齿轮啮合数值分析建模方法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在国家自然科学基金和国家科技支撑计划的资助下,结合实际工程项目背景,开发了渐开线圆柱齿轮弹性啮合数值分析建模软件,为优化渐开线圆柱齿轮修形参数、精确齿轮强度校核以及行星传动均载特性研究提供有效方法。
     随着工业对齿轮箱性能要求的大幅度提升和生产技术的快速发展,高精度硬齿面渐开线圆柱齿轮传动成为工业齿轮箱的主要发展趋势,为改善硬齿面齿轮的应力分布,提高齿轮寿命,降低齿轮箱的振动和噪声,齿轮修形设计已成为提升硬齿面齿轮传动性能不可或缺的核心技术。广泛应用的高效、高精度数控齿轮加工机床普遍具有齿轮修形加工能力,为经济可靠地生产高性能的修形齿轮提供了技术保障,目前迫切需要研究优化齿轮修形参数的设计方法,既显著提高硬齿面齿轮的传动性能又不额外增加成本,最大程度地发挥价格昂贵的齿轮精加工设备的优越性能。此外,齿轮应力精确计算和行星传动均载设计也成为挖掘齿轮极限承载能力提高齿轮传动性能的重要途径。
     论文的主要研究内容如下:
     提出渐开线圆柱齿轮三维有限元接触分析精细建模方法。编写Matlab程序以齿廓法线法求解齿轮廓线离散点坐标,在ANSYS中离散齿轮实体生成单元—节点拓扑结构,以正则表达式识别拓扑结构和节点坐标转存到SqlServer数据库模型,形成齿轮有限元节点模型。优化方法求解各条接触线方程,在此基础上编写齿轮有限元节点模型几何识别算法识别齿面节点集并规划接触带,导出节点规划的齿轮有限元节点模型,在ANSYS中重建齿轮有限元模型,应用APDL程序实现接触带单元分级剖分细化和多点约束边界单元细化。局部网格细化的齿轮有限元模型经齿面节点精确重建为实现齿轮高精度应力分析和齿轮修形参数优化奠定基础。
     提出齿向、齿廓和综合修形的渐开线圆柱齿轮有限元接触分析快速精确建模方法。在局部网格细化的齿轮啮合有限元模型的基础上,按齿向修形函数和齿廓修形函数在齿面节点位置的修形量精确控制齿面节点的渐开线发生线长度,重新求解齿面上的节点坐标,实现直齿轮、斜齿轮、外齿轮和内齿轮的修形齿面节点快速精确重构,在ANSYS中重建齿面节点实现修形齿轮精确齿面快速建模,极大地提高了修形齿轮有限元接触分析建模效率。齿形优化以齿面上应力分布状况作为评价指标,按齿面应力分布趋势变更修形函数重建精确齿面修形的齿轮有限元模型,迭代求解修形齿轮接触问题,直至获得理想的齿面应力分布,完成齿轮修形参数优化。
     提出行星传动均载特性有限元多柔体运动模拟评价方法。直齿行星传动可以用平面有限元建模,但是行星传动既存在行星轮自转又存在公转,各行星轮间载荷通过行星架和回转副传递。为了研究行星传动的均载行为,不仅建立了精确的齿轮有限元模型,还以刚度等效的梁单元模拟行星架、多点约束方程模拟回转副,实现行星传动系统的传动过程模拟。
A new approach was developed to optimize modification parameters of a pair of involute cylindrical gears, calculate gear stress accurately and research on characteristics of load sharing by floating components in a planetary gear system. This research was supported by the National Natural Science Foundation of China and the National Key Technology R&D Program.
     Along with the improving quality demands for the performance of a gear box and rapidly developed technology, the high-precision hardened surface involute gear transmission has become a main trend in the gear transmission industry. The modification design for gear flanks has become one of the indispensable core technologies to improve the stress distribution on the teeth, lengthen gears service lives, and reduce the vibration and noise of a gear box. Widely used high-efficiency and high-precision Computer Number Control (CNC) gear machine tools generally have the capability of gear modification, which provide technical assurance to produce high-performance modification gears economically and reliably. There is an urgent need to research an approach to optimize the gear modification parameters. Using CNC gear machine tools to produce modified gears, not only notably improves the performance of the hardened surface gears transmission, but also does not increase additional costs, so we can make the best use of the predominant performance of the expensive gear finish machining tools. Moreover, accurate calculation of gear stress and load sharing design of a planetary transmission also become important ways to exploit gear ultimate bearing capacity and improve the performance of a gear transmission.
     A method was put forward to build a refined3-D Finite Element Model (FEM) for a contact problem of involute cylindrical gears. The tooth profile normal method of the plane engagement theory was used to calculate a series of coordinates of a gear profile by programming the matlab code, and then topological structure of elements and nodes of the gear was generated in AN SYS software. The topological structure and the coordinates of the nodes were parsed with regular expression and transferred into a database model of Sqlserver, and then a gear node model was built. The functions of contact lines were solved by the optimization algorithm. Based on that, a node model geometric recognition algorithm was designed and used to identify the nodes on teeth flanks, and then to plan the nodes in the contact zone. After transferring the node model into ANSYS, the FEM of gears were reconstructed, and then APDL code was used to refine the elements in contact zones by grading division method and Multi-point constraints (MPC) equations method. The nodes on teeth flanks of the refined gear was precisely reconstructed, which is the base to accurately calculate the gear stress and optimize the modification parameters for a pair of involute gears.
     A fast and accurate method was put forward to build an involute cylindrical gear FEM with lead modification, profile modification or comprehensive modification. Based on the refined gear meshing model, the magnitude of lead modification and profile modification at a node along the generating line of an involute was accurately calculated, and then the coordinates of the node was calculated and corrected including types of spur gears, helical gears, external gear pairs and internal gear pairs. The corrected nodes on the teeth flank were rebuilt in ANSYS software, then the gear FEM with modification was built, which dramatically improves the modeling efficiency for the contact analysis FEM of modified gears. Taking stress distribution on the teeth flanks as an evaluation index of gear modification, the gear modification parameters were corrected by modifying node coordinates on the tooth flank according to the trend of stress distribution on that. The contact problem of the modified gears was solved by iteration method until ideal stress distribution on the teeth flanks was achieved.
     A method that flexible multi-body motion simulation evaluating the characteristics of a planetary gear system by finite element method was put forward. A planetary spur gear system can be modeled with2-D FEM; however, there are both rotation and revolution of planet gears, so the planet carrier and revolute pair have to be built for transferring loads to each planet gear. In order to study on the behaviors of load sharing among the planets, not only the gears FEM was built accurately, but also the planet carrier and the revolute pair were approximately simulated by beam element with equivalent stiffness and MPC to achieve motion simulation of the planetary gear system.
引文
[1]何大为,方宗德.航空圆柱齿轮传动齿向修形优化设计[J].西北工业大学学报.1992(3)323-329.
    [2]孔勤建.我国风电齿轮箱行业自主创新发展中的问题与对策[J].风能.2011(7):40-43.
    [3]顾海港,林勇刚.大功率船用齿轮箱的开发设计[J].传动技术.2008(3):25-29.
    [4]李英杰,支秋玲.采用设计齿形修形技术提高工程机械传动装置性能[J].工程机械.2005(3):56-57.
    [5]杨欣荣.高速齿轮修形技术在大功率新型高速齿轮箱上的应用[J].机械制造与自动化.2005(3):44-47.
    [6]詹东安,唐树为.高速齿轮齿部修形技术研究[J].机械设计.2000,17(8):8-10.
    [7]编委会.齿轮加工最新工艺与质量检测及通用标准规范实务手册[M].北京:中国机械工业出版社,2010.
    [8]马云EMO2007磨齿机新产品综述[J].制造技术与机床.2008(5):49-53.
    [9]马云EMO MILAN 2009展出的磨齿机精品[J].世界制造技术与装备市场.2010(1):57-60.
    [10]遇立基.磨齿工艺与磨齿机的技术发展概况[J].现代制造工程.2008(2):1-4.
    [11]颜思健,韩翠蝉.渐开线齿轮行星传动的设计与制造[M].北京:机械工业出版社,2002.
    [12]饶振纲.行星传动机构设计[M].北京市:国防工业出版社,1994:649.
    [13]王宇航,佟占胜,吴秀英,等.行星齿轮传动的均载机构及选择[J].重型机械.2010(2)158-162.
    [14]Johnson K. L.,徐秉业.接触力学[M].北京:高等教育出版社,1992.
    [15]Walker H. Gear tooth deflection and profile modification (Part 1) [J]. The Engineer. 1938,166 (4318):409-412.
    [16]Walker H. Gear tooth deflection and profile modification (Part 2) [J]. The Engineer. 1938,166 (4319):434-436.
    [17]Walker H. Gear tooth deflection and profile modification (Part 3) [J]. The Engineer. 1940,170 (4414):102-104.
    [18]李敦信.高速齿轮的修形[J].齿轮.1982(3):25-35.
    [19]张展.齿廓修形和齿向修形[J].建筑机械.1987(10):35-39.
    [20]李敦信.齿轮修形有关问题[J].科技通报.1986(2):17-20.
    [21]张永忠,王洪.关于修形齿轮的试验[J].齿轮.1985(3):12-15.
    [22]李润方.齿轮传动的刚度分析和修形方法[M].重庆:重庆大学出版社,1998.
    [23]朱传敏,宋孔杰,田志仁.齿轮修形的优化设计与试验研究[J].机械工程学报.1998(4)64-69.
    [24]王统,贾毅,邱良恒,等.渐开线齿轮修形方法的进展[J].上海交通大学学报.1998,32(5):133-137.
    [25]王统,李伟.齿轮轴3D综合弹性变形和齿向修形曲线的研究[J].上海交通大学学报.1993,27(1):64-72.
    [26]孙月海,张策,陈树勋,等.直齿轮齿廓修形的实验研究[J].中国机械工程.2003(8):10-12.
    [27]方宗德,张永才,蔺天存.斜齿轮的齿廓修形的实验研究[J].机械传动.1992(4):27-30.
    [28]霍肇波,许德林,徐振忠.斜齿轮降噪修形实验研究[J].热能动力工程.1996,11:9-11.
    [29]吕少炯.渐开线圆柱齿轮修形及其对传动性能影响的研究[D].南京航空航天大学,2010.
    [30]吴勇军,王建军,韩勤锴,等.基于接触有限元分析的斜齿轮齿廓修形与实验[J].航空动力学报.2011,26(02):409-415.
    [31]Li S. Effects of machining errors, assembly errors and tooth modifications on loading capacity, load-sharing ratio and transmission error of a pair of spur gears[J]. Mechanism and Machine Theory.2007,42 (6):698-726.
    [32]Li S. Finite element analyses for contact strength and bending strength of a pair of spur gears with machining errors, assembly errors and tooth modifications[J]. Mechanism and machine theory.2007,42 (1):88-114.
    [33]Hotait M, Kahraman A. Experiments on Root Stresses of Helical Gears With Lead Crown and Misalignments[J]. Journal of Mechanical Design.2008,130 (7):74502-74505.
    [34]仙波正庄.高强度齿轮设计[M].北京:机械工业出版社,1981.
    [35]仙波正庄.齿轮的误差与强度[M].北京:机械工业出版社,1982.
    [36]崔淑香.齿轮修形技术[J].一重技术.1994(1):21-26.
    [37]工建军李润方.齿轮系统动力学——振动、冲击、噪声[M].北京:科学出版社,1997.
    [38]Terauchi Y, Nadano H. Effect of tooth profile modification on the scoring resistance of spur gears[J]. Wear.1982,80 (1):27-41.
    [39]方兆康.论高速齿轮的胶合强度设计[J].机械开发.1997(3):22-25.
    [40]杨龙,李应生,王志强,等.齿廓修形对齿轮齿面温度影响分析[J].机械传动.2011(8)15-19.
    [41]杨廷力,叶新,王玉璞,等.渐开线高速齿轮的齿高修形(一)[J].机械传动.1982(3)14-24.
    [42]Sigg H. Profile and longitudinal corrections on involute gears[M]. AGMA,1965.
    [43]萨本估.高速齿轮传动设计[M].北京:机械工业出版社,1986.
    [44][so. Calculation of load capacity of spur and helical gears:Basic principle and in fluence factor[S].1990.
    [45]王建军,张永忠.齿轮轮齿弹性变形的计算方法评述[J].机械科学与技术.1996,15(6)863-870.
    [46]Weber C. The deformation of loaded gears and the effect on their load carrying capacity[R]. British Scientific and Industrial Research Sponsored Research,1949.
    [47]Tavakoli MS, Houser D R. Optimum profile modifications for the minimization of static transmission errors of spur gears[J].1984:86-94.
    [48]程乃士,刘温,孙大乐.保角映射法分析直齿轮轮齿变形[J].机械工程学报.1994(3)39-46.
    [49]程乃士,刘温.用平面弹性理论的复变函数解法精确确定直齿轮轮齿的挠度[J].应用数学和力学.1985(7):619-632.
    [50]程乃士,刘温PINPOINT CALCULATION OF TOOTH DEFLECTION ON SPUR GEAR BY MEANS OF METHOD OF COMPLEX VARIABLES IN PLANE ELASTICITY[J]. Applied Mathematics and Mechanics (English Edition).1985 (7):659-673.
    [51]Yoshio, Treauchi, Kazuteru,等.直齿圆柱齿轮轮齿挠曲计算及其齿廓修缘[J].齿轮.1983(3):37-40.
    [52]魏任之,张永忠,史兴虹.关于直齿圆柱齿轮轮齿受载变形量的计算[J].煤矿机械.1980(1):1-8.
    [53]Beghini M, Presicce F, Santus C. A method to define profile modification of spur gear and minimize the transmission error[S].2004.
    [54]Wang J. Numerical and experimental analysis of spur gears in mesh[D]. Curtin University of Technology,2003.
    [55]Coy J J, Chao C H. A Method of Selecting Grid Size to Account for Hertz Deformation in Finite Element Analysis of Spur Gears [J]. Journal of Mechanical Design.1982,104 (4):759-764.
    [56]Harris S L. Dynamic loads on the teeth of spur gears [J]. ARCHIVE:Proceedings of the Institution of Mechanical Engineers.1958,172 (1958):87-112.
    [57]陈德华,滕鲁湘,李光瑾,等.渗碳淬硬层残余应力的分布特征[J].热处理.2011(02)
    [58]黄丽荣,汤宏智.汽车齿轮硬化层深的设计[J].热处理技术与装备.2008(06)
    [59]颜克君.硬齿面齿轮技术及特点[J].砖瓦.2007(3):10-13.
    [60]Beghini M, Bragallini G M, Presicce F, et al. Influence of the linear tip relief modification in spur gears and experimental evidence:ICEM12-12th International Conference on Experimental Mechanics [Z]. Politecnico di Bari:Politecnico di Bari Italy,20048.
    [61]Padmasolala G, Lin H H, Oswald F B. Influence of tooth spacing error on gears with and without profile modifications[Z].2000:101,103.
    [62]李绍彬,李润方,林腾蛟.基于热弹变形的圆柱齿轮理想修形曲线[J].中国机械工程.2003(14):11-15.
    [63]杨晓东,李月潭,杨卓娟,等.原始齿廓修缘型线的类型分析[J].吉林工业大学学报.1998,28(3):71-75.
    [64]Wang J. Numerical and experimental analysis of spur gears in mesh[J]. PhD Curtin University of.2003.
    [65]陈霞.直齿锥齿轮修形方法研究[D].华中科技大学,2006.
    [66]尚振国,王华.风力发电增速器齿轮齿廓修形有限元分析[J].机械传动.2009(04):69-71.
    [67]王朝晋,丁玉成.关于齿廓修形的研究(二)[J].齿轮.1986(3):9-11.
    [68]吴宏基,钱名海,刘健,等.齿轮噪音和低噪音工艺研究[J].大连理工大学学报.1991,31(2):176-182.
    [69]杨廷力,王玉璞,叶新,等.渐开线高速齿轮的齿向修形[J].齿轮.1982(4):1-11.
    [70]唐增宝,钟毅芳,戴玉堂.斜齿圆柱齿轮传动的静态啮合刚度和动态啮合刚度[J].机械设计.1993(6):72-75.
    [71]方宗德.斜齿轮齿面柔度矩阵与修形的有限元计算[J].航空动力学报.1994(3):17-19.
    [72]常山,徐振忠.重载齿轮齿面接触应力分布及轮齿修形[J].矿山机械.1995(11):21-24.
    [73]常山,李威.用静态传递误差法进行高速宽斜齿轮振动分析[J].机械设计.1997(1):32-34.
    [74]常山,陈谌闻.斜齿圆柱齿轮瞬时啮合刚度及齿廓修形的研究[J].热能动力工程.1997,12(4):270-274.
    [75]Standard I.6336-1:1996, Calculation of Load Capacity of Spur and Helical Gears part 1:Basic Principles, Introduction and General Influence Factors[S].1996.
    [76]会田俊夫.齿轮的设计和制造[M].北京:农业机械出版社,1983.
    [77]宋乐民.齿形与齿轮强度[M].国防工业出版社,1987.
    [78]Schulze T. Load Distribution in planetary gears under consideration of all relevant influences, Vortrag anlasslich JSME International Conference on Motion and Power Transmissions, Sendai (Japan),13.-15[Z]. Mai,2009.
    [79]方宗德,沈允文.斜齿轮传动鼓形齿的优化设计[J].航空动力学报.1992(1):27-30.
    [80]刘更,沈允文.内外啮合斜齿轮三维有限元网格自动生成原理及其程序实现[J].机械工程学报.1992,28(5):20-25.
    [81]方宗德.斜齿轮齿面柔度矩阵与修形的有限元计算[J].航空动力学报.1994(3):17-19.
    [82]陈佳.考虑齿面及轴线偏差的斜齿轮接触有限元分析[D].大连理工大学,2009.
    [83]刘振国.含齿形误差的齿轮传动接触分析与修形研究[D].大连理工大学,2010.
    [84]王海霞.小倾角船用齿轮箱接触分析及动态特性研究[D].重庆大学,2010.
    [85]田涌涛,李从心,佟维,等.基于子结构技术的复杂齿轮系统有限元三维接触分析[J].机械工程学报.2002,38(5):133-137.
    [86]尚振国.风力发电机增速器齿轮修形技术研究[[D].大连理工大学,2010.
    [87]肖铁英,袁盛治,陆卫杰.行星齿轮机构均载系数的计算方法[J].东北重型机械学院学报.1992(4):290-295.
    [88]陆俊华,李斌,朱如鹏.行星齿轮传动静力学均载分析[J].机械科学与技术.2005(6)702-704.
    [89]尤明明,吴立言,何丽.基于有限元法的行星传动不均载系数计算[J].机械设计与制造.2009(3):1-3.
    [90]Kahraman A, Viiavakar S. Effect of internal gear flexibility on the quasi-static behavior of a planetary gear set[J]. Journal of mechanical design.2001,123 (3) 408-415.
    [91]Ligata H, Kahraman A, Singh A. A Closed-Form Planet Load Sharing Formulation for Planetary Gear Sets Using a Translational Analogy[J]. Journal of Mechanical Design. 2009,131 (2):21007.
    [92]Singh A. Application of a System Level Model to Study the Planetary Load Sharing Behavior[J]. Journal of Mechanical Design.2005,127 (3):469-476.
    [93]Ligata H, Kahraman A, Singh A. An Experimental Study of the Influence of Manufacturing Errors on the Planetary Gear Stresses and Planet Load Sharing[J]. Journal of Mechanical Design.2008,130 (4):41701-41709.
    [94]Singh A, Kahraman A, Ligata H. Internal Gear Strains and Load Sharing in Planetary Transmissions:Model and Experiments[J]. Journal of Mechanical Design.2008,130 (7):72602-72610.
    [95]马星国,陆扬,尤小梅.基于多柔体动力学技术的行星轮系多体动力学仿真分析[J].中国机械工程.2009(16):1956-1959.
    [96]孙智民,沈允文,李素有.封闭行星齿轮传动系统的动态特性研究[J].机械工程学报.2002(2):44-48.
    [97]马朝锋,刘凯,靳艳丽.风力发电机行星传动增速系统动态均载研究[J].西安理工大学学报.2008(3):286-289.
    [98]陆俊华,朱如鹏,靳广虎.行星传动动态均载特性分析[J].机械工程学报.2009(5):85-90.
    [99]李阳,刘光磊,刘更,等.基于间隙浮动的行星齿轮传动系统静力学均载分析[J].机械科学与技术.2009(8):1115-1120.
    [100]Parker R G, Ambarisha V K. Nonlinear Dynamics of Planetary Gears Using Analytical and Finite Element Models[J]. ASME Conference Proceedings.2007,2007 (48086) 487-504.
    [101]Parker R G, Agashe V, Vi jayakar S M. Dynamic Response of a Planetary Gear System Using a Finite Element/Contact Mechanics Model [J]. Journal of Mechanical Design.2000,122 (3):304-310.
    [102]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [103]彼得·艾伯哈特,胡斌.现代接触动力学[M].南京:东南大学出版社,2003.
    [104]Ansys J. Ansys Theory reference, Ansys Release 10.0. Ansys[M]. Inc,2005.
    [105]孙建国,林腾蛟,李润方,等.渐开线齿轮动力接触有限元分析及修形影响[J].机械传动.2008(2):57-59.
    [106]黄丽丽.有限元.三维六面体网格自动生成与再生成算法研究及其应用[D].山东大学,2010.
    [107]力‘艳丽.基于ANSYS耦合箱体刚度的齿轮修形研究[D].大连理工大学,2009.
    [108]王文杰.风机增速器斜齿轮啮合载荷及齿向修形的研究[D].大连理工大学,2008.
    [109]汪明民.基于接触有限元分析的渐开线齿轮齿廓修形的研究[D].大连理工大学,2007.
    [110]王钦.基于接触分析的齿轮建模和齿廓修形研究[D].大连理工大学,2008.
    [111]Brauer J. Transmission error in anti-backlash conical involute gear transmissions: a global-local FE approach[J]. Finite Elements in Analysis and Design.2005,41 (5):431-457.
    [112]Mao K. Gear tooth contact analysis and its application in the reduction of fatigue wear[J]. wear.2007,262 (11-12):1281-1288.
    [113]王炎,马吉胜,刘海平.重载车辆变速箱齿轮齿廓修形技术研究[J].机械传动.2011(1)12-14.
    [114]申秀丽,温卫东,高德平.接触问题形状优化的边界元法及其工程应用[J].航空动力学报.1997(02):113-117.
    [115]崔海涛,马海全,温卫东.弹性接触问题的形状优化设计方法[J].应用力学学报.2004(02):83-86.
    [116]任家骏,张光辉,王丽彪,等.用边界元法对三维弹性接触问题进行形状优化[J].太原理工大学学报.2001(04)
    [117]王繁生,任家骏.三维弹性接触体形状优化问题的研究[J].机械设计.2002(8):15-17.
    [118]王丽彪.三维弹性接触问题形状优化及应用[D].太原理工大学,2001.
    [119]尉小霞.斜齿轮接触问题的形状优化研究[D].太原理工大学,2002.
    [120]于亚妮.基于ANSYS的直齿轮接触问题的齿向形状优化研究[D].太原理工大学,2008.
    [121]于亚妮,任家骏,李秀红,等.修形齿轮的ANSYS参数化建模和有限元网格划分研究[J].机械管理开发.2009,24(5):173-174.
    [122]王树人.齿轮啮合理论简明教程[M].天津:天津大学出版社,2005.
    [123]成大先.机械设计手册[M].五.北京:化学工业出版社,2007.
    [124]易传云,曾照勇.基于数字化共轭曲面的插齿修形[J].机械科学与技术.2007(3):269-273.
    [125]常江.齿轮副的静、动态数值计算与动态光弹性实验研究[D].天津大学,2005.
    [126]王守新.材料力学[M].大连:大连理工大学出版社,2004.
    [127]饶振纲.行星齿轮传动设计[M].北京:化学工业出版,2003.
    [128]徐步青,佟景伟.移动载荷下齿根应用的时间历程[J].机械传动.2001,25(3):21-24.