半自主式结肠内窥镜机器人系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会工业化的发展,环境污染、饮食结构改变、精神压力等因素对人类的健康产生了消极影响,许多人遭受肠道炎、肠道肿瘤以及肠道癌等肠道疾病的困扰。作为定性诊断和治疗结肠疾病的医疗器械,结肠内窥镜在人体结肠肿瘤性病变的诊断方面具有重要价值。然而,传统结肠内窥镜只有其前端的导向段具有可控转向功能,其余部分通过利用与肠道壁接触所产生的挤压力而被动弯曲,故容易在肠道弯曲部位发生镜体“堆积”和“结襻”现象而无法通过、损伤肠道组织甚至出现“穿孔”事故,造成病人不适和痛苦。
     针对传统结肠内窥镜的缺点,本文研制了一种新型的结肠内窥镜机器人。该内窥镜机器人采用多关节段连续体型仿生结构,具有10自由度主动弯曲能力。在由操作者控制其前进运动的同时,内窥镜机器人根据所建立的成人结肠弯曲模型和传感器力反馈信息主动而柔顺地改变自身的形状以适应结肠的弯曲状况,实现在肠腔非结构环境内的半自主运动。本文主要在半自主式结肠内窥镜机器人的仿生结构设计、运动学分析、在结肠肠腔环境下的通过性和柔顺控制方面开展研究。
     在对人体结肠的解剖学特征和连续体型机器人的仿生原理进行分析的基础上,设计了具有多关节段连续体型结构的结肠内窥镜机器人。机器人分为5段,每段各具有2个自由度,通过绳索驱动方式实现对各关节段的运动控制。针对传统D-H方法不适用于连续体型机器人运动学分析的问题,提出了一种高效并具有良好实时性的连续体型机器人运动学分析方法,利用该分析方法对内窥镜机器人单关节段和多关节段的驱动空间、关节空间以及操作空间三者的位置映射关系进行了研究,并进行了运动学仿真分析。在机械结构和运动学层面为内窥镜机器人的通过性和柔顺控制研究奠定了基础。
     根据成人结肠解剖学弯曲特征,构建了人体结肠的三维弯曲模型,该模型具有简练而不失一般性的特点。为了使内窥镜机器人在工作空间受限的肠腔环境内具有良好的通过性,针对结肠内窥镜机器人的多关节段连续体型结构,提出了一种基于端点重合思想的多关节段结肠内窥镜机器人肠腔环境下的半自主通过控制策略。研究了结肠内窥镜机器人在乙状结肠段和降结肠段二维结肠环境下以及横结肠段三维结肠环境下半自主通过控制策略的实现方法,并进行了通过性仿真分析,验证了通过控制策略和实现方法的可行性。
     研究了人体结肠组织的生物力学特性,确立了结肠内窥镜机器人与结肠壁接触压力的安全阈值,为半自主式结肠内窥镜机器人对结肠肠腔环境的柔顺控制研究提供了依据。设计了用于测量机器人关节段与肠道壁接触压力的压力传感器,并分析其力学特性。针对半自主式结肠内窥镜机器人在肠腔内部非结构环境下的适应性问题,提出了一种基于肠腔环境生物力学特性的内窥镜机器人柔顺控制策略。该控制策略不需要对机器人复杂动力学模型进行求解,因而具有较高的实时性和可行性。
     最后搭建了半自主式结肠内窥镜机器人原理样机实验系统,介绍了原理样机所采用的两级分布式控制系统的硬件和软件构成,对内窥镜机器人单关节段和多关节段的弯曲能力分别进行了实验,验证了所提出的多关节段连续体型机器人运动学算法的正确性。开展了刚性模拟肠道环境下机器人的通过性实验研究,验证了半自主通过控制策略的有效性。对内窥镜机器人在医用结肠模型内的柔顺运动进行了实验,结果表明内窥镜机器人对柔性肠道模型具有良好的适应性,机器人与肠道壁的接触压力可控制在安全压力阈值以内,验证了所提出的柔顺控制方法的有效性。
Due to environmental pollution, changes in the diets and mental stress, many people suffer from intestinal diseases. These diseases include inflammatory bowel diseases, intestinal tumor and intestinal cancers. As a direct tool, the colonoscope is a reliable and thus important for diagnosis and treatment of intestinal diseases. However, only a very short distal tip of the colonoscope can be controlled to bend actively, the bend of other sections is realized passively by the pressure between the tube and the colon wall. Consequently, the colonoscope usually changes the bending shape of colon and thus causes the patient a great deal of pain and taking a risk of perforation.
     Aimed at the disadvantages of traditional colonoscope, a novel semi-autonomous colonoscopic robot is presented in this paper. The robot consists of 5 continuum sections which is inspired by snake, elephant trunk or octopus tentacle, and has a total of 10 degrees of freedom (DOF). The robot moves in colon tract with a kind of semi-automous mode: it moves forward by the control of manipulator, and bends actively and compliantly according to the bending model of adult colon and the feedback of pressure sensors. The research of this paper includes bionic structure design and kinematics analysis of colonoscopic robot, trafficability analysis and compliance control in the unconstructed environment of colon tract.
     Based on the analysis of the anatomical characteristics of human colon and the bionic principle of continuum robot, a colonoscopic robot with multi-sections continuum structure is proposed. The robot is composed of five sections, each has two DOF and driven by cables. As the standard D-H method can’t be used to realize the kinematics analysis of continuum robot, a kinematics analysis method which is concise and real-time is presented. The relationship among drive space, section space and operation space of single section and multi-sections is studied respectively, and then validated by simulation. The structure design and kinematics analysis laid the foundation for trafficability analysis and adaptability analysis in the unconstructed environment of colon tract.
     According to the anatomical characteristics of human colon, the bend model of adult colon is constructed which is concise and without loss of generality. Aimed at the multi-section continuum structure of colonoscopic robot, a semi-autonomous control strategy for the motion of colonoscopic robot in the unconstructed environment of colon tract is proposed. The implementation of control strategy in the two-dimensional colon model which includes sigmoid flexure and descending colon and the three-dimensional colon model which includes transverse colon is studied respectively, and validated by simulation.
     The biomechanical property of human colon tissue is analyzed, and the safety threshold of pressure between the colonoscopic robot and colon tract is derived. These studies provide a basis for the compliance control of colonoscopic robot in colon tract. A pressure sensor which is used to measure the pressure between the colonoscopic robot and colon tract is designed and the mechanical characteristics is analyzed. Aimed at the adaptability of colonoscopic robot in the unstructured environment of colon tract, a compliance control method is proposed based on the biomechanical property of colon tissue. This method avoids computing the complicated dynamics of colonoscopic robot and thus features high real-time and feasibility.
     Finally, the prototype experiment system of semi-autonomous colonoscopic robot is built. The hardware and software of distribute control system for colonoscopic robot are introduced. The bending experiments of single section and multi-sections are carried out respectively, which validate the kinematics of continuum robot. In order to test the effectiveness of semi-autonomous control strategy for the motion of colonoscopic robot in colon tract, the trafficability experiment in rigid colon model is performed. The result of compliance control experiment in medical colon model shows that the pressure between colonoscopic robot and colon tract is within the threshold, which validates the effectiveness of the compliance control method in the unstructured environment of colon tract.
引文
1许宏岩,付宜利,王树国.仿生机器人的研究.机器人. 2004, 26(3): 283~288
    2戴先中. 21世纪非制造业自动化的发展与特种机器人研究思考.自动化学报. 2002, S1: 97~102
    3蔡自兴.机器人学的发展趋势和发展战略.高技术通讯. 2001, 6: 106~110
    4吉爱红,戴振东,周来水.仿生机器人的研究进展.机器人. 2005, 27(3): 284~288
    5 P. Dario, E. Guglielmelli, B. Allotta, et al. Robotics for Medical Applications. IEEE Robotics and Automation Magazine. 1996, 3(3): 44~56
    6 P. Dario, A. Menciassi. Robotics for Surgery. The Second Joint EMBS/BMES Conference, Houston, TX. 2002: 1813~1814
    7王田苗,张大朋,刘达.医用机器人的发展方向.中国医疗器械杂志. 2008, 32(4): 235~238
    8 N. Zemiti, G. Morel, T. Ortmaier, et al. Mechatronic Design of a New Robot for Force Control in Minimally Invasive Surgery. IEEE/ASME Transactions on Mechatronics. 2007, 12(2): 143~153
    9 U.Hagn, T. Ortmaier, R. Konietschke, et al. Telemanipulator for remote minimally invasive surgery. IEEE Robotics & Automation Magazine. 2008, 15(4): 28~38
    10 G. Tholey, J. P. Desai. A General-Purpose 7 DOF Haptic Device: Applications Toward Robot-Assisted Surgery. IEEE/ASME Transactions on Mechatronics. 2007, 12(6): 662~669
    11 B. Kim, S. Lee, J. H. Park, et al. Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys (SMAs). IEEE/ASME Transactions on Mechatronics, 2005, 10(1): 77~86
    12谢正勇,卿三华.结直肠癌发病率及解剖部位变化趋势.世界华人消化杂志. 2003, 11(7):1050~1053
    13 I. Kassim, L. Phee, W. S. Ng, et al. Locomotion techniques for robotic colonoscopy. IEEE Engineering in Medicine and Biology Magazine. 2006,25(3): 49~56
    14孙婷,刘长浩,赵莹,等.大肠息肉癌变的相关因素分析.实用肿瘤学杂志. 2008, 22(5): 456~457
    15 P. Dario, M. C. Carrozza, L. Lencioni, et al. A Micro Robotic System for Colonoscopy. IEEE International Conference on Robotics and Automation, Albuquerque. 1997: 1567~1572
    16李祖平,张诚,谭咏梅.结肠镜单人操作技术临床运用的探讨.中国内镜杂志. 2005, 11(2): 222, 224
    17兰艳梅.结肠镜诊疗中发生严重并发症的预防及护理对策.全科护理. 2010, 8(10): 2562~2565
    18毛伟芳,顾秀珍.结肠镜并发肠穿孔的原因分析及其防治.中华消化杂志. 2006, 26(1): 61
    19张伦伟.基于光纤光栅传感的智能内窥镜形状感知系统.上海大学博士论文. 2005: 1~4
    20 G. Iddan, G. Meron, A. Glukhovsky, et al. Wireless capsule endoscopy. Nature. 2000, 405(6785): 417
    21 Given Imaging Ltd. http://www.givenimaging.com
    22 D. Ahn, P. Guturu. Meta-analysis of capsule endoscopy in patients diagnosed or suspected with esophageal varices. World Journal of Gastroenterology. 2010, 16(6): 785~786
    23张思杰,彭承琳,郑小林.基于MEMS技术的胃肠道无线内窥镜的研究进展.医疗卫生装备. 2004, 5: 26~27
    24 RF Co., Ltd. www.rfamerica.com/sayaka/index.html
    25 C. Li, B. Zhang, C. Chen, et al. OMOM capsule endoscopy in diagnosis of small bowel disease. Journal of Zhejiang University Science B. 2008, 9(11):857~862
    26重庆金山科技有限公司. www.cqjs.net
    27 A. B. Slatkin, J. Burdick. The Development of a Robotic Endoscope. IEEE/RSJ International Conference on Intelligent Robots and Systems, Pittsburgh. 1995: 162~171
    28 M. C. Carrozza, L. Lencioni, B. Magnani, et al. A Microrobot for Colonoscopy. The Seventh International Symposium on Micro Machine and Human Science, Nagoya, Japan. 1996: 223~228
    29 P. Dario, M. C. Carrozza, B. Allotta, et al. Micromechatronics in Medicine. IEEE/ASME Transactions on Mechatronics. 1996, 1(2):137~148
    30 A. Menciassi, J. H. Park, S. Lee, et al. Robotic Solutions and Mechanisms for a Semi-Autonomous Endoscope. IEEE/RSJ International Conference on Intelligent Robots and Systems, Switzerland. 2002: 1379~1384
    31 L. Phee, D. Accoto, A. Menciassi, et al. Analysis and Development of Locomotion Devices for the Gastrointestinal Tract. IEEE Transaction on Biomedical Engineering, 2002, 49(6): 613~616
    32 P. Dario, B. Hannaford, A. Menciassi. Smart Surgical Tools and Augmenting Devices. IEEE Transactions on Robotics and Automation, 2003, 19(5): 782~792
    33 B. Kim, Y. Jeong, H. Lim et al. Smart Colonoscope System. IEEE International Conference on Robotics and Automation, Switzerland. 2002: 1367~1372
    34 B. Kim, Y. Jeong, H. Lim et al. Functional Colonoscope Robot System. IEEE International Conference on Robotics and Automation, Taiwan. 2003: 1092~1097
    35 Y. P. Lee, B. Kim, M. G. Lee, et al. Locomotive Mechanism Design and Fabrication of Biomimetic Micro Robot Using Shape Memory Alloy. IEEE International Conference on Robotics and Automation, New Orleans. 2004, pp. 5007~5012
    36 B. Kim, S. Lee, J. H. Park, J. Park. Design and Fabrication of a Locomotive Mechanism for Capsule-Type Endoscopes Using Shape Memory Alloys (SMAs). IEEE Transactions on Mechatronics, 2006, 10(1): 77~86
    37 K. Ikeuchi, K. Yoshinaka, S. Hashimoto, et al. Locomotion of Medical Micro Robot with Spiral Ribs Using Mucus. The Seventh International Symposium on Micro Machine and Human Science, Nagoya, Japan. 1996: 217~222
    38 Y. Zhou, H. He, D. Gu, et al. Noninvasive method to drive medical micro-robots. Chinese Science Bulletin. 2002, 45(1): 1~4
    39周银生,贺惠农,全永昕.无损伤肠道机器人运行速度的研究.摩擦学学报. 1999, 19(4): 299~303
    40周银生,李立新,赵东福.一种新型的微型机器人.机械工程学报. 2001,37(1): 11~13
    41 K. Wang, G. Yan, P. Jiang, et al. A Wireless Robotic Endoscope for Gastrointestine. IEEE Transaction on Robotics. 2008, 24(1): 206~210
    42王坤东,颜国正,施建.微机器人结肠镜样机及离体肠道试验研究.中国生物医学工程学报. 2006, 5: 547~551
    43王坤东,颜国正.蠕动式微机器人结肠镜系统及模型.上海交通大学学报. 2006, 40(11): 1955~1959
    44 L. Phee, A. Menciassi, S. Gorini, et al. An Innovative Locomotion Principle for Minirobots Moving in the Gastrointestinal Tract. IEEE International Conference on Robotics and Automation, Washington, DC, 2002: 1125~1130
    45 I. D. Walker. Some Issues in Creating‘Invertebrate’Robots. International symposium on Adaptive Motion of Animals and Machines, Montreal, Canada. 2000
    46 I. A. Gravagne, I. D. Walker. On the Kinematics of Remotely-Actuated Continuum Robots. IEEE International Conference on Robotics and Automation, San Francisco, CA, 2000: 2544~2550
    47 G. Robinson, J.B.C. Davies. Continuum Robots-A State of the Art. IEEE International Conference on Robotics and Automation, Detroit, Michigan. 1999: 2849~2854
    48 Gravagne I A, Walker I D. Manipulability, force, and compliance analysis for planar continuum manipulators. IEEE Transactions on Robotics and Automation, 2002, 18(3): 263~273
    49 B. A. Jones, I. D. Walker. Kinematics for Multisection Continuum Robots. IEEE Transactions on Robotics. 2006, 22(1): 43~55
    50 B. A. Jones, I. D. Walker. Practical Kinematics for Real-Time Implementation of Continuum Robots. IEEE Transactions on Robotics. 2006, 22(6): 1087~1099
    51 M. W. Hannan, I. D. Walker. Kinematics and the Implementation of an Elephant’s Trunk Manipulator and other Continuum Style Robots. Journal of Robotic Systems. 2003, 20(2): 45~63
    52 Walker I D, Hannan M W. A novel‘elephant’s trunk’robot. IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Atlanta,1999: 410~415
    53 Hannan M W, Walker I D. The‘elephant trunk’manipulator, design and implementation. IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Como, Italy, 2001: 14~19
    54 McMahan W, Jones B A, Walker I D. Design and implementation of a multi-section continuum robot: Air-Octor. IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Canada. 2005:2578~2585
    55 B. A. Jones, W. McMahan, I. D. Walker. Design and analysis of a novel pneumatic manipulator. The 3rd IFAC Symposium on Mechatronic Systems, Sydney, Australia, 2004. 745~750
    56 I. D. Walker, C. Carreras, R. McDonnell, et al. Extension versus bending for continuum robots. International Journal of Advanced Robotic Systems, 2006, 3(2): 171~178
    57 M. B. Pritts, C. D. Rahn. Design of an Artificial Muscle Continuum Robot. IEEE International Conference on Robotics and Automation, New Orleans, LA. 2004: 4742~4746
    58 Jones B A, McMahan W, Chitrakaran V, et al. OctArm - A soft robotic manipulator. IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, 2007: 2569
    59 B. A. Jones, I. D. Walker. Three-Dimensional Modeling and Display of Continuum Robots. IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 2006: 5872~5877
    60 W. McMahan, V. Chitrakaran, M. Csencsits, et al. Field trials and testing of the OctArm continuum manipulator. IEEE International Conference on Robotics and Automation. Orlando, Florida, 2006: 2336~2341
    61 B. A. Jones, I. D. Walker. Limiting-case analysis of continuum trunk kinematics. IEEE International Conference on Robotics and Automation. Roma, Italy, 2007: 1363~1368
    62 N. Simaan. Snake-Like Units Using Flexible Backbones and Actuation Redundancy for Enhanced Miniaturization. IEEE International Conference on Robotics and Automation. Barcelona, Spain. 2005: 3012~3017
    63 K. Xu, N. Simaan. A Investigation of the Intrinsic Force SensingCapabilities of Continuum Robots. IEEE Transactions on Robotics, 2008, 24(3): 576~587
    64 K. Xu, N. Simaan. Actuation Compensation for Flexible Surgical Snake-like Robots with Redundant Remot Actuation. IEEE International Conference on Robotics and Automation. Orlando, Florida, 2006: 4148~4154
    65 D. Reynaerts, J. Peirs, H. V. Brussel. Shape Memory Micro-Actuation for a Gastro-Intestine Intervention System. Sensors and Actuators, 1999, 77: 157~166
    66 J. Peirs, H. V. Brussel, D. Reynaerts, et al. A Flexible Distal Tip with Two Degrees of Freedom for Enhanced Dexterity in Endoscopic Robot Surgery. The 13th Micromechanics Europe Workshop, Sinaia, Romania. 2002: 271~274
    67 D. B. Camarillo, C. F. Milne, C. R. Carlson, et al. Mechanics modeling of tendon-driven continuum manipulators. IEEE Transactions on Robotics, 2008, 24(6): 1262~1273
    68 D. B. Camarillo, C. R. Carlson, J. K. Salisbury. Configuration tracking for continuum manipulators with coupled tendon drive. IEEE Transactions on Robotics, 2009, 25(4): 798~808
    69 D. B. Camarillo, K. E. Loewke, C. R. Carlson, et al. Vision Based 3-D Shape Sensing of Flexible Manipulators, IEEE International Conference on Robotics and Automation. Pasadena, CA, 2008: 2940~2947
    70 G. Chen, M. T. Pham, T. Redarce. Sensor based guidance control of a continuum robot for a semi autonomous colonoscopy. Robotics and Autonomous Systems, 2009, 57:712~722
    71 G. Chen, M. T. Pham, T. Redarce. A Semi-autonomous Micro-robotic System for Colonoscopy. IEEE International Conference on Robotics and Biomimetics, Bangkok, Thailand. 2009: 703~708
    72 R. J. Webster, J. M. Romano, N. J.Cowan. Mechanics of precurved-tube continuum robot. IEEE Transactions on Robotics, 2009, 25(1):67~78
    73 D. C. Rucker, R. J. Webster. Parsimonious Evaluation of Concentric-tube Continuum Robot Equilibrium Conformation. IEEE Transactions on Biomedical Engineering, 2009, 56(9): 2308~2311
    74 R. J. Webster, J. M. Romano, N. J. Cowan. Kinematics and Calibration ofActive Cannulas. IEEE International Conference on Robotics and Automation. Pasadena, CA, 2008: 3888~3895
    75 D. C. Rucker, B. A. Jones, R. J. Webster. A Geometrically Exact Model for Externally Loaded Concentric-Tube Continuum Robots. IEEE Transactions on Robotics, 2010, 26(5):769~780
    76 D. Choi, B. Yi, W. Kim. Design of a Spring Backbone Micro Endoscope. IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, CA. 2007: 1815~1821
    77 R. O. Buckingham. Snake arm robots. Industrial Robot, 2002, 29(3): 242~245
    78 R. O. Buckingham, A. C. Graham. Snaking around in a nuclear jungle. Industrial Robot, 2005, 32(2): 120~127
    79 R. O. Buckingham, A. C. Graham. Dexterous manipulators for nuclear inspection and maintenance case study. The 1st International Conference on Applied Robotics for the Power Industry, Montréal, Canada. 2010: 1~6
    80张东铭.大肠肛门局部解剖与手术学.安徽科学技术出版社, 2006: 37~40
    81成令忠,王一飞,钟翠平.组织胚胎学——人体发育和功能组织学.上海科学技术文献出版社, 2003: 232~236
    82马官营.人体肠道诊查微型机器人系统及其无线供能技术研究.上海交通大学博士论文. 2008: 17~18
    83 I. D. Walker, D. M. Dawson, T. Flash, et al. Continuum robot arms inspired by cephalopods. The SPIE Conference on Unmanned Ground Vehicle Technology VII, Orlando, FL. 2005: 303~314
    84 S. B. Niku.机器人学导论——分析、系统及应用.孙富春,朱纪洪,刘国栋.电子工业出版社, 2006: 26
    85肖滔.肠道机器人的运动学与通过性研究.哈尔滨工业大学硕士论文. 2010: 27~28
    86许冯平,邓宗全.管道机器人在弯道处通过性的研究.机器人. 2004, 26(2): 155~160
    87 A. Brunete, E.Gambao, J. E. Torres, et al. A 2 DoF Servomotor-based Module for Pipe Inspection Modular Micro-robots. IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China. 2006:1329~1334
    88 K. Suzumori, S. Wakimoto, M. Takata. A Miniature Inspection Robot Negotiating Pipes of Widely Varying Diameter. IEEE International Conference on Robotics and Automation, Taiwan. 2003: 2735~2740
    89 B. Murugendran, A. A. Transeth, S. A. Fjerdingen. Modeling and Path-following for a Snake Robot with Active Wheels. IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis. 2009: 3643~3650
    90 G. Chen, M.T. Pham, T. Redarce. Sensor-based guidance control of a continuum robot for a semi-autonomous colonoscopy. Robotics and Autonomous System, 2009, 57(6): 712~722
    91 G. Chen, M.T. Pham, T. Redarce. A Guidance Control Strategy for Semi-autonomous Colonoscopy Using a Continuum Robot. Lecture Notes in Control and Information Sciences. 2008, 370: 63~78
    92罗亚中,袁端才,唐国金.求解非线性方程组的混合遗传算法.计算力学学报. 2005, 22(1): 109~114
    93王建,陈颖,沈沉.基于逆Broyden拟牛顿法的分布式暂态稳定仿真算法.电力系统自动化. 2010, 34(5): 7~12
    94桂胜华,周岩.拉格朗日-拟牛顿法解约束非线性规划问题.同济大学学报(自然科学版). 2007, 35(4): 556~561
    95吴勃英.数值分析原理.科学出版社. 2004: 162~168
    96冯元桢.活组织的力学特性.湖南科学技术出版社. 1983: 247~258
    97郝冬梅,刘志诚,李海云,等.生物软组织力学特性二维动态测试系统的研究.北京生物医学工程. 2001, 20(4): 285~287
    98曾衍钧,许传青,杨坚,等.软组织的生物力学特性.中国科学(G辑). 2003, 33(1): 1~5
    99何斌,杨灿军,陈鹰,等.粘弹性肠道能动性模型的建立与数值模拟.中国生物医学工程学报. 2003, 22(3): 267~273
    100周丁华,赵玮,闫涛,等.人体肠道生物力学特性的研究.生物医学工程学杂志. 2006, 23(5): 1017~1019
    101 J. H. Dtorkhlom, M. D. G. E. Villadsen, M. D. S. L. Jensen, et al. Passive Elastic Wall Properties in Isolated Guinea Pig Small Intestine. Digestive Diseases and Science. 1995, 40(5): 976~982
    102 H. Gregersen, G. Kassal, E. Pallencaoa, et al. Morphometry and StrainDistribution in Guinea-pig Duodenum with Reference to the Zero-stress State. American Journal of Physiology. 1997, 273:865~874
    103吴江红,程西云,韦云隆,等.猪十二指肠和空肠生物力学性能特性.重庆大学学报. 2001, 24(2): 9~11
    104 H. D. Hoeg, A. B. Slatkin, J. W. Burdick, et al. Biomechanical Modeling of the Small Intestine as Required for the Design and Operation of a Robotic Endoscope. IEEE International Conference on Robotics and Automation, San Francisco. 2000: 1599~1606
    105何斌.医用微型机器人动力学建模及其行为智能控制研究.浙江大学博士学位论文. 2001, 96~97
    106 M. H. Raibert, J. J. Craig. Hybrid position/force control of manipulator. Transactions of the ASME Journal of Dynamic System, Measurement, and Control. 1981, 102: 126~133
    107 F. Shadpey, H. A. Talebi, J. Jayender. A Robust Position and Force Control Strategy for 7-DOF Redundant Manipulators. IEEE/ASME Transactions on Mechatronics, 2009, 14(5): 575~589
    108李二超,李战明,李炜.未知环境下机器人模糊滑模阻抗控制.电气自动化. 2010, 32(4): 12~16
    109 N. Hogan. Impedance control-An approach to manipulation. I-Theory, II-Implementation, III -Applications. Transactions of the ASME Journal of Dynamic System, Measurement, and Control, 1985, 107: 1~24
    110王岚,李趁前,刘艳秋.基于力阻抗控制的手臂康复机器人实验研究.中国机械工程. 2008, 19(13): 1518~1522
    111孙金凤,姜力.基于关节力矩传感器的灵巧手指的阻抗控制.传感器与微系统. 2008, 27(7): 66~74
    112殷跃红,朱剑英,尉忠信.机器人力控制研究综述.南京航空航天大学学报. 1997, 2: 220~230