39. Scully R, Livingston DM. In search of the tumour-suppressor functions of BRCA1 and BRCA2 [J]. Nature, 2000, 408: 429-432
    40. Fan S, Wang J, et el. BRCA1 inhibition of estrogen receptor signaling in transfected cells [J]. Science 1999, 284:1354-1356
    41. Abbott DW, ME Thompson C, et el. BRCA1 expression restores radiation resistancein BRCA1-defective cancer cells through enhancement of transcription-coupled DNA repair [J]. J Biol Chem 1999, 274:18808–18812
    42. Bochar DA, Wang H, et el. BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer [J]. Cell, 2000, 102: 257–265.
    43. Zheng L, Annab LA, et el. BRCA1 mediates ligand-independent transcriptional repression of the estrogen receptor [J]. Proc Natl Acad Sci USA 2001, 98:9587-9592
    44. Zhu JH, Song ST, et el. Characterization of COBRA1 in human breast cancer cell lines using a new polyclonal antibody against COBRA1[J]. IUBMB Life, 2004, 56: 161–166
    45. Nilsson S, Gustafsson JA. Estrogen receptor transcription and transactivation: basic aspects of estrogen action [J]. Breast Cancer Res., 2000, 2:360-366
    46. Klinge CM, et el. Estrogen receptor interaction with estrogen response elements [J]. Nucleic Acids Res., 2001, 29:2905-2919
    47. Klinge CM, et el. Estrogen receptor interaction with co-activators and co-repressors [J]. Steroids, 2000, 65:227-251
    48. Katzenellenbogen BS, Katzenellenbogen JA. Estrogen receptor transcription and trans-activation: Estrogen receptor alpha and estrogen receptor beta: regulation by selective estrogen receptor modulators and importance in breast cancer [J]. Breast Cancer Res., 2000, 2:335-344
    49. Aranda A, Pascual A. Nuclear hormone receptors and gene expression [J]. Physiol Rev, 2001, 81:1269-1304
    50. Kuiper GG, Enmark E, Pelto-Huikko M et al. Cloning of a novel receptor expressed in rat prostate and ovary [J]. Proc Natl Acad Sci USA, 1996, 93:5925-5930
    51. Kuiper GG, Carlsson B, Grandien K et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta.Endocrinology [J]. Endocrinology , 1997, 138:863-870
    52. Krust A, Green S, et al. The chicken oestrogen receptor sequence: homology with v-erbA and the human estrogen and glucocorticoid receptors [J]. EMBO J., 1986, 5: 891-897
    53. Mangelsdorf DJ, Thummel C, et al. The nuclear receptor superfamily: the second decade [J]. Cell , 1995, 83:835-839
    54. Zhou D, Chen S, et al. PNRC2 is a 16 kDa coactivator that interacts with nuclear receptors through an SH3-binding motif [J]. Nucleic Acids Res., 2001, 29:
     3939-3948
    55. Sauve F, McBroom LD, et al. CIA, a novel estrogen receptor coactivator with a bifunctional nuclear receptor interacting determinant [J]. Mol Cell Biol., 2001, 21: 343-353
    56. Fernandes I, Bastien Y, Wai T et al. Ligand-dependent nuclear receptor corepressor LCoR functions by histone deacetylase-dependent and -independent mechanisms [J]. Mol Cell, 2003, 11:139-150
    57. Xu L, Glass CK, and Rosenfeld MG. Coactivator and corepressor complexes in nuclear receptor function [J]. Curr Opin Genet Dev, 1999, 9:140-147
    58. Chakravarti D, LaMorte VJ, Nelson MC et al. Role of CBP/P300 in nuclear receptor signaling [J]. Nature , 1996, 383:99-103
    59. Yao TP, Ku G, Zhou N, Scully R, and Livingston DM. The nuclear hormone receptor coactivator SRC-1 is a specific target of p300 [J]. Proc Natl Acad Sci USA, 1996, 93:10626-10631
    60. Endoh H, Maruyama K, Masuhiro Y et al. Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor alpha [J]. Mol Cell Biol., 1999, 19:5363-5372
    61. Alen P, Claessens F, Schoenmakers E et al. Interaction of the putative androgen receptor-specific coactivator ARA70/ELE1alpha with multiple steroid receptors and identification of an internally deleted ELE1beta isoform [J]. Mol Endocrinol, 1999, 13:117-128
    62. Carpenter AE, Ashouri A, Belmont AS et al. Automated microscopy identifies estrogen receptor subdomains with large-scale chromatin structure unfolding activity wiley [J]. InterScience 2004, 58:157–166
    63. Ding LH, Yan JH, Zhu JH, et al. Ligand-independent activation of estrogen receptor a by XBP-1 [J]. Nucleic Acids Res, 2003, 31:5266-5274
    64. Stenoien DL, NYE AC, et al. Ligand-mediated assembly and real-time cellular dynamics of estrogen receptor a-coactivator complexes in living cells [J]. Mol Cell Biol, 2001, 21: 4404–4412
    65. Perou CM, Sorlie T, Eisen MB et al. Molecular portraits of human breast tumours [J]. Nature, 2000, 406:747-752
    66. van’t Veer LJ, Dai H, van de Vijver MJ et al. Gene expression profiling predicts clinical outcome of breast cancer [J]. Nature, 2002, 415:530-536
    67. Bertucci F, Houlgatte R, Benziane A et al. Gene expression profiling of primary breast carcinomas using arrays of candidate genes [J]. Hum Mol Genet, 2000, 9: 2981-2991
    68. Bertucci F, Nasser V, Granjeaud S et al. Gene expression profiles of poor-prognosis primary breast cancer correlate with survival [J]. Hum Mol Genet, 2002, 11:863-872
    69. Iwao K, Matoba R, Ueno N et al. Molecular classification of primary breast tumors possessing distinct prognostic properties [J]. Hum Mol Genet, 2002, 11:199-206
    70. West M, Blanchette C, Dressman H et al. Predicting the clinical status of human breast cancer by using gene expression profiles [J]. Proc Natl Acad Sci USA, 2001, 98:11462-11467