锻造操作机构型设计与动力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重载锻造操作机是在极端载荷条件下作业的巨型工业机器八,可夹持大型工件配合万吨压机实现自由锻造。由于重载锻造操作机输出自由度多且相互耦合,锻造过程中末端夹钳的位姿和速度操作能力、力承载特性及整体刚度随着机构的形位变化而动态变化,因此如何保证极端作业条件下锻造操作机在整个工作空间中的力操作能力和速度操作能力,是重载操作装备设计所面临的技术挑战。本文研究了巨型重载锻造操作机的构型设计方法和动力学性能,包括重载锻造操作机的机构可约设计方法、机构可约设计中的同构性判定方法、新型重载锻造操作机的运动学建模与仿真、新型重载锻造操作机的动力学参数识别和标定建模及实验、新型重载锻造操作机整机协调运动和主动缓冲建模与仿真等。主要内容如下:
     (1)建立考虑任务特征的多自由度操作装备构型原理,给出多自由度操作机构末端任务特征和驱动输入之间关联关系的可约建模方法,建立操作机构可约特性与构型的映射关系,以及基于可约特性的构型分类原理,为重载多自由度操作装备的机构构型设计提供理论基础,同时给出重载锻造操作机的构型可约设计方法与步骤并设计出新的锻造操作机机构。
     (2)研究了机构可约设计中的同构性问题并建立同构判定模型,提出同构判定的特征系统方法,给出特征系统法同构判定的理论基础,建立机构可约特性的同构分类原理,对锻造操作机机构可约设计中的同构问题进行了判定。
     (3)建立了新型锻造操作机的运动学模型,包括解析形式的位姿方程、速度等数学模型。
     (4)建立了新型重载锻造操作机的动力学参数识别与标定模型,包括新型锻造操作机内外部力、杆件惯量和尺寸之间的映射关系,推导出映射关系矩阵,对锻造操作机的动力学参数识别和标定进行实验,比较了理论模型数据和实验数据之间的误差,并给出了误差源分析和误差消除方法。
     (5)建立锻造操作机的整机协调运动与主动缓冲控制模型,设计了新型锻造操作机启动、停止运动和主动缓冲过程中的控制方程,并对设计结果进行仿真。
     本文的研究成果是巨型重载操作机的构型设计和性能设计的基础,对设计重载锻造操作机和万吨压机智能联动控制系统具有明显的理论意义和应用价值
Forging manipulator is not an ordinary industrial robot and always works in very harsh environment. It can clamp hundreds of tons of work pieces and finish the open-die forging with press. Heavy-payload forging manipulator has characteristics of mult-degree of freedom with high coupling the capacity of complex control with displacement and orientation, large payload and high stiffness. The structural features and kinematic plans of the forging manipulator play an important role in the quality of automatic linkage control. This work focuses on the mechanism design and dynamatic analysis of heavy-payload forging manipulator system. These key technologies include the type design based on reducible performance and the corresponding isomorphism identification, kinematic modeling and analysis of newly designed forging manipulator, dynamic parameters identification and calibration, buffering optimization and simulation in starting and braking. This dissertation’s main work can be concluded as:
     (1) The type theory based on work requirements for muit-degree of freedom and heavy-payload manipulators is studied. The concept of reducible performance is defined and investigated from the view of the incidence relationship between outputs and inputs. The incidence relationship between outputs and inputs of heavy-payload forging manipulator is obtained, the type design is divided into three parts after detailed understanding of the functional properties, and the design flow is given. Several new types of mechanisms for heavy-payload forging manipulator are classified and corresponding spatial mechanism diagrams are proposed.
     2 The theoretic basis of eigen system approach is studied and practical applications are discussed. A new matrix is proposed which contains at least one distinct eigen value based on the incidence relationship matrix, and the Eigen system approach is used to identify the isomorphism of new matrices. Examples are given by using the proposed matrices and the Eigen system approach is used to identify the isomorphism of reducible performance for heavy-payload manipulators.
     3 A new-type serial-parallel forging manipulator is presented, and the closed form kinematic solutions are derived. Based on the length of test prototype, the different position and orientation are simulated, and the analytic algorithm for the computation of Jacobian matrix is also presented. All those lead to the establishment of the mathematic model of the forging manipulator.
     (4) The model of dynamatic parameters identification and calibration is given. The transformation matrix for link’s inertia, length, known forces and unknown forces is obtained after detailed kinematic and force analysis of test prototype. Test data collection and processing are done in test prototype, comparison diagram of theory and test data are drawn, and error analysis is given.
     (5) The model of motion coordination and buffering design for forging manipulator is built. The optimal curves in starting and braking and buffering design are presented, and the corresponding process and simulation are also investigated.
引文
[1]王喜风锻造操作机操作技术近期的发展[Jl_重型机械,1994(6):12-17
    [2]王喜风锻造液压机与操作机的发展[Jl_重型机械,1998(6):3-5
    [3]Patmke H E New Trends in Forging Press Drives?[Jl_Sprechsaal Verlag,World Steel andMetal working,Export Manual’79,1980:142-149
    [4] Manipulators-Forging http://www.wepuko congwpe-manipulators hnnl
    [5] GLAMA Rail-Bound Forging Manipulator.http://www.glama de/
    [6]Q】(K Rail Forging manipulators http://www.zdas cz/en/index php?res。1024&i&x。s3 1 5
    [7] Rail Forging Manipulators http://www.tkpo ryazan ru/indexe htm
    [8] J.R Merlet,Parallel Robots,Kluwer Academic Publishers,The Netherlands,2000
    [9] Companies manufacturing motion simulators based Oil parallel mechanisnls http://www.parallemic org/WhosWho/ColnpSims htnfl(Jan,1st,2010)
    [10] Frasca sikorsky S-92 full fli曲t simulator.http://www.frasca congweb~0ages/ brochures/S92bro htm(Jan 1st,2010)[1 1]Toyota’S approach to safety technology and vehicle development http://www.toyota cojp/en/csr/report/09/highlights soc/02 htllll(Jan 1st,2010)
    [12] MTS 3 0 nleter biaxial seismic simulator.http://www.mts congstellent/groups/ public/documents/library/dev003372 pdfeb 1st 2010)
    [13] Zhao,Y;Gao,F,Dynamic formulation and performance evaluation of the redundant parallel manipulator[Jl_Robotics and Computer Integrated Manufacturing,2009,25(4-5),770-781
    [14] Zhao,Y;Gao,F;Li,W,et al,Development of 6-dof parallel seisnfic simulator with novel redundant actuation[Jl_Mechatronics,2009,19(3),422-427
    [15] Zhao,Y;Gao,F,Dynamic performance comparison ofthe 8PSS redundant parallelmanipulator and its non-redtmdant counterpart the 6PSS parallel manipulaor[Jl_ Mechanism and Machine Theory,2009,44(5),991-1008
    [16]张彦斐;宫金良;李为民,等,一种6自由度冗余驱动并联机器人运动学分析及仿真[Jl_机械工程学报,2005,41(8),144-148
    [17] Simaan,N;Shoham,M,Singularity analysis of a class of composite serial in-parallel robots[Jl_IEEE Transactions on Robotics and Automation,2001,17(3),301.311
    [18] Maurin,B;Bayle,B;Piccin,O,et al,A patient-momlted robotic platform for CT-scan guided procedures[Jl_IEEE Transactions on Biomedical Engineering,2008,55(10),2417-2425
    [19]Piccin,O;Bayle,B;Maurin,B,et al,Kinematic modeling of a 5-DOF parallel mechanisnl for semi-spherical workspace[Jl_Mechanism and Machine Theory,2009,44(8),1485-1496
    [20] Zimmermaml,M;Krishnan,R;Raabe,A,et al,Robot-assisted navigated endoscopic ventriculostomy:implementation of a new technology and first clinical resuRs[Jl_Acta Neurochirurgica,2004,146(7),697-704
    [21] Bonev,I Delta parallel robot-the story of success http://www.parallemic org/ Reviews/Review002 html(Jan 1st,2010)
    [22] R S Ball A Treatise Oil The Theory of Screws England:Cambridge University Press,1900
    [23] K H Hmlt Kinematic Geometry ofmechanisms Oxford:Claredon Press,1978
    [24] Mohamed M G Duffy J ADirect Detemfination ofthe Instantaneous Kinematics of Fully Parallel Robot Manipulators ASME Jounlal of Mechanisms,Transmissions andAutomation in Design,1985,107(2):226-229
    [25]Huang,Z Modeling formul~ion of 6-DOF nmlti-loop parallel manipulators,part-1:kinematic influence coefficients,In:Proceedings of the 4th IFToMM International Symposium Oil Linkage and Computer Aided Design Methods[C],Bucharest,Romania,1985,155-162
    [26] Z Huang,T S Zhao,Y F Fang Study Oil the Kinematic Characteristics of 3-DOF Parallel Actuated Platform Mechanisms Mechanism and Machine Theory,1996,3 1r8、:999-1007
    [27]黄真,孔令富,方跃法并联机器人机构学理论及控制北京:机械工业出版社,1997
    [28] Z Huang,s H Li,R G Zuo Feasible instantaneous motions and kinematic characteristics of a special 3-DOF 3-UPU parallel manipulator.Mechanisnl and Machine Theory,2004,39:957-970
    [29] Z Huang,e C Li,Type synthesis principle ofminor-mobility parallel manipulators Science in China(Series E),2002,45(3):241-248
    [30]Huang,Z;Li,e,General methodology for type synthesis of symmetrical lower-mobility parallel manipulators and several novel manipulators[J]The International Journal ofRobotics Research,2002,21(2),131-146[3 1]Huang,Z;Li,e,Type synthesis of symmetrical lower-mobility parallel mechanisms using the constraint-synthesis method[J]The International Jounlal of Robotics Research,2003,22(1),59-79
    [32] Li,e;Huang,Z Type synthesis of4-DOF parallel manipulators,In:Proceedings of the 2003 IEEE International Conference Oil Robotics and Automation[C],IEEE:Taipei,Taiwan,2003,755-760
    [33]黄真,赵永生,赵铁石高等空间机构学北京:高等空间机构学,2006
    [34] Kong,X;Gosselin,C M,rype synthesis of 3T1R 4-DOF parallel manipulators based Oil screw theory[J]IEEE Transactions on Robotics and Automation,2004,20 r21.181-190
    [35] Kong,X;Gosselin,C M,rype synthesis of 3-DOF spherical parallel manipulators based Oil screw theory[J]ASME Jounlal of Mechanical Design,2004,126(1),1n1.1nR
    [36] Kong, X.; Gosselin, C. M., Type synthesis of 3-DOF translational parallel manipulators based on screw theory[J]. ASME Journal of Mechanical Design, 2004, 126 (1), 83-92.
    [37] Kong, X.; Gosselin, C. M., Type synthesis of three degree-of-freedom spherical parallelmanipulators. The International Journal of Robotics Research, 2004, 23(3): 237-245
    [38] Kong, X.; Gosselin, C. M., Type synthesis of 3-DOF PPR-equivalent parallel manipulators sased on screw theory and the concept of virtual chain[J]. ASME Journal of Mechanical Design, 2005, 127 (11), 1113-1121.
    [39] Kong, X.; Gosselin, C. M., Type synthesis of 5-DOF parallel manipulators based on screw theory[J]. Journal of Robotic Systems, 2005, 22 (10), 535-548.
    [40] Kong, X.; Gosselin, C. M., Type synthesis of 4-DOF SP-equivalent parallel manipulators: a virtual chain approach[J]. Mechanism and Machine Theory, 2006, 41 (11), 1306-1319.
    [41] Kong, X.; Gosselin, C. M., Type synthesis of parallel mechanisms[M]. Springer: New York, 2007.
    [42] Fang, Y.; Tsai, L. W., Structure synthesis of a class of 4-DoF and 5-DoF parallel manipulators with identical limb structures[J]. The International Journal of Robotics Research, 2002, 21 (9), 799-810.
    [43] Fang, Y.; Tsai, L. W., Structure synthesis of a class of 3-DOF rotational parallel manipulators[J]. IEEE Transactions on Robotics and Automation, 2004, 20 (1), 117-121.
    [44] Fang, Y.; Tsai, L. W., Analytical identification of limb structures for translational parallel manipulators[J]. Journal of Robotic Systems, 2004, 21 (5), 209-218.
    [45] Fang, Y.; Tsai, L. W., Enumeration of a class of overconstrained mechanisms using the theory of reciprocal screws[J]. Mechanism and Machine Theory, 2004, 39 (11), 1175-1187.
    [46] Hunt, K. H., Structural kinematics of in-parallel-actuated robot-arms[J]. Journal of Mechanisms, Transmissions and Automation in Design, 1983, 105 (12), 705-712.
    [47] Merlet, J. P., Parallel robot: open problems. In Proceedings of the 9th International Symposium on Robotics Research[C], Hollerbach; Koditschek, Eds. Springer: Snowbird, UT,1999; 9-12.
    [48] C. G. Gibson, K. H. Hunt. Geometry of Screw Systems-1 Crew Genesis and Geometry, Mechanism and Machine Theory, 1990, 25(1):1-10.
    [49] J. S. Dai, J. R. Jones. A Linear Algebraic Procedure in Obtaining Reciprocal Screw Systems. Journal of Robotic Systems, 2003, 20(7): 401-412.
    [50] J. S. Dai, J. R. Jones. Interrelationship between screw systems and corresponding reciprocal systems and applications. Mechanism and Machine Theory, 2001 36(5): 633-651
    [51] Hervé, J. M., Analyse structurelle des méanismes par groupe des délacements[J]. Mechanism and Machine Theory, 1978, 13 (4), 437-450.
    [52] Hervé, J. M., The mathematical group structure of the set of displacements[J]. Mechanism and Machine Theory, 1994, 29 (1), 73-81.
    [53] Hervé, J. M., The Lie group of rigid body displacements, a fundamental tool for mechanism design[J]. Mechanism and Machine Theory, 1999, 34 (5), 719-730.
    [54] Hervé, J. M. The planar-spherical kinematic bond: implementation in parallel mechanisms. http://www.parallemic.org/Reviews/Review013p.html (Jan. 1st, 2010).
    [55] Hervé, J. M.; Sparacino, F. Structural synthesis of parallel robots generating spatial translation, In: ICAR Fifth International Conference on Advanced Robotics. Robots in Unstructed Environment[C], IEEE: Pisa, Italy, 1991, 808-813.
    [56] Lee, C. C.; Hervé, J. M., Translational parallel manipulators with doubly planar limbs[J]. Mechanism and Machine Theory, 2006, 41 (4), 433-455.
    [57] Lee, C. C.; Hervé, J. M., Type synthesis of primitive Sch?enflies-motiongenerators[J]. Mechanism and Machine Theory, 2009, 44 (10), 1980-1997.
    [58] Lee, C. C.; Hervé, J. M., On some applications of primitive Sch?flies-motion generators[J]. Mechanism and Machine Theory, 2009, 44 (12), 2153-2163.
    [59] Karouia, M.; Hervé, J. M., A three-dof tripod for generating spherical rotation. In: Advances in robot kinematics[M], Lenarcic, J.; Stanisic, M., Eds. Kluwer Academic Publishers: Netherlands, 2000, 395-402.
    [60] Angeles, J., The qualitative synthesis of parallel manipulators[J]. ASME Journal of Mechanical Design, 2004, 126 (4), 617-624.
    [61] Li, Q.; Huang, Z.; Hervé, J. M., Type synthesis of 3R2T 5-DOF parallel mechanisms using the Lie group of displacements[J]. IEEE Transactions on Robotics and Automation, 2004, 20 (2), 173-180.
    [62] Li, Q.; Huang, Z.; Hervé, J. M., Displacement manifold method for type synthesis of lower-mobility parallel mechanisms[J]. Science in China Series E: Technological Sciences, 2004, 47 (6), 641-650.
    [63] Li, Q.; Hervé, J. M., Parallel mechanisms with bifurcation of Sch?enflies motion[J]. IEEE Transaction on Robotics, 2009, 25 (1), 158-164.
    [64] Li, Q.; Hervé, J. M., Structural shakiness of nonoverconstrained translational parallel mechanisms with identical limbs[J]. IEEE Transaction on Robotics, 2009, 25 (1), 25-36.
    [65] Meng, J.; Liu, G.; Li, Z., A geometric theory for analysis and synthesis of sub-6 DoF parallel manipulators[J]. IEEE Transactions on Robotics, 2007, 23 (4), 625-649.
    [66]邹慧君;高峰,现代机构学进展[M]高等教育出版社:北京,2007
    [67] Yu, J.; Dai, J.; Bi, S., et al., Type synthesis of a class of spatial lower-mobility parallel mechanisms with orthogonal arrangement based on Lie group enumeration[J]. Science China Technological Sciences, 2010, 53 (2), 388-404.
    [68] Yu, J.; Dai, J.; Bi, S., et al., Numeration and type synthesis of 3-DOF orthogonal translational parallel manipulators[J]. Progress in Natural Science, 2008, 18 (5),563-574.
    [69] Earl, C. F., Some kinematics structures for robot manipulator designs[J]. Journal of Mechanisms, Transmissions and Automation in Design, 1983, 105 (1), 15-22.
    [70] Lu, Y.; Ding, L.; Yu, J., Autoderivation of topological graphs for type synthesis of planar 3DOF parallel mechanisms[J]. ASME Journal of Mechanisms and Robotics, 2010, 2 (1), 011002.
    [71] Lu, Y.; Leinonen, T., Type synthesis of unified planar-spatial mechanisms by systematic linkage and topology matrix-graph technique[J]. Mechanism and Machine Theory, 2005, 40 (10), 1145-1163.
    [72] Yan, H., Creative design of mechanical devices[M]. Springer: New York, 1998.
    [73] Wang, Y.; Yan, H., Computerized rules-based regeneration method for conceptual design of mechanisms[J]. Mechanism and Machine Theory, 2002, 37 (9), 833-849.
    [74] Merlet, J. P., Parallel robots[M]. Kluwer Academic Publishers: 2006.
    [75] Gogu, G., Structural synthesis of parallel robots: part 1: methodology[M]. Springer: New York, 2008.
    [76] Gogu, G., Structural synthesis of parallel robots: part 2: translational topologies with two and three degrees of freedom[M]. Springer: New York, 2009.
    [77] Gogu, G., Structural synthesis of maximally regular T3R2-type parallel robots via theory of linear transformations and evolutionary morphology[J]. Robotica, 2009, 27 (1), 79-101.
    [78] Gogu, G., Fully-isotropic T3R1-type parallel manipulators. In: On Advances in Robot Kinematics[M], Lenarcic, J.; Galletti, C., Eds. Kluwer Academic Publishers: Netherlands, 2004, 265-272.
    [79] Gogu, G., Structural synthesis of fully-isotropic translational parallel robots via theory of linear transformations[J]. European Journal of Mechanics/A Solids, 2004, 23 (6), 1021-1039.
    [80] Gogu, G., Structural synthesis of fully-isotropic parallel robots with Sch?flies
    motions via theory of linear transformations and evolutionary morphology[J]. European Journal of Mechanics/A Solids, 2007, 26 (2), 242-269.
    [81] Gogu, G. Fully-isotropic T2R3 redundantly-actuated parallel robots, In: Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems[C], San Diego, CA, USA, 2007, 3937-3942.
    [82] Gogu, G., Fully-isotropic parallel mechanisms: an innovative concept for haptic devices. In: Product Engineering: Tools and Methods Based on Virtual Reality[M], Talaba, D.; Amditis, A., Eds. Springer: New York, 2008, Vol. 2, 169-195.
    [83] Gogu, G., Fully-isotropic T1R3-Type redundantly-actuated parallel manipulators. In: Recent progress in robotics: viable robotic servie to human[M], Lee, S., Ed. Springer: New York, 2008, Vol. 370, 79-90.
    [84]杨廷力,机器人机构拓扑结构学[Ml_机械工业出版社:北京,2004
    [85] Yang, T.; Jin, Q.; Liu, A., et al. Structure synthesis of 4-DOF (3-translation and 1-rotation) parallel robot mechanisms based on the units of single-opened chain, In: Proceedings of ASME 2001 Design Engineering Technical Conference and Computers and Information in Engineering Conference[C], ASME: Pittsburgh, PA, 2001, DETC2001/DAC-21152.
    [86] Yang, T.; Liu, A.; Jin, Q., et al., Position and orientation characteristic equation for topological design of robot mechanisms[J]. ASME Journal of Mechanical Design, 2009, 131 (2), 021001.
    [87] Jin, Q.; Yang, T.; Liu, A. Structure synthesis of a class of five-dof (three translation and two rotation) parallel robot mechanisms based on single-opened-chain units, In: Proceedings of ASME 27th Design Automation Conference[C], ASME: Pittsburgh, 2001, DETC/DAC-21153.
    [88] Jin, Q.; Yang, T., Synthesis and analysis of a group of 3-degree-of-freedom partially decoupled parallel manipulators[J]. ASME Journal of Mechanical Design, 2004, 126 (3), 301-306.
    [89] Jin,e;Yang,T,Theory for topology synthesis of parallel manipulators and its application to three-dimension-translation parallel manipulators[J]ASME Journal ofMechanical Design,2004,126(4),625-639
    [90]杨廷力用于虚轴数控机床与机器人的两平移两转动并联机构中国,ZL 02137859 2[Pl,2002
    [91]杨廷力用于虚轴数控机床和机器人的两平移两转动四自由度并联机构中国,ZL 02137857 6[Pl,2002
    [92]杨廷力用于虚轴机床与机器人的含双平面回路的两平移两转动并联机构中国,ZL 02137856 8[Pl,2002
    [93] Gao E Li W M,Zhao X C New Kinematic Structures for 2-,3-,4-,and 5-DOF Parallel Manipulator Designs Mechanism and Machine Theory,2002,37(11):1395.1411
    [94]宫金良基于运动基与GF集的机器人机构构型分析[燕山大学工学博士学位论文]2006
    [95]史巧硕并联机器人机构构型方法研究[河北工业大学博士学位论文]2009
    [96] Yang,J;Gao,F;Jin,Z,Classification of standing states for the humanoid robot SJTU-HRI[J]International Jotmlal ofSocialRobotics,2009,1(4),331-344
    [97] Yang,J;Gao,F;Jin,Z,et al,Classification of lying states for the humanoid robot SJTU-HRI[J]Science in China Series E:Technological Sciences,2009,52(5),1301.1311
    [98] Yang,J;Gao,et al,Structure design of the 3-DOF spherical hollow wrist for arc welding robots,Sci~mepaper online,Paper ID:201004—365.
    [99]高峰,杨家伦,葛巧德.并联机器八型综合的Gf集理论.北京:科学出版社,2010.
    [100]R J Wilson,L w Beineke(Eds),Applications of Graph Theory,Academic Press,NewYork,1979
    [101] M. Randic, On the recognition of identical graphs representing molecular topology, J. Chem. Phys. 60 (10) (1974) 3920-3928.
    [102] L. Dobrjanskyi, F. Freudenstein, Some applications of graph theory to the structural analysis of mechanisms, ASME J. Eng. Ind. 89B (1) (1967) 153-158.
    [103] T.S. Mruthyubjaya, A computerized methodology for structural synthesis of kinematic chains: part 1-formulation, Mech. Mach. Theory 19 (6) (1984) 487-495.
    [104] W.J. Sohn, F. Freudenstein, An application of dual graphs to the automatic generation of the kinematic structures of mechanisms, ASME J. Mech. Transm., Autom. Des. 108 (3) (1986) 392-398.
    [105] T.S. Mruthyunjaya, M.R. Raghavan, Structural analysis of kinematic chains and mechanisms based on matrix representation, ASME J. Mech. Des. 101 (1979) 488-494.
    [106] J.J. Uicker, A. Raicu, A method for the identification and recognition of equivalence of kinematic chains, Mech. Mach. Theory. 10 (1975) 375-383.
    [107] H.S. Yan, A.S. Hall, Linkage characteristic polynomials: definitions, coefficients by inspection, ASME J. Mech. Des. 103 (1981) 578-584.
    [108] T.S. Mruthyunjava, H.R. Balasubramanian, In quest of a reliable and efficient computational test for detection of isomorphism in kinematic chains, Mech. Mach. Theory. 22(2) (1987) 131-139.
    [109] M. Kanehisa, Graph comparison and path computation methods for predictingmolecular networks from genome information, in: Keynote on the 8th International Conference on Intelligent System for Molecular Biology 1SMB 2000, San Diego, California, USA, August 2000.
    [110] H. Ogata, W. Fujibuchi, S. Goto, M. Kanehisa, A heuristic graph comparison algorithm and its application to detect functionally related enzyme clusters, Nucleic Acids Res. 28 (20) (2000) 4021-4028.
    [111] Corneild G, Gotileb C C., An eficient algorithm for graph isomorphism. Journal ofthe Association for Computer Machinery, 1970, 17(1): 51-64.
    [112] Ullmann J R., An algorithm for subgraph isomorphism. Journal of the Association for Computer Machinery, 1976, 23(1): 31-42.
    [113] L. Collatz, U. Sinogowitz, Spektren endlichen Graphen, Abh. Math. Sem. Hamburg 21 (1) (1957) 63-77.
    [114] F. Harary, C. King, A. Mowshowitz, R.C. Read, Cospectral graphs and digraphs, Bull. Lond. Math. Soc. 3 (1971) 321-328.
    [115] Y.J. Shah, G.I. Davida, M.K. McCarthy, Optimum features and graph isomorphism, IEEE Trans. Syst. Man, Cybern. SCM-4 (1974) 313-319.
    [116] A.G. Ambekar, V.P. Agrawal, Canonical numbering of kinematic chains and isomorphism problem: min code, Mech. Mach. Theory 22 (5) (1987) 453-461.
    [117] C.S. Tang, T. Liu, The degree code-a new mechanism identifier, ASME J. Mech. Des. 115 (1993) 627-630.
    [118] Y.F. Luo, T.L. Yang, W.Q. Cao, Identification on spatial kinematic chains using incident degree and incident degree code, Proceeding of Eighth World Congress on the Theory of Machines and Mechanisms IFToMM 91, Prague, Czechoslovakia, 1991, pp. 999-1002.
    [119] C.S. Tang, T. Liu, The degree code-a new mechanism identifier, ASME J. Mech. Des. 115 (1993) 627-630.
    [120] Y.F. Luo, T.L. Yang, W.Q. Cao, Identification on spatial kinematic chains using incident degree and incident degree code, Proceeding of Eighth World Congress on the Theory of Machines and Mechanisms IFToMM 91, Prague, Czechoslovakia, 1991, pp. 999-1002.
    [121] W.J. Zhang, Q. Li, On a new approach to mechanism topology identification, ASME J. Mech. Des. 121 (1999) 57-64.
    [122] B.D. Mckay, Practical graph isomorphism, Congr. Numer. 30 (1981) 45-87.
    [123] J.T. Kim, B.M. Kwak, An algorithm of topological ordering for uniquerepresentation ofgraphs,ASME J Mech Des 114(1992)103-108
    [124]Z Chang et al,A new method to mechanisnl kinematic chain isomorphisnl identification,Mech Mach Theory 37(2002)41 1-417
    [125]J P Cubillo et al,Colim~ents on mechanisnl kinematic chain isomorphisnl identification using adjacentmatrices,Mech Mach Theory40(2005)131-139
    [126]P.R He,W.J Zhang,e Li,Anewmethodfor detection ofgraphisomolphisnlbased on the quadratic form,ASME J Mech Des 125(2003)640-642
    [127]P.R He et al,Some further development on the eigeusystem approach for graph isomorphisnl detection,Jounlal ofFranklin institute 342(2005)657-673
    [128]James Nielsen,Bernard Roth,On the kinematic 8518lysis ofrobotic mechanisms,The Inter.J ofRobotics Research,1999,18,12,p1147-1160
    [129]Dhingra A,Ahnadi A,Kohli D,a grobner-sylvester hybrid method for dosed form displacement arialysis of mechanisms,25th Biemfial mechanisms conf.,DETC/MECH-5969,Atlanta,GA
    [130]Husty,M,an algorithnl for solving the direct kinematics of general Stewart-Gough platforms,Mechanism andMachineTheory,1996,31,p365-379
    [131]Innocenti,C,Forwardkinenmticsinpolynomialform ofthe general SteaertplatfomL Proc OfDETC98,CD-ROM DETC98/MECH-5894,New York
    [132]石赫,机械化数学引论,长沙,湖南教育出版社,1998
    [133]蔡大用,白峰杉,高等数值分析,北京,清华大学出版社,1997
    [134]王则柯等,同伦方法及成本理论,长沙,湖南教育出版社,1998
    [135]王小平等,遗传算法-理论、应用与软件实现,西安交通大学出版社,2002
    [136]Kong X,and Gosselin C M A class of 3-DOF translational parallel nmnipulators with linear input-output equations[Jl_Proceedings of the Workshop on Fundamental Issues and Future Research Directious for Parallel Mechaulsms and Manipulators,2002:25-32
    [137]Tsai L w Robot Analy’sis:the Mechanics of Serial and Parallel Manipulators [M],John Wiley& Sons, Inc., 1999.
    [138] Kim D, Chung W, and Youm Y, Analytic Jacobian of in-parallel manipulators, Proceedings - IEEE International Conference on Robotics and Automation, 2000, 2376-2381.
    [139] Joshi S A, and Tsai L W. Jacobian analysis of limited-DOF parallel manipulators [J]. Journal of Mechanical Design, Transactions of the ASME, 2002, 124(2):254-258.
    [140] Nokleby S B, Fisher R, Podhorodeski R P, Firmani F. Force capabilities of redundantly-actuated parallel manipulators. Mechanism and Machine Theory, 2005, 40(5), 578-599
    [141] Gosselin C M. Stiffness mapping of parallel manipulators. IEEE Trans. Robotics and Automation, 1990, 6(3), 377-382
    [142] Tahmasebi F, Tsai L W. On the stiffness of a novel six degree of freedom parallel manipulator. Journal of robotic System, 1995, 12(12): 845-856
    [143] Sugimoto K. Kinematics and dynamic analysis of parallel manipulator by means of motor algebra [J]. ASME Journal Of Mechanisms, Transmissions, and Automation in Design, 1987, 109: 3-7
    [144] Dasgupta B., Mruthyunjaya T. S.. Closed-form dynamic equations of the general Stewart platform through the Newton-Euler approach [J]. Mech. Mach. Theory, 1998, 33(7): 993-1012
    [145] Ji Z. M. Dynamic’s decomposition for Stewart platforms [J]. Journal of Mechanical Design, 1994, 116: 67-69
    [146] Lee K. M., Shan D. K. Dynamic analysis of a Three-Degrees-Freedom In-Parallel actuated manipulator [J]. IEEE Transactions On Robotics and Automation, 1988, 4(3): 361-367
    [147] Lee J., Albus J., Dagalakis N. G., et al. Computer simulation of a parallel link manipulator[J]. Robotics&Computer-Integrated Manufacturing, 1989, 5: 333-342
    [148] Pang H., Shahinpoor M.. Inverse dynamics of a parallel manipulator [J]. Journal ofRobotic Systems,1994,11(8):693-702
    [149]Miller K Dynamics of the new UWA robot[A]Proceeding Australian Conference Oil Robotics midAutomation[C]Sydney,2001:1-6
    [150]MillerK Experimentalverification ofmodeling ofDELTA robotdynamics by direct application ofHamilton’s principle[A]IEEE hltenlational Conference on Robotics andAutomation[C]Nagoya,1995:532-537
    [151]Codourey A,Burdet E ABody-oriented method for finding a linear form ofthe dynamic equation offully parallel robots[A]Proceeding ofthe IEEE International Conference on Robotics andAutomation[C]Albuquerque,1997:456-461
    [152]Tsai L w SoNing the inverse dynamics of a Stewart-Gough manipulator by the principle ofvirtual work[J]ASME Journal Mech Design,2000,122:3-9
    [153]Chen C C Dynamic alialysis and detemfination of the joint characteristics of parallel-drive robot manipulators[J]Jounlal of Robotics Systems,1993,10(6):791.809
    [154]刘敏杰,田涌涛,李从心并联机器人动力学的子结构Kane方法[Jl_上海交通大学学报,2001,35(7):1032-1035
    [155]Benl Tripletia Linear motors combine muscle with a fine touch Machine Design 1887(10):94-97
    [156]Sperbeck A J Totally digital valves fully utilizes hydraulic servos Hydraulic& penumatics 1987,12(12):63-65
    [157]徐正和地下铁道液压缓冲挡车器的研制[Jl_上海铁路城市轨道交通设计研究院2003,9r31:72-74
    [158]朱兴华液压系统的最佳缓冲控制及其实施方法的研究[Jl_广卅『机床研究所1988(5):24-29