水稻生长生理特征信息快速无损获取技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精细农业是21世纪全球农业发展的必然趋势,是实现农业低耗、高效、优质与安全的重要途径。它的技术核心是农田信息的获取、信息的管理与决策及变量作业三个部分。其中如何快速实时地获取土壤和作物的状态信息,是开展精细农业最为基本和关键的问题,也是精细农业研究的一个热点和难点。
     基于国内外在农作物方面的研究成果,本论文以水稻为对象进行了详细深入的研究。通过光谱技术与多光谱成像技术的有机结合实现了对水稻生长、生理信息的采集,并运用化学计量学方法和数据挖掘技术对采集数据进行分析,实现了水稻品质信息、养分需求信息、病虫害信息的全方位检测和诊断,为水稻等田间作物的生长、生理信息无损检测仪器的开发奠定了较为扎实的理论基础。
     本论文通过二次正交回归设计和设置不同氮肥梯度的方法进行了水稻不同施肥状态的田间试验,采用可见-近红外光谱技术研究了水稻冠层及叶片SPAD值和氮素含量与水稻冠层和叶片光谱反射特性间的关系;应用光谱技术和数据挖掘技术建立了水稻叶片叶绿素含量及微量元素含量(铁、锌)的数学模型;通过分析稻瘟病病变叶片的光谱特征信息,进行了水稻稻瘟病等级判别等的研究;研究了水稻植株及叶片多光谱图像与SPAD值和氮素含量间的关系;通过大量试验分析证实了采用水稻冠层光谱信息反演土壤养分(氮、磷、钾)信息的可行性。此外,还探讨了辐照处理对稻谷的光谱反射特性的影响,并结合中红外光谱技术对辐照谷物的内部成分含量(直链淀粉和蛋白质)作了深入研究,对水稻品质的无损检测提供了依据。
     本论文的主要研究成果和结论如下:
     1)首次采用化学计量学方法结合特征波段选取方法,提取能够反演水稻冠层及叶片SPAD值的敏感波段,为仪器的开发奠定基础。对于水稻冠层SPAD值的预测模型,非线性的偏最小二乘支持向量机(PLS-LS-SVM)模型具有较高的预测精度。对水稻叶片SPAD值的预测模型,基于全波段的预测效果最好。文章将预处理方法与特征波段提取及数据压缩技术结合,建立水稻叶片叶绿素含量的预测模型,并提取敏感波段反演叶绿素含量信息。其中直接信号校正算法(DOSC)结合连续投影算法(SPA)的最优波长选择方法要优于多元散射校正(MSC)结合SPA的波长选择方法。
     2)将基于独立组分分析的特征波段提取方法应用于水稻冠层及叶片氮素含量与光谱反射特性关系的研究中,建立了不同波段水稻冠层氮素含量的偏最小二乘(PLS)模型,并通过试验证实了基于全波段的水稻冠层氮素预测模型的效果最好。基于ICA-LS-SVM模型的水稻叶片氮含量研究,获取了叶片氮含量的敏感波段,为仪器开发提供了理论依据。采用PLS建立了全波段、多波段和多波长的水稻稻瘟病病变叶片的鉴别模型,结果显示:采用全波段建模,模型的鉴别率最高,高于采用特征波段和特征波长所建的模型。试验还通过对病变叶片建立ICA-LS-SVM模型,达到了86.7%的鉴别率。
     3)首次将光谱技术结合数据挖掘技术应用于水稻叶片微量元素含量(铁、锌)的研究。采用偏最小二乘(PLS)建立了全波段、多波段和多波长的水稻叶片微量元素铁和锌的预测模型。对于微量元素铁,基于全波段的模型预测精度要高于采用多波段的模型,高于采用多波长的模型。对于微量元素锌,基于多波长的模型预测精度高于全波段的模型,高于采用多波段的模型。建立了基于ICA-LS-SVM模型的水稻微量元素铁和锌的预测模型,结果显示,采用独立组分分析(ICA)结合非线性LS-SVM回归模型的预测精度高于PLS-LS-SVM模型,高于线性PLS模型。
     4)研究了利用冠层光谱特性评价土壤养分信息,包括氮、磷、钾信息的可行性。基于PLS的模型对土壤养分(氮、磷、钾)的预测精度拔节期高于分蘖期,其中氮含量的预测精度高于磷含量,钾的预测效果相对较差。非线性PLS-LS-SVM模型建立的分蘖期及拔节期土壤氮、磷、钾的预测结果要优于ICA-LS-SVM.PLS-BPNN及PLS的模型结果。基于植被指数对土壤氮素含量的研究,得到模型的反演效果好于ICA-LS-SVM模型。
     5)采用多光谱成像技术建立植被指数与水稻植株及叶片SPAD值和氮素含量间的关系模型。采用的植被指数,包括有归一化植被指数、绿波归一化植被指数和比值植被指数。其中对叶片SPAD值的预测,模型的相关系数为0.8756;植株拔节期SPAD值的预测结果好于分蘖期;植株分蘖期氮素含量的预测结果好于拔节期的预测精度。
     6)利用光谱技术建立稻谷年份的判别模型,并对经辐照处理后谷物的辐照剂量进行预测,同时建立辐照谷物内部成分(直链淀粉和蛋白质)的预测模型。基于独立组分分析(ICA)结合BP神经网络模型(ICA-BPNN)对不同年份谷物的鉴别率达到100%。采用LS-SVM模型建立谷物不同辐照剂量的预测模型,预测结果优于PLS模型。对辐照后谷物直链淀粉含量的预测,基于近红外光谱模型的预测结果优于中红外区域的模型,LS-SVM模型优于PLS模型的预测结果。对辐照后谷物蛋白质含量的预测,基于中红外光谱模型的预测结果优于近红外区域的模型,LS-SVM模型优于PLS模型的预测结果。
Precision agriculture is the inevitable trend for the development of agricultural in the 21st century, and it is an important way for achieving low energy consumption, high efficiency, high quality and security. The key technology includes field information acquisition, information management and decision-making, and the feature of variable operating, which means precision agriculture can be processed relying on the existence of in-field variability. So far, how to quickly catch real-time status information of soil and crops growth information is one of the most critical issues.
     Based on the research on the application of spectroscopy in biosystem engineering field, this dissertion focuses on the spectral investigation on rice concerning the quality, nutrient and disease, etc. And validate the feasibility of designing non-destructive equipment for the field application for plant monitoring and diagnosis.
     This thesis designed an experimental plan regarding the methodology of quadratic orthogonal regression and the set-up of differential level of fertilizers, especially the nitrogen. The visible-near infrared spectroscopy was adopted to build the relationship between the reflectance characteristics of rice canopy or leaf and the SPAD values or nitrogen content of rice canopy or leaf, and the relationship between the reflectance characteristics of rice leaf and the chlorophyll content or trace element content of rice leaf. The spectral characteristic of infected rice leaf was also evaluated concerning the relation between the disease and shortage of nutrient. The thesis later conducted field experiments to prove the feasibility of using rice canopy spectral information to predict soil nutrients (nitrogen, phosphorus, kalium). The correlation between the SPAD value or nitrogen content with the multi-spectral images of rice plant and leaf was also studied. In addition, a preliminary study of the irradiation treatment on the rice reflectance characteristics was studied, and the internal components for irradiated grain (amylase and proteins) was predicted combined with the mid-infrared spectroscopy.
     The conclusions for this thesis are as follows:
     1) With the methodology of Chemometrics combined with the sensitive waveband acquisition, the thesis built the model for SPAD value prediction for canopy and leaf of rice. The prediction results showed that, with respect to SPAD values of rice canopy, the prediction accuracy for nonlinear PLS-LS-SVM model is higher, while for the prediction model for SPAD value of rice leaf, the model with the full wavelengths is better. Taking the advantage of preprocessing method and sensitive waveband acquisition together with the data compression, the thesis developed the model for predicting chlorophyll content. The optimal wavelength selection method combined DOSC with SPA is more accurate than MSC combined with SPA for chlorophyll content prediction.
     2) Based on the ICA, the relationship between the reflectance characteristics and the nitrogen content of rice canopy or leaf was investigated. The prediction model for nitrogen content of rice canopy was established, and the model with the full wavelengths has the highest prediction accuracy. The prediction model for the nitrogen content of rice leaf, the prediction accuracy based on ICA-LS-SVM model is higher and can be taked as preliminary reference for machine development. PLS models were established based on the full wavelengths, characteristic wavebands, and characteristic wavelengths to distinguish the infected rice leaves. The results showed that, the model with full wavelengths had the highest identification rate. The ICA-LS-SVM model built for identification of infected leaf can be as high as 86.7%.
     3) The thesis firstly took research on the trace elements investigation with technology of spectroscopy and data mining. The prediction model based on full wavelengths, characteristic wavebands and characteristic wavelengths were established by the PLS model. For the trace elements Fe, the prediction accuracy based on full wavelengths was higher than using characteristic wavebands, higher than model with characteristic wavelengths. For the trace elements Zn, the model based on characteristic wavelengths was higher than full wavelengths model, and higher than using characteristic wavebands. The prediction model for trace elements Fe and Zn based on the ICA-LS-SVM models were established. It indicated that, the prediction accuracy using independent component analysis (ICA) combined with nonlinear LS-SVM regression model higher than PLS-LS-SVM model, higher than linear PLS model.
     4) The feasibility of using rice canopy spectral information to evaluate soil nutrients (nitrogen, phosphorus, kalium) was investigated. The prediction accuracy for soil nutrients (nitrogen, phosphorus, kalium) based on PLS model in rice booting stage was higher than in tillering stage. The prediction accuracy for nitrogen content is higher than phosphorus content and the results for kalium is relatively poor. The prediction results for soil nitrogen, phosphorus and kalium in rice tillering and booting stage showed, models based on nonlinear PLS-LS-SVM is better than ICA-LS-SVM, PLS-BPNN and PLS models. The prediction model for soil nitrogen content based on vegetation index is better than ICA-LS-SVM model.
     5) The relationship between the vegetation index and the SPAD values or nitrogen content of rice canopy or leaf was studied based on the multi-spectral imaging technique. The vegetation index used is the normalized difference vegetation index, green normalized vegetation index and ratio vegetation index. For the SPAD value of rice leaf, the correlation coefficient is reached 0.8756 for the prediction model. It showed that for SPAD value of the rice plant, the prediction results in rice booting stage was better than the tillering stage. For the nitrogen content of rice plant, the prediction accuracy in rice tillering stage was higher than the booting stage.
     6) The age discrimination model for rice was built and evaluated, and the radiation dose prediction for grain was also investigated. The prediction model for internal content (amylase and protein) of irradiated grain was studied. The differential rate of 100% was reached for the age prediction of grain based on the independent component analysis (ICA) combine with BP neural network model. The results for different irradiation doses prediction of grain showed that LS-SVM model was better than PLS model. For the amylase content prediction model of irradiated grain, models based on near infrared spectroscopy was better than the mid-infrared spectroscopy, and the prediction model with LS-SVM was superior to PLS model. For the protein content prediction model of irradiated grain, models based on mid-infrared spectroscopy was better than the near infrared spectroscopy, and the prediction model with LS-SVM was also superior to PLS model.
引文
1. Ahmad I.S., Reid J.F. Evaluation of color representations for maize image [J]. Agricultural Engineering Research,1996,63:185-196.
    2. Aichi H., Fouad Y., Walter C., et al.Regional predictions of soil organic carbon content from spectral reflectance measurements [J]. Biosystems Engineering,2009,104(3): 442-446.
    3. Bartholomeus H.M., Schaepman M.E., Kooistra L., et al. Spectral reflectance based indices for soil organic carbon quatification [J]. Geoderma,2008,145(1-2):28-36.
    4. Bausch W.C., Duke H.R. Remote sensing of plant nitrogen status in corn [J]. Transactions of the ASAE,1996,39:1869-1875.
    5. Blackmer T.M., Schepers J.S. Use of a chlorophyll meter to monitor nitrogen status and schedule fertigation for corn [J]. Journal of Production Agriculture,1994,8(1):56-60.
    6. Blackmer T.M., Schepers J.S., Varvel G.E. Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies [J]. Agronomy Journal,1996,88:1-5.
    7. Bilgili A.V., van Es H.M., Akbas F., et al. Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey [J]. Journal of Arid Environments,2010,74(2):229-238.
    8. Blanco M., Coello J., Montoliu I., et al. Orthogonal signal correction in near infrared calibration [J]. Anlytica Chimica Acta,2001,434:125-132.
    9. Bullock D.G., Anderson D.S. Evaluation of the Minolta SPAD-502 chlorophyll meter for nitrogen management in corn [J]. Journal of Plant Nutrition,1998,21:741-755.
    10. Calera A., Martinez C., Melia J. A procedure for obtaining green plant cover:relation to NDVI in a case study for barley [J]. International Journal of Remote Sensing,2001,22(17): 3357-3362.
    11. Card D.H., Peterson D.J., Matson P.A. Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy [J]. Remote Sensing of Environment,1988,26: 123-147.
    12. Carlos C., Lianne M.D., Pierre D. Inter-relationships of applied nitrogen, SPAD, and yield of leafy and non-leafy maize genotypes [J]. Journal of plant nutrition,2001,24(8): 1173-1194.
    13. Carreres R., Sendra J., Ballesteros R. Effects of preflood nitrogen rate and midseason nitrogen timing on flooded rice [J]. Journal of Agricultural Science,2000,134:379-390.
    14. Casady W.W., Singh N., Costello T.A. Machine vision for measurement of rice canopy dimensions. Transactions of the ASAE,1996,39(5):1891-1898.
    15. Cataldo D.A., Haroon M., Schrader L.E., et al. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid [J]. Communications in Soil Science and Plant Analysis,1975,6(1):71-80.
    16. Champagne E.T., Bett-Garber K.L., Grimm C.C., et al. Near-infrared reflectance analysis for prediction of cooked rice texture [J]. Cereal Chemistry,2001,78(3):358-362.
    17. Chang C.W., Laird D.A. Near-infrared reflectance spectroscopy principal component regression analyses of soil properties [J]. Soil Science Society of America Journal,2000, 65:480-490.
    18. Chappelle E.W., Kim M.S., McMurtrey J.E. Ratio analysis of reflectance spectra (PARS): an algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves [J]. Remote Sensing of Environment,1992,39:239-247.
    19. Chen J., Wang X.Z. A new approach to near-infrared spectral data analysis using independent component analysis [J]. Journal of Chemical Information and Computer Science,2001,41:992-1001.
    20. Curran P.J., Dungan J.I. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine [J]. Tree physiology,1990,7:33-38.
    21. Danson F.M. Red edge response to forest leaf area index [J]. International Journal of Remote Sensing,1995,16(1):183-188.
    22. Daughtry C.S.T., Walthall C.L., Kim M.S., et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance [J]. Remote sensing of environment,2000, 74:229-239.
    23. Elvidge C.D., Chen Z.K. Comparison of broad-band and narrow-band red and near-infrared vegetation indices [J]. Remote Sensing of Environment,1995,54:38-48.
    24. Eriksson L., Trygg J., Johansson E., et al. Orthogonal signal correction, wavelet analysis, and multivariate calibration of complicated process fluorescence data [J]. Anlytica Chimica Acta,2000,420:181-195.
    25. Evans J.R. Photosynthesis and nitrogen relationships in leaves of C3 plants [J]. Oecologia, 1989,78:9-19.
    26. Evans J.R., Seemann J.R. Difference between wheat genotypes in specific activity of ribulose-1,5-bisphosphate carboxylase and the relationship to photosynthesis [J]. Plant physiology,1984,74:759-765.
    27. Everitt J.H., Pettit R.D., Alaniz M.A. Remote sensing of broom snakeweed (Gutierrezia sarotbrae) and spiny aster(Aster spinosus)[J]. Weed Science,1987,35(2):295-302.
    28. Fang L.M., Feng A.M., Lin M., Rapid prediction of total organic carbon content and CEC in soil using visible/Near infrared spectroscopy [J]. Spectroscopy and Spectral Analysis, 2010,30(2):327-330.
    29. Fearn T. On orthogonal signal correction [J]. Chemometrics and Intelligent Laboratory Systems,2000,50:47-52.
    30. Fernandez S., Vidal D., Simon E., et al. Radiometric characteristics of Triticium cv. Astral under water and nitrogen stress [J]. International Journal of Remote Sensing,1994,15(9): 1867-1884.
    31. Filella I., Penuelas J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status [J]. International Journal of Remote Sensing,1994, 15(7):1459-1470.
    32. Fourty T.H., Baret F., Jacquemound S., et al. Leaf optical properties with explicit description of its biochemical composition direct and inverse problems [J]. Remote Sensing of Environment,1996,56:104-117.
    33. Galvao L.S., Pizarro M.A., Epiphanio J.C.N. Variations in reflectance of tropical soils: spectral-chemical composition relationships from AVIRIS data [J]. Remote Sensing of Environment,2001,75:245-255.
    34. Galvao L.S., Vitorello I., Pizarro M.A. An adequate band positioning to enhance NDVI contrasts among green vegetation, senescent biomass, and tropical soils [J]. International Journal of Remote Sensing,2000,21(9):1953-1960.
    35. Gitelson A.A., Kaufman Y.J., Merzlyak M.N. Use of green channel in remote sensing of global vegetation from EOS-MODIS [J]. Remote Sensing of Environment,1996,58: 289-298.
    36. Hacisalihoglu G, Larbi B., Settles A.M. Near-infrared reflectance spectroscopy predicts protein, starch, and seed weight in intact seeds of common bean (Phaseolus vulgar is L.) [J]. Journal of Agricultural and Food Chemistry,2010,58(2):702-706.
    37. Hansen P.M., Schjoerring J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression [J]. Remote sensing of Environment,2003,86:542-553.
    38. He Y., Song H.Y., Pereira A.G., et al. A new approach to predict N, P, K and OM content in a loamy mixed soil by using near infrared reflectance spectroscopy [J]. Lecture Notes in Computer Scinece,2005,3644:859-867.
    39. Hinzman L.D., Bauer M.E., Daughtry C.S.T. Effects of nitrogen fertilization on growth and reflectance characteristics of winter wheat [J]. Remote Sensing of Environment,1986,19: 47-61.
    40. Horler D.N.H., Dockray M., Barber J., et al. The red edge of plant leaf reflectance [J]. International Journal of Remote Sensing,1983,4:273-288.
    41. Hoyer P.O., Hyvarinen A. Independent component analysis applied to feature extraction from colour and stereo images [J]. Network:Computation in Neural Systems,2000, 11(3):191-210.
    42. Huete A.R., Liu H.Q., Batchily K., et al. A comparison of vegetation indices over a global set of TM images for EOS-MODIS [J]. Remote Sensing of Environment,1997,59: 440-451.
    43. Hummel J.W., Sudduth K.A., Hollinger S.E. Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor [J]. Computer and Electronics in Agriculture,2001,32:149-165.
    44. Hyvarinen A. Sparse code shrinkage:Denoising of nongaussian data by maximum likelihood estimation [J]. Neural Computation,1999,11(7):1739-1768.
    45. Hyvarinen A., Hoyer P.O. Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces [J]. Neural Computation,2000,12(7):1705-1720.
    46. Iida T.N., Noguchi C.K., Ishii H.T., et al. Nitrogen stress sensing system using machine vision for precision farming. Part 1. Measurement system overview and fundamental experiments [J]. Journal of the Japanese Society of Agricultural Machinery,2000,62(2): 87-93.
    47. Isaksson T., Naes T. The effect of multiplicative scatter correction and linearity improvement on NIR spectroscopy [J]. Applied Spectroscopy,1988,42:1273-1284.
    48. Jetter K., Depczynski U., Molt K., et al. Principals and applications of wavelet transformation of chemometrics [J]. Analytica Chimica Acta,2000,420(2):169-180.
    49. Kim S.S., Rhyu M.R., Kim J.M., et al. Authentication of rice using near-infrared reflectance spectroscopy [J]. Cereal Chemistry,2003,80(3):346-349.
    50. Kokaly R.F. Investigating a physical bias for spectroscopic estimates of leaf nitrogen concentration [J]. Remote Sensing of Environment,2001,75:153-161.
    51. Kwon Y.K., Cho R.K. Identification of rice variety using near infrared spectroscopy [J]. Journal of Near Infrared Spectroscopy,1998,6:67-73.
    52. Labus M.P., Nielsen G.A. Wheat yield estimates using multi-temporal NDVI satellite imagery [J]. International Journal of Remote Sensing,2002,23:4169-4180.
    53. Lee W.S., Mylavarapu R.S., Choe J.S., et al. Study on soil properties and spectral characteristics in Florida [C].2001, ASAE paper,011179,1-12.
    54. Li M.Z., Sasao A., Shibusawa S. Soil parameters estimation with NIR spectroscopy [J]. Journal of the Japanese Society of Agricultural Machinery,2000,62:111-120.
    55. Li Y., Demetriades-Shah T.H., Kanemasu E.T., et al. Use of second derivatives of canopy reflectance for monitoring prairie vegetation over different soil backgrounds [J]. Remote Sensing of Environment,1993,44:81-87.
    56. Masoni A., Ercoli L., Mariotti M. Spectral properties of leaves deficient in iron, sulfur, magnesium, and manganese [J]. Agronomy Journal,1996,88:937-943.
    57. Milton N.M., Eiswerth B.A., Ager C.M. Effect of phosphorous deficiency on spectral reflectance and morphology of soybean plants [J]. Remote Sensing of Environment,1991, 36:121-127.
    58. Moron A., Cozzolino D. Measurement of phosphorus in soils by near infrared reflectance spectroscopy:Effect of reference method on calibration [J]. Communications in soil science and plant analysis,2007,38(15-16):1965-1974.
    59. Muller E., Decamps H. Modeling soil moisture reflectance [J]. Remote Sensing of Environment,2000,76:173-180.
    60. Noh H., Zhang Q., Han S., et al. Dynamic calibration and image segmentation methods for multispectral imaging crop nitrogen deficiency sensors [J]. Transactions of the ASAE, 2005,48(1):393-401.
    61. Norris K.H., Barnes R.F., Moore J.E., et al. Prediction forage quality by NIRS [J]. Journal of Animal Science,1976,43(4):889-897.
    62. Osborne B.G., Fearn T. Near Infrared Spectroscopy in Food Analysis. Longman Scientific and Technical, Essex, U.K.,1986.
    63. Osborne S.L., Schepers J.S., Francis D.D., et al. Detection of phosphorus and nitrogen deficiencies in corn using spectral radiance measurements [J]. Agronomy Journal,2002,94: 1215-1221.
    64. Peng S., Garcia F.V., Laza R.C. Adjustment for specific leaf weight improves chlorophyll meter's estimate of rice leaf nitrogen concentration [J]. Agronomy Journal,1993,85: 987-990.
    65. Pettygrove G.S., Kearney T.E., Kite S.W., et al. Tissue analysis to determine nitrogen status of wheat in California. In:1981 Agronomy Abstracts. ASA, Madison, WI.p 187.
    66. Sasic S., Ozaki Y. Short-wave near-infrared spectroscopy of biological fluids.1. Quantitative analysis of fat, protein, and lactose in raw milk by partial least-squares regression and band assignment [J]. Analytical Chemistry,2001,73:64-71.
    67. Shao X.G., Wang G.Q., Wang S.F., et al. Extraction of mass spectra and chromatographic profiles from overlapping GC/MS signal with background [J]. Analytical Chemistry,2004, 76(17):5143-5148.
    68. Sirisomboon P., Hashimoto Y., Tanaka M. Study on non-destructive evaluation methods for defect pods for green soybean processing by near-infrared spectroscopy [J]. Journal of Food Engineering,2009,93:502-512.
    69. Starr C., suttle J., Morgan A.G., et al. A comparision of sample preparation and calibration techniques for the estimation of nitrogen, oil and glucosinolate content of rapeseed by near infrared spectroscopy [J]. Journal of Agricultural Science, Cambridge 1985,104:317-323.
    70. Stone M.L., Soile J.B., Raun W.R., et al. Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat [J]. Transactions of ASAE,1996,39: 1623-1631.
    71. Sudduth K.A., Hummel J. Soil organic matter, CEC, and moisture sensing with a portable NIR spectrophotometer [J]. Transactions of the ASAE,1993a,36(6):1571-1582.
    72. Sudduth K.A., Hummel J. Portable near-infrared spectrophotometer for rapid soil analysis [J]. Transactions of the ASAE,1993b,36(1):185-193.
    73. Suykens J.A.K., Vanderwalle J. Least squares support vector machine classifiers [J]. Neural Processing Letters,1999,9 (3):293-300.
    74. Takebe M., Ypneyama T., Inada K., et al. Spectral reflectance ratio of rice canopy for estimating crop N status [J]. Plant Soil,1990,122:295-297.
    75. Tallada J.G., Palacios-Rojas N., Armstrong P.R. Prediction of maize seed attributes using a rapid single kernel near infrared instrument [J]. Journal of Cereal Science,2009,50(3): 381-387.
    76. Tang H.S., Xue S.T., Chen R., et al. Online weighted LS-SVM for hysteretic structural system identification [J]. Engineering Structures,2006,28 (12):1728-1735.
    77. Thomas J.R., Oerther D.F. Estimating nitrogen content of sweet pepper leaves by reflectance measurements [J]. Agronomy Journal,1972,64:11-13.
    78. Trygg J., Wold S. PLS regression on wavelet compressed NIR spectra [J]. Chemometrics and Intelligent Laboratory Systems,1998,42 (1-2):209-220.
    79. Tucker C.J. Red and photographic infrared linear combinations for monitoring vegetation [J]. Remote Sensing of Environment,1979,8:127-150.
    80. Tumbo S.D., Wagner D.G., Heinemann P.H. Hyperspectral-based neural network for predicting chlorophyll status in corn [J]. Transactions of the AS AE,2002,45(3):825-832.
    81. Walburg G, Bauer M.E., Drughtry C.S.T., et al. Effects of nitrogen on the growth, yield, and reflectance characteristics of corn canopies [J]. Agronomy Journal,1982,74:677-683.
    82. Westerhuis J.A., De Jong S., Smilde A.K. Direct orthogonal signal correction [J]. Chemometrics and Intelligent Laboratory Systems,2001,56(1):13-25.
    83. Williams P.C., Preston K.P. Determination of amino acids in wheat and barely by NIRS [J]. Journal of Food Science,1984,49(1):17-20.
    84. Wood C.W., Reeves D.W., Himclrick D.G. Relationships between chlorophyll meter reading arid leaf chlorophyll concentration, N status, and crop yield:A review [J]. Proceeding Agronomy Society of New Zealand,1993,23:1-9.
    85. Wold S., Antti H., Lindgren F., et al. Orthogonal signal correction of near-infrared spectra [J]. Chemometrics and Intelligent Laboratory Systems,1998,44:175-185.
    86. Yoder B.J., Pettigrew-Crosby R.E. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra 400-2500 nm at leaf and canopy scales [J]. Remote Sensing of Environment,1995,53(3):199-211.
    87. Zhang H., Paliwal J., Jayas D.S., et al. Classification of fungal infected wheat kernels using near-infrared reflectance hyperspectral imaging and support vector machine[J]. Transactions of the ASAE,2007,50(5):1779-1785.
    88. Zhou Q., Sun S.Q., Yu L., et al. Sequential changes of main components in different kinds of milk powders using two-dimensional infrared correlation analysis [J]. Journal of Molecular Structure,2006,799:77-84.
    89.毕贤,李通化,吴亮.独立组分分析在红外光谱分析中的应用[J].高等学校化学学报,2004,25(6):1023-1027.
    90.陈斌,孟祥龙,王豪.连续投影算法在近红外光谱校正模型优化中的应用[J].分析测试学报,2007,26(1):66-69.
    91.陈达,王芳,邵学广,等.近红外光谱与烟草样品总糖含量的非线性模型研究[J].光谱学与光谱分析,2004,24(6):672-674.
    92.陈殿华.中国辐照食品的产业化发展[J].核农学报,2004,18(2):81-88.
    93.程高峰,张佳华,李秉柏,等.不同温度处理下水稻高光谱及红边特征分析[J].江苏农业学报,2008,24(5):573-580.
    94.程一松,胡春胜,王成,等.养分胁迫下的夏玉米生理反应与光谱特征[J].资源科学,2001,23(6):54-58.
    95.崔继林,易琼华.陈永康水稻高产经验研究(第一集)[M].上海:上海科技出版社,1964,30.
    96.冯洁,廖宁放,赵波,等.多光谱成像技术诊断植物病虫害的人工神经网络模型[J].光学技术,2008,34(5):717-722.
    97.冯洁,廖宁放,赵波,等.常见黄瓜病害的多光谱诊断[J].光谱学与光谱分析,2009,29(2):467-470.
    98.冯雷,方慧,周伟军,等.基于多光谱视觉传感技术的油菜氮含量诊断方法研究[J].光谱学与光谱分析,2006,26(9):1749-1752.
    99.冯新沪,史永刚.近红外光谱及其在石油产品分析中的应用[M].北京:中国石油化工出版社,2002.
    100.高美须,哈益明,周洪杰.国内外食品辐照标准现状及发展建议[J].农业质量标准,2004,1:36-38.
    101.高文淑,景茂,严衍禄.傅立叶变换近红外漫反射光谱法谷子、玉米中多种氨基酸含量[J].北京农业大学学报,1990a,16(增):88-93.
    102.高文淑,张录达,王万里.应用近红外漫反射光谱法测定谷子中的粗脂肪含量[J].北京农业大学学报,1990b,16(增):94-97.
    103.官梅,李栒.12C重离子辐照对油菜(B. napus)的影响[J].作物学报,2006,32(6):878-884.
    104.国内贸易部成都粮食储藏科学研究所.主要储粮害虫对磷化氢抗性及对策的研究.粮食储藏,1996,24:81-89.
    105.胡爱华,邢世岩,巩其亮.基于FTIR的针阔叶材木质素和纤维素特性[J].东北林业大学学报,2009,9:79-81,90.
    106.黄木易,王纪华,黄文江,等.冬小麦条锈病的光谱特征及遥感监测[J].农业工程学报,2003,19(6):154-158.
    107.黄应丰,刘腾辉.华南主要土壤类型的光谱特性与土壤分类[J].土壤学报,1995,32(1): 58-68.
    108.纪寿文,王荣本.应用计算机图像处理技术识别玉米苗期田间杂草的研究[J].农业工程学,2001,17(2):154-156.
    109.蹇黎,朱利泉,张以忠,等.贵州兰花SPAD值和叶绿素含量测定与分析[J].安徽农业科学,2009,37(35):17462-17464.
    110.蒋海荣,王纪华,谢瑞芝,等.玉米叶片纤维素含量与冠层光谱特征的研究[J].农业工程学报,2005,21(10):5-8.
    111.景娟娟,王纪华,王锦地,等.不同氮素营养条件下的冬小麦生理及光谱特性[J].应用技术,2003,2:28-31.
    112.李刚华,丁艳锋,薛利红,等.利用叶绿素计(SPAD-502)诊断水稻氮素营养和推荐追肥的研究进展[J].植物营养与肥料学报,2005,11(3):412-416.
    113.李刚华,薛利红,尤娟,等.水稻氮素和叶绿素SPAD叶位分布特点及氮素诊断的叶位选择[J].中国农业科学,2007,40(6):1127-134.
    114.李映雪,朱艳,曹卫星.不同施氮条件下小麦冠层的高光谱和多光谱反射特征[J].麦类作物学报,2006a,26(2):103-108.
    115.李映雪,朱艳,田永超,等.小麦叶片氮含量与冠层反射光谱指数的定量关系[J].作物学报,2006b,32(3):358-362.
    116.林芬芳,丁晓东,付志鹏,等.基于互信息理论的水稻磷素营养高光谱诊断[J].光谱学与光谱分析,2009,29(9):2467-2470.
    117.刘广军,戴冬梅,高洪涛.正交信号校正算法及其在光谱预处理中的应用[J].山东建筑工程学院学报,2005,20(2):83-87.
    118.刘宁宇,王伟,吴拥军.近红外光谱技术在药物分析中的应用[J].安阳师范学院报,2005,(5):50-52.
    1119.刘伟东,项月琴,郑兰芬,等.高光谱数据与水稻叶面积指数及叶绿素密度的相关分析[J].遥感学报,2000,4(4):279-283.
    120.刘芸,唐延林,黄敬峰,等.利用高光谱数据估测水稻米粉中粗蛋白粗淀粉和直链淀粉含量[J].中国农业科学,2008,41(9):2617-2623.
    121.陆婉珍,袁洪福,徐广通,等.现代近红外光谱分析技术[M].北京:中国石油化工出版社,2000.
    122.马超飞,马建文,韩秀珍.微量元素在植物光谱中的响应机理研究[J].遥感学报,2001,5(5):334-339.
    123.尼珍,胡昌勤,冯芳.近红外光谱分析中光谱预处理方法的作用及其发展[J].药物分析杂志,2008,28(5):824-829.
    124.牛铮,陈永华,隋洪智,等.叶片化学组分成像光谱遥感探测机理分析[J].遥感学报,2000,4(2):125-130.
    125.彭玉魁,李菊英,祁振英.近红外光谱分析技术在小麦营养成分鉴定上的应用[J].麦类作物,1997,17(3):33-35.
    126.乔欣,马旭,张小超,等.大豆叶绿素和钾素信息的冠层光谱响应[J].农业机械学报,2008,39(4):108-111,116.
    127.任芊,解国玲,董守龙,等.OSC-PLS算法在近红外光谱定量分析中的应用的研究[J].北京理工大学学报,2005,25(3):272-275.
    128.芮玉奎,黄昆仑,王为民,等.近红外光谱技术在检测转基因油菜籽中芥酸和硫甙上的应用研究[J].光谱学与光谱分析,2006,26(12):2190-2192.
    129.沙晋明,陈鹏程,陈松林.土壤有机质光谱响应特性研究[J].水土保持研究,2003,10:103-107.
    130.邵咏妮,何勇,鲍一丹.基于独立组分分析和BP神经网络的可见/近红外光谱蜂蜜品牌的鉴别[J].光谱学与光谱分析,2008,28(3):602-605.
    131.沈润平,丁国香,魏国栓,等.基于人工神经网络的土壤有机质含量高光谱反演[J].土壤学报,2009,3:391-397.
    132.沈掌泉,Qi, J.G., Huang, X.W.,等.田间行走式测定的红外光谱数据与土壤质地之间的相关性研究[J].光谱学与光谱分析,2009,29(6):1526-1530.
    133.施陪新.食品辐照加工原理与技术[M].北京:中国农业科学技术出版社,2004,98,218-246.
    134.孙大业.糖氮比在小麦植株营养诊断中的运用[J].中国农业科学,1978(4):32-39.
    135.孙蕾,谷德峰,罗建书.高光谱遥感图像的小波去噪方法[J].光谱学与光谱分析,2009,29(7):1954-1957.
    136.谭昌伟,王纪华,黄义德,等.运用光谱技术改进Beer-Lambert定律的定量化及其应用研究[J].中国农业科学,2005,38(3):498-503.
    137.谭昌伟,周清波,齐腊,等.水稻氮素营养高光谱遥感诊断模型[J].应用生态学报,2008, 19(6):1261-1268.
    138.唐延林,黄敬峰,王人潮.水稻不同发育时期高光谱与叶绿素和类胡萝素的变化规律[J].中国水稻科学,2004a,18(1):59-66.
    139.唐延林,黄敬峰,王秀珍,等.水稻、玉米、棉花的高光谱及其红边特征比较[J].中国农业科学.2004b,37(1):29-35.
    140.唐延林,王人潮,黄敬峰,等.不同供氮水平下水稻高光谱及其红边特征研究[J].遥感学报,2004c,8(2):185-192.
    141.陶勤南,方萍,吴良欢,等.水稻氮素营养的叶色诊断研究[J].土壤,1990,22(4):190-193,197.
    142.田高友,袁洪福,刘慧颖.小波变换用于近红外光谱数据压缩[J].分析测试学报,2005,24(1):17-20,24.
    143.田高友,袁洪福,刘慧颖,等.小波变换在近红外光谱分析中的应用进展[J].光谱学与光谱分析,2003,23(6):1111-1114.
    144.田永超,杨杰,姚霞,等,水稻高光谱红边位置与叶层氮浓度的关系[J].作物学报,20∞,35(9):1681-1690.
    145.王福民,王渊,黄敬峰.不同氮素水平油菜冠层反射光谱特征研究[J].遥感技术与应用,2004,19(2):80-84.
    146.王将克,常弘,廖金凤,等.生物地球化学[M].广州:广东科技出版社,1999.
    147.王康,沈荣开,唐友生.用叶绿素测值(SPAD)评估夏玉米氮素状况的实验研究[J].灌溉排水,2002,21(4):1-4.
    148.王珂,沈掌泉,Abou-Ismail O.,等.不同钾营养水平的水稻冠层和叶片光谱特征研究初报[J].科技通报,1997,13(4):211-214.
    149.王坷,沈掌泉,王人潮.植物营养胁迫与光谱特性[J].国土资源遥感,1999a,1(1):1-4.
    150.王坷,沈掌泉,王人潮.植物营养胁迫与光谱特性[J].国土资源遥感,1999b,39(1):9-14.
    151.王磊,白由路.不同氮处理春玉米叶片光谱反射率与叶片全氮和叶绿素含量的相关研究[J].中国农业科学,2005,38(11):2268-2276.
    152.汪善勤,舒宁,张海涛.土壤全氮田间Vis/NIR光谱测定方法研究[J].土壤全氮田间Vis/NIR光谱测定方法研究[J].光谱学与光谱分析,2008,28(4):808-812.
    153.王绍华,曹卫星,王强盛,等.水稻叶色分布特征与氮素营养诊断[J].中国农业科学, 2002,35(12):1461-1466.
    154.王秀珍,王人潮,黄敬峰.微分光谱遥感及其在水稻农学参数测定上的应用研究[J].农业工程学报,2002,18:9-13.
    155.王秀珍,王人潮,李云梅,等.不同氮素营养水平的水稻冠层光谱红边参数及其应用研究[J].浙江大学学报(农业与生命科学版),2001,27(3):301-306.
    156.魏良明,严衍禄,戴景瑞.近红外反射光谱测定玉米完整籽粒蛋白质和淀粉含量的研究[J].中国农业科学,2004,37(5):630-633.
    157.吴长山,项月琴,郑兰芬,等.利用高光谱数据对作物群体叶绿素密度估算的研究[J].遥感学报,2000,4(3):228-231.
    158.吴迪,朱登胜,何勇,等.基于地面多光谱成像技术的茄子灰霉病无损检测研究[J].光谱学与光谱分析,2008,28(7):1496-1500.
    159.吴富宁,朱虹,郑丽敏,等.计算机辅助小麦图像识别应用中颜色特征基本参量的表达[J].农业网络信息,2004(4):10-15.
    160.吴建国,石春海,张海珍,等.应用近红外反射光谱法整粒测定小样品油菜籽含油量的研究[J].作物学报,2002,28(3):421-425.
    161.吴曙雯,王人潮,陈晓斌,等.稻叶瘟对水稻光谱特性的影响研究[J].上海交通大学学报:农业科学版,2002,20(1):73-76.
    162.吴昀昭,田庆久,季峻峰,等.土壤光学遥感的理论、方法及应用[J].遥感信息,2003,1:40-47.
    163.肖武,李小昱,李培武,等.近红外光谱和机器视觉信息融合的土壤含水率检测[J].农业工程学报,2009,25(8):14-17.
    164.邢东兴,常庆瑞.基于光谱分析的果树叶片微量元素含量估测研究—以红富士苹果树为例[J].西北农林科技大学学报,2008,36(11):143-150.
    165.徐冠仁.核农学导论[M].北京:原子能出版社,1995,6-7.
    166.徐广通,袁洪福,陆婉珍.近红外光谱定量校正模型适用性研究[J].光谱学与光谱分析,2001,21(4):459-463.
    167.徐贵力,毛罕平,李萍萍.缺素叶片彩色图像颜色特征提取的研究[J].农业工程学报,2002,18(4):150-155.
    168.许禄.化学计量学方法[M].北京:科学出版社,1995.
    169.许禄,邵学广.化学计量学方法[M].北京:科学出版社,2004.
    170.薛利红,曹卫星,罗卫红,等.基于冠层反射光谱的水稻群体叶片氮素状况监测[J].中国农业科学,2003,36:807-812.
    171.薛利红,曹卫星,罗卫红,等.小麦叶片氮素状况与光谱特性的相关性研究[J].植物生态学报,2004a,28(2):172-177.
    172.薛利红,曹卫星,罗卫红,等.光谱植被指数与水稻叶面积指数相关性的研究[J].植物生态学报,2004b,28:47-52.
    173.薛利红,卢萍,杨林章,等.利用水稻冠层光谱特征诊断土壤氮素营养状况[J].植物生态学报,2006a,30(4):675-681.
    174.薛利红,杨林章,范小晖.基于碳氮代谢的水稻氮含量及碳氮比光谱估测.作物学报,2006b,32(3):430-435.
    175.严衍禄,赵龙莲,韩东海,等.近红外光谱分析基础与应用[M].北京:中国轻工业出版社,2005.
    176.杨景田,李建萍,黄庆林.乌克兰敖德萨港粮食辐射检疫处理装置[J].粮食储藏,2002,31(1):45-47.
    177.杨述平.归一化植被指数测量技术研究[J].应用基础与工程科学学报,2004,12(3):328-332.
    178.叶莺,陈崇帼,林熙.偏最小二乘回归的原理及应用[J].海峡预防医学杂志,2005,11(3):3-6.
    179.于飞健,闵顺耕,巨晓棠,等.近红外光谱法分析土壤中的有机质和氮素[J].分析实验室,2002,21(3):49-51.
    180.虞国平,朱鸿英.中国水稻生产现状及发展对策研究[J].现代农业科技,2009,6:122-126,130.
    181.张广军.机器视觉[M].北京:科学出版社,2005.
    182.张浩,姚旭国,张小斌,等.基于多光谱图像的水稻叶片叶绿素和籽粒氮素含量检测研究[J]中国水稻科学,2008,22(5):555-558.
    183.张金恒.光谱遥感诊断水稻氮素营养机理与方法研究[博士学位论文].杭州:浙江大学,2003.
    184.张金恒,王珂,王人潮.叶绿素计SPAD-502在水稻氮素营养诊断中的应用[J].西北农林科技大学学报(自然科学版),2003,31(2):177-180.
    185.张金恒,王珂,王人潮,等.水稻叶片反射光谱诊断氮素营养敏感波段的研究[J].浙江大学学报(农业与生命科学版),2004,30(3):340-346.
    186.张文安.SPAD-501型叶绿素计在测定水稻叶绿素含量中的应用[J].贵州农业科学,1991,4:37-39.
    187.张耀鸿,高文丽,胡继超.利用叶绿素计诊断水稻氮素营养的研究[J].江苏农业科学,2008,6:256-257.
    188.张晔晖,赵龙莲,李晓薇.用傅立叶变换近红外光谱法测定完整油菜籽三种品质性状的初步研究[J].激光生物学报,1998,7(2):138-141.
    189.张左生.粮油作物病虫鼠害预测预报[M].上海:上海科技出版社,1995.
    190.赵环环,严衍禄,利用傅立叶近红外漫反射光谱技术快速测定玉米籽粒种蛋白质的含量[J].玉米科学,1999,7(3):77-79.
    191.赵杰文,郭志明,陈全胜.基于OSC/PLS的茶叶中EGCG含量的近红外光谱法测定[J].食品与生物技术学报,2008,27(4):12-15.
    192.赵英时,李小文,杨立明.遥感应用分析原理与方法[M].北京:科学出版社,2003:372-396.
    193.郑立华,李民赞,潘娈,等.基于近红外光谱技术的土壤参数BP神经网络预测[J].光谱学与光谱分析,2008,28(5):1160-1164.
    194.钟昭台,曾国珍,王信智,等.近红外线光谱技术应用于莲雾糖度检测之研究[J].农业机械学刊,2004,13(4):13-25.
    195.周广柱,王翠珍,杨锋杰,等.对数变换与小波变换用于野外采集植物波谱降噪[J].红外与毫米波学报,2009,28(4):316-320.
    196.周启发,王人潮.水稻氮素营养水平与光谱特征的关系[J].浙江农业大学学报,1993,19(增刊):40-46.
    197.褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用[J].化学进展,2004,16(4):528-542.