胶质细胞源性神经营养因子受体Ret与Rap1GAP相互作用及其功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶质细胞源性神经营养因子(GDNF)家族包括GDNF、NRTN(neurturin)、ARTN(artemin)、PSPN(persephin)四个成员。它们不仅可以支持中枢神经系统内中脑多巴胺能神经元与运动神经元等多种神经元的存活和发育,还支持许多外周神经元如交感、副交感、感觉与肠道神经元等的存活并调节其分化。除神经系统外,GDNF还是肾脏发育中的重要的形态形成因子,并在精原细胞分化过程中起关键的调节作用。GDNF家族成员通过其相应受体介导信号转导引起一系列细胞效应,即在GFRα1-4的帮助下与受体Ret结合,促进Ret二聚化和自磷酸化,继而由Ret进一步结合和激活下游信号分子,发生一系列信号级联反应,最终激活Ras/MAPK、PI3-K以及PLCγ等信号转导通路。Ret受体属于受体酪氨酸激酶(RTK, Receptor Tyrosine Kinase)家族成员,是一种跨膜糖蛋白,含胞外域、跨膜段和胞内域三个部分。其中胞内域含酪氨酸激酶活性区和重要的酪氨酸结合位点,如Y1062可以至少和5种入坞蛋白结合:Shc、FRS2、DOK4/5、IRS1/2和enigma,从而激活MAPK或PI-3K等途径,促进神经元存活及轴突生长或分支。
     Rap1GAP是1991年发现的第一个对于小G蛋白Rap1具有GTP酶激活活性的蛋白,大小89KDa。小G蛋白Rap1属于Ras亚家族,和Ras有53%的同源性,是和Ras最相近的成员。特异的鸟核苷酸交换因子(GEFs)促进小G蛋白与GDP解离,使其结合GTP而激活小G蛋白;而特异的GTP酶激活蛋白(GAPs)则可加速小G蛋白水解结合在其上的GTP,从而使其活性抑制。Rap1GAP作为GAPs的一种,可水解Rap1结合的GTP使Rap1失活。Rap1GAP蛋白的核心区340个氨基酸(75—415)足以发挥GTPase的水解活性,这个区域和其他小G蛋白的GAP没有任何同源性。以往对Rap1GAP的研究主要和参与肿瘤抑制有关。最近的文献表明,Rap1GAP在神经元的树突生长过程和导致树突棘头部增大的进程中具有重要的调节作用。人们还发现,在PC12细胞中的Gα_Z一旦激活后,内源性Rap1GAP可结合Gα_Z并将其从胞浆募集到膜上,最终抑制NGF引起的PC12细胞分化。
     我们在前期研究中,用Ret胞内域为诱饵经酵母双杂交筛选人脑cDNA文库,
Glia cell line-derived neurotrophic factor (GDNF) family contains four members: GDNF, NRTN (neurturin), ARTN (artemin), PSPN (persephin), which could not only support the survival and development of mesencephalic dopaminergic neuron and motoneuron in the central nervous system, but also enhance the survival and differentiation of sympathetic and parasympathetic neuron, sensory neuron and enteric neuron in the peripheral nervous system. GDNF is also an important morphologic factor involved in the development of the kidney and plays a key role in the differentiation of spermatogonial cells. GDNF family ligands mediate signaling pathway through their coreceptors GFRal-4 and Ret, belonging to the receptor kinase family. After binding with their ligands, GFRal-4 would trigger the autophosphorylation of Ret and then activate the downstream signaling pathway such as Ras/MAPK, PI3-K and PLCγ etc. The intracellular domain of Ret, with the tyrosine kinase activity, provides the docking sites for many adaptor proteins. For example, the pY1062 in Ret could at least bind to five docking proteins, such as She, FRS2, DOK4/5, IRS1/2 and enigma, to induce different downstream signaling pathway either leading to neuronal growth or branching.Rap1GAP, a molecular weight-89kDa protein which identified in 1991, was the first protein for which a specific GAP activity towards Rap1. Rap1 belongs to the Ras subfamily of small GTPases and with 53% amino-acid identity to Ras. Like other small GTPases members, rapl is in activated state when bound GTP, and in inactivated state when bound GDP. The nucleotide-loading state is tightly regulated by guanine nucleotide exchange factors (GEFs) that catalyse the dissociation of bound nucleotide, and GTPase activating proteins (GAPs) which accelerate the hydrolysis of bound GTP. A core domain comprising 340 amino acids (75-415) was shown to be necessary and sufficient for this GAP activity. Rap1GAP has been recently reported to be involved in the enlargement of dendrite spine head through inhibiting Rapl
引文
Abraham, R. T. (2003). Nature Immunol. 4, 725±727.
    Anneren, C., Reedquist, K. A., Bos, J. L., Welsh, M., 2000. GTK, a Srcrelated tyrosine kinase, induces nerve growth factor-independent neurite outgrowth in PC12 cells through activation of the Rap1 pathway. Relationship to Shb tyrosine phosphorylation and elevated levels of focal adhesion kinase. J. Biol. Chem. 275, 29153-29161.
    Ann-Charlotte E. Granholm, 1,2,3 Nisha Srivastava, 1 Justin L. Mott, 1 Stephanie Henry, 1 Michael Henry, 1 Heiner Westphal, 4 Jose G. Pichel, 4 Liya Shen, 4 and Barry J. Hoffer2,3 Morphological Alterations in the Peripheral and Central Nervous Systems of Mice Lacking Glial Cell Line-Derived Neurotrophic Factor (GDNF): Immunohistochemical Studies The Journal of Neuroscience, February 1, 1997, 17(3): 1168-1178
    Asha, H., de Ruiter, N. D., Wang, M. G., Hariharan, I. K., 1999. The Rap1 GTPase functions as a regulator of morphogenesis in vivo. EMBO J. 18, 605-615.
    Berridge, M. J., Lipp, P., Bootman, M. D., 2000. The versatility and universality of calcium signalling. Nat. Rev., Mol. Cell Biol. 1, 11-21.
    Bos, J. L., de Rooij, J. & Reedquist, K. A. (2001). Nature Rev. Mol. Cell Biol. 2, 369±377.
    Brinkmann, T., Daumke, O., Herbrand, U., Kuhlmann, D., Stege, P., Ahmadian, M. R. & Wittinghofer, A. (2002). J. Biol. Chem. 277, 12525±12531.
    Caron, E., 2003. Cellular functions of the Rap1 GTP-binding protein: a pattern emerges. J. Cell Sci. 116, 435-440.
    Chen, Y., Freund, R., Listerud, M., Wang, Z., Talmage, D. A., 1999. Retinoic acid inhibits transformation by preventing phosphatidylinositol 3-kinase dependent activation of the c-fos promoter. Oncogene 18, 139-148.
    Chrivia, J. C., Kwok, R. P., Lamb, N., Hagiwara, M., Montminy, M. R., Goodman, R. H., 1993. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365, 855-859.
    Clegg, D. O., 2000. Novel roles for integrins in the nervous system. Mol. Cell Biol. Res. Commun. 3, 1-7.
    Cline, H. T., 2001. Dendritic arbor development and synaptogenesis. Curr. Opin. Neurobiol. 11, 118-126.
    Deisseroth, K., Heist, E. K., Tsien, R. W., 1998. Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 392, 198-202.
    Dolmetsch, R. E., Pajvani, U., Fife, K., Spotts, J. M., Greenberg, M. E., 2001. Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 294, 333-339.
    Dudek, S. M., Fields, R. D., 2002. Somatic action potentials are sufficient for late-phase LTP-related cell signaling. Proc. Natl. Acad. Sci. U. S. A. 99, 3962-3967.
    Enslen, H., Tokumitsu, H., Stork, P. J., Davis, R. J., Soderling, T. R., 1996. Regulation of mitogen-activated protein kinases by a calcium/calmodulin-dependent protein kinase cascade. Proc. Natl. Acad. Sci. U. S. A. 93, 10803-10808.
    Franke, B., Akkerman, J. W., Bos, J. L., 1997. Rapid Ca2+-mediated activation of Rap1 in human platelets. EMBO J. 16, 252-259.
    Fried J. T. Zwartkruis and Johannes L. Bos1 Ras and Rap1: Two Highly Related Small GTPases with Distinct Function Experimental Cell Research 253, 157-165(1999)
    Ghosh, A., Greenberg, M. E., 1995. Distinct roles for bFGF and NT-3 in the regulation of cortical neurogenesis. Neuron 15, 89-103.
    Grewal, S. S., Fass, D. M., Yao, H., Ellig, C. L., Goodman, R. H., Stork, P. J., 2000a. Calcium and cAMP signals differentially regulate cAMPresponsive element-binding protein function via a Rap1-extracellular signal-regulated kinase pathway. J. Biol. Chem. 275, 34433-34441.
    Grewal, S. S., Horgan, A. M., York, R. D., Withers, G. S., Banker, G. A., Stork, P. J., 2000b. Neuronal calcium activates a Rap1 and B-Raf signaling pathway via the cyclic adenosine monophosphate-dependent protein kinase. J. Biol. Chem. 275, 3722-3728.
    Grunberg, B., Kruse, H. J., Negrescu, E. V., Siess, W., 1995. Platelet rap1B phosphorylation is a sensitive marker for the action of cyclic AMP- and cyclic GMP-increasing platelet inhibitors and vasodilators. J. Cardiovasc. Pharmacol. 25, 545-551. Hall, A., Nobes, C. D., 2000. Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Philos. Trans. R. Soc. London, B Biol. Sci. 355, 965-970.
    H. Asha, Nancy D. de Ruiter, Min-Guang Wang and Iswar K. Hariharanl The Rap1 GTPase functions as a regulator of morphogenesis in vivo The EMBO Journal Vol. 18 No. 3 pp. 605-615, 1999
    Hardingham, G. E., Arnold, F. J., Bading, H., 2001. Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat. Neurosci. 4, 261-267.
    Hindley, S., Juurlink, B. H., Gysbers, J. W., Middlerniss, P. J., Herman, M. A., Rathbone, M. P., 1997. Nitric oxide donors enhance neurotrophin-induced neurite outgrowth through a cGMP-dependent mechanism. J. Neurosci. Res. 47, 427-439.
    Hideki Enomoto1, Peter A. Crawford1, Alexander Gorodinsky1, Robert O. Heuckeroth2,3, Eugene M. Johnson, Jr3 and Jeffrey Milbrandt1, RET signaling is essential for migration, axonal growth and axon guidance of developing sympathetic neurons Development 128, 3963-3974 (2001)
    Holger Rehmann and Johannes L. Bos Thumbs up for inactivation NATURE, VOL 429, 13 MAY 2004, 138-139
    Ho, N., Liauw, J. A., Blaeser, F., Wei, F., Hanissian, S., Muglia, L. M., Wozniak, D. F., Nardi, A., Arvin, K. L., Holtzman, D. M., Linden, D. J., Zhuo, M., Muglia, L. J., Chatila, T. A., 2000. Impaired synaptic plasticity and cAMP response element-binding protein activation in Ca2+/calmodulin-dependent protein kinase type Ⅳ/Gr-deficient mice. J. Neurosci. 20, 6459-6472.
    Ishida, D., Kometani, K., Yang, H., Kakugawa, K., Masuda, K., Iwai, K., Suzuki, M., Itohara, S., Nakahata, T., Hiai, H., Impey, S., Obrietan, K., Wong, S. T., Poser, S., Yano, S., Wayman, G., Deloulme, J. C., Chan, G., Storm, D. R., 1998. Cross talk between ERK and PKA is required for Ca2+ stimulation of CREBdependent transcription and ERK nuclear translocation. Neuron 21, 869-883.
    Ivins, J. K., Yurchenco, P. D., Lander, A. D., 2000. Regulation of neurite outgrowth by integrin activation. J. Neurosci. 20, 6551-6560.
    Jan, Y. N., Jan, L. Y., 2003. The control of dendrite development. Neuron 40, 229-242.
    Jeffery T. Erickson, Teresa A. Brosenitsch, and David M. Katz. 2001 Brain-Derived Neurotrophic Factor and Glial Cell Line-Derived Neurotrophic Factor Are Required Simultaneously for Survival of Dopaminergic Primary Sensory Neurons In Vivo The Journal of Neuroscience, January 15, 2001, 21(2): 581-589
    J. L. Bosl, K. de Bruyn, J. Enserink, B. Kuiperij, S. Rangarajan, H. Rehmalm, J. Riedl, J. de Rooij, F. van Mansfeld and F. Zwartkruis The role of Rap1 in integrin-mediated cell adhesion 2003 Biochemical Society, 83-86
    Jing, S., Wen, D., Yu, Y., Holst, P. L., Luo, Y., Fang, M., Tamir, R., Antonio, L., Hu, Z., Cupples, R., Louis, J. C., Hu, S., Altrock, B. W., and Fox, G. M. (1996) Cell 85, 1113-1124
    Jingwei Meng and Patrick J. Casey Activation of Gz Attenuates Rap1-mediated Differentiation of PC12 Cells THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 277, No. 45, Issue of November 8, pp. 43417-43424, 2002
    Johannes L Bos, Linking Rap to cell adhesion Current Opinion in Cell Biology 2005, 17: 123-128
    Kawamoto, H., Hattori, M. & Minato, N. (2003). Cancer Cell, 4, 55±65. Kabsch, W. (1993). J. Appl. Cryst. 26, 795±800.
    Li-Mei Wang, Qing Zhang, Qi Zhang, Wei Zhu, Cheng He, Chang-Lin Lu, Da-Fu Ding, and Zhe-Yu Chen Identification of the Key Amino Acids of Glial Cell Line-derived Neurotrophic Factor Family Receptor_1 Involved in Its Biological Function THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 279, No. 1, Issue of January 2, pp. 109-116, 2004
    Li, Z., Aizenman, C. D., Cline, H. T., 2002. Regulation of rho GTPases by crosstalk and neuronal activity in vivo. Neuron 33, 741-750.
    Lu, L., Anneren, C., Reedquist, K. A., Bos, J. L., Welsh, M., 2000. NGFDependent neurite outgrowth in PC12 cells overexpressing the Src homology 2-domain protein shb requires activation of the Rap1 pathway. Exp. Cell Res. 259, 370-377.
    Luo, L., Hensch, T. K., Ackerman, L., Barbel, S., Jan, L. Y., Jan, Y. N., 1996. Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature 379, 837-840.
    Marie-Pierre Gulli and Matthias Peterl Temporal and spatial regulation of Rho-type guanine-nucleotide exchange factors: the yeast perspective GENES & DEVELOPMENT 15: 365-379(?)2001
    Martin, K. J., Lillie, J. W., Green, M. R., 1990. Evidence for interaction of different eukaryotic transcriptional activators with distinct cellular targets. Nature 346, 147-152.
    Mercado, M. L., Nur-e-Kamal, A., Liu, H. Y., Gross, S. R., Movahed, R., Meiners, S., 2004. Neurite outgrowth by the alternatively spliced region of human tenascin-C is mediated by neuronal alpha7betal integrin. J. Neurosci. 24, 238-247.
    Miller, F. D., Kaplan, D. R., 2003. Signaling mechanisms underlying dendrite formation. Curr. Opin. Neurobiol. 13, 391-398.
    Miura, Y., Kaibuchi, K., Itoh, T., Corbin, J. D., Francis, S. H., Takai, Y., 1992. Phosphorylation of smg p21B/rap1B p21 by cyclic GMPdependent protein kinase. FEBS Lett. 297, 171-174.
    Morozov, A., Muzzio, I. A., Bourtchouladze, R., Van-Strien, N., Lapidus, K., Yin, D., Winder, D. G., Adams, J. P., Sweatt, J. D., Kandel, E. R., 2003. Rap1 couples cAMP signaling to a distinct pool of p42/44MAPK regulating excitability, synaptic plasticity, learning, and memory. Neuron 39, 309-325,
    Oliver Daumke, Michael Weyand, Partha P. Chakrabarti, Ingrid R. Vetter & Alfred Wittinghofer The GTPase-activating protein Rap1GAP uses a catalytic asparagines NATURE vol 429, 13 MAY, 2004
    Oliver Daumke, Alfred Wittinghofer and Michael Weyand Purification, crystallization and preliminary structural characterization of human Rap1GAP Acta Cryst. (2004). D60, 752±754
    Oxana M. Tsygankova, Elena Feshchenko, Peter S. Klein_, and Judy L. Meinkoth Thyroid-stimulating Hormone/cAMP and Glycogen Synthase Kinase 3_ Elicit Opposing Effects on Rap1GAP Stability THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 279, No. 7, Issue of February 13, pp. 5501-5507, 2004
    Pak, D. T., Yang, S., Rudolph-Correia, S., Kim, E., Sheng, M., 2001. Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron 31, 289-303.
    Pizon, V., Mechali, F., Baldacci, G., 1999. RAP1A GTP/GDP cycles determine the intracellular location of the late endocytic compartments and contribute to myogenic differentiation. Exp. Cell Res. 246, 56-68.
    Polakis, P. G., Rubinfeld, B., Evans, T., McCormick, F., 1991. Purification of a plasma membrane-associated GTPase-activating protein specific for rap1/Krev-1 from HL60 cells. Proc. Natl. Acad. Sci. U. S. A. 88, 239-243.
    Polleux, F., Morrow, T., Ghosh, A., 2000. Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404, 567-573.
    Randall J. Kimple, Michelle E. Kimple, Laurie Betts, John Sondek & David P. Siderovski Structural determinants for GoLocoinduced inhibition of nucleotide release by Ga subunits NATURE, VOL 416, 25, 2002
    Redmond, L., Kashani, A. H., Ghosh, A., 2002. Calcium regulation of dendritic growth via CaM kinase Ⅳ and CREB-mediated transcription. Neuron 34, 999-1010.
    Ribar, T. J., Rodriguiz, R. M., Khiroug, L., Wetsel, W. C., Augustine, G. J., Means, A. R., 2000. Cerebellar defects in Ca2+/cahnodulin kinase Ivdeficient mice. J. Neurosci. 20, RC 107.
    Rosen, L. B., Ginty, D. D., Weber, M. J., Greenberg, M. E., 1994. Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron 12, 1207-1221.
    Scheele, J. S., Pilz, R. B., von Lintig, F. C., Boss, G. R., 1998. Deficient posttranslational processing of Rap 1A in variant HL-60 cells. Oncogene 17, 2211-2223.
    Schmidt, A., Hall, M. N., 1998. Signaling to the actin cytoskeleton. Annu. Rev. Cell Dev. Biol. 14, 305-338.
    Schmidt, A., Caron, E., Hall, A., 2001. Lipopolysaccharide-induced activation of beta2-integrin function in macrophages requires Irak kinase activity, p38 mitogen-activated protein kinase, and the Rap1 GTPase. Mol. Cell. Biol. 21, 438-448.
    Sheng, M., Thompson, M. A., Greenberg, M. E., 1991. CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252, 1427-1430.
    Sin, W. C., Haas, K., Ruthazer, E. S., Cline, H. T., 2002. Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases. Nature 419, 475-480.
    Stork, P. J., 2003. Does Rap1 deserve a bad Rap? Trends Biochem. Sci. 28, 267-275.
    Swope, D. L., Mueller, C. L., Chrivia, J. C., 1996. CREB-binding protein activates transcription through multiple domains. J. Biol. Chem. 271, 28138-28145.
    Talmage, D. A., Listerud, M., 1994. Retinoic acid suppresses polyoma virus transformation by inhibiting transcription of the c-fos proto-oncogene. Oncogene 9, 3557-3563.
    Treanor, J. J., Goodman, L., de Sauvage, F., Stone, D. M., Poulsen, K. T., Beck, C. D., Gray, C., Armanini, M. P., Pollock, R. A., Hefti, F., Phillips, H. S., Goddard, A., Moore, M. W., Buj-Bello, A., Davies, A. M., Asai, N., Takahashi, M., Vandlen, R., Henderson, C. E., and Rosenthal, A. (1996) Nature 382, 80-83
    Mechanism THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 277, No. 15, Issue of April 12, pp. 12525-12531, 2002
    Thilo Brinkmann, Oliver Daumke, Ulrike Herbrand, Dorothee Ku" hlmann, Patricia Stege, Mohammad Reza Ahmadian, and Alfred Wittinghofer§Rap-specific GTPase Activating Protein follows an Alternative
    Threadgill, R., Bobb, K., Ghosh, A., 1997. Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. Neuron 19, 625-634.
    Vaillant, A. R., Zanassi, P., Walsh, G. S., Aumont, A., Alonso, A., Miller, F. D., 2002. Signaling mechanisms underlying reversible, activitydependent dendrite formation. Neuron 34, 985-998.
    Vossler, M. R., Yao, H., York, R. D., Pan, M. G., Rim, C. S., Stork, P. J., 1997. cAMP activates MAP kinase and Elk-1 through a B-Raf-and Rap1-dependent pathway. Cell 89, 73-82.
    West, A. E., Griffith, E. C., Greenberg, M. E., 2002. Regulation of transcription factors by neuronal activity. Nat. Rev., Neurosci. 3, 921-931.
    Wong, R. O., Ghosh, A., 2002. Activity-dependent regulation of dendritic growth and patterning. Nat. Rev., Neurosci. 3, 803-812.
    Wong, W. T., Faulkner-Jones, B. E., Sanes, J. R., Wong, R. O., 2000. Rapid dendritic remodeling in the developing retina: dependence on neurotransmission and reciprocal regulation by Rac and Rho. J. Neurosci. 20, 5024-5036.
    Wu, C., Lai, C. F., MoNey, W. C., 2001a. Nerve growth factor activates persistent Rap1 signaling in endosomes. J. Neurosci. 21, 5406-5416.
    Wu, G. Y., Deisseroth, K., Tsien, R. W., 2001b. Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc. Natl. Acad. Sci. U. S. A. 98, 2808-2813.
    Wu, G. Y., Deisseroth, K., Tsien, R. W., 2001c. Spaced stimuli stabilize MAPK pathway activation and its effects on dendritic morphology. Nat. Neurosci. 4, 151-158.
    Yachi Chen, a Phyllis Y. Wang, b and Anirvan Ghosha, b, Regulation of cortical dendrite development by Rap1 signaling Mol. Cell. Neurosci. 28 (2005)215-228
    York, R. D., Yao, H., Dillon, T., Ellig, C. L., Eckert, S. P., McCleskey, E. W., Stork, P. J., 1998. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392, 622-626.
    Yumi Nodaa, b,*, Saburo Horikawac, Tetsushi Furukawad, Keiji Hiraib, Yoshifumi