柴油机台架磨合过程摩擦学特性的实验室模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
台架磨合是柴油机出厂前的最后一道关键工序,对柴油机的可靠性和使用寿命有重要影响。制定合理的磨合工艺是达到磨合目的的先决条件。目前国内柴油机生产厂家在磨合工艺的制定方面仍以现场实验摸索为主,缺少系统的理论指导。
     本课题在实验室内,通过实验模拟研究了柴油机主要摩擦副气缸套/活塞环和曲轴颈/轴瓦的台架磨合过程,应用表面粗糙度分析、光谱分析、铁谱分析、表面硬度分析以及扫描电镜观察等方法,重点研究了影响磨合工艺制定的主要参数载荷、摩擦速度、润滑条件及不同磨合阶段对这两组摩擦副表面摩擦学特性的影响。
     研究表明,载荷参数的选择对磨合过程有重要影响。在一定范围内增大载荷令磨合后气缸套的表面粗糙度降低,气缸套磨合的最佳载荷范围为30Mpa~35MPa;提高轴颈原始表面的加工质量使磨合以后轴瓦的表面质量更好,适合轴瓦磨合的载荷为5Mpa~6Mpa。摩擦速度对气缸套的磨合过程有较大影响,较低载荷下提高摩擦速度对磨合产生更好的作用。轴承合金在磨合过程中以复杂的动态过程向轴颈表面转移,这可能是磨合初期轴颈和轴瓦表面形貌变化不稳定的根本原因。
     研究也证明,润滑油的光谱分析和铁谱分析可以对磨合状况做出有效的判断。综合运用两种方法使分析结果更为准确可靠;相比于普通润滑油,康胜磨合油对磨合过程的作用更为明显,可以增大载荷承受能力、拓宽速度适应范围、加快磨合进程并使相同条件下摩擦副表面质量更好。
     本文采用的研究手段和研究成果具有广泛适应性,这对于柴油机台架磨合工艺的改进及磨合质量的提高无疑具有一定的参考价值和指导意义。
Running-in, as a last process in manufacturing of diesel engine, plays a very important role and has a remarkable effect on the reliability and the lifetime of a diesel engine. So the design of a rational running-in program was considered as key process for running-in quality. Presently, most of manufacturers carry out mostly their running-in by way of the experience, what is lack of guidance based on systematic theoretical and experimental study.
    Through some experiments in laboratory, the process of diesel engine's running-in have been simulated and the tribological characters of cylinder/piston ring and shaft neck/bearing have been studied by means of surface roughness analysis, spectrographic analysis and ferrographic analysis of lubricant, surface hardness measure as well as scanning electronic microscope observation. Therefore some conclusions based on the research have been drawn as follow:
    The surface roughness of cylinder reduced as load was increased in a certain range. The appropriate load for cylinder was confirmed as 30MPa~35MPa; The surface quality of bearing after running-in has been better improved when the initial roughness of shaft neck was lower, the suitable load for bearing is about 5MPa~6MPa. At the beginning of running-in, the dynamic transfer and recycling of bearing alloy between bearing and shaft neck are so complicated that these can lead to a result of fluctuation of friction pair's surface quality. The friction speed has a considerable effect on the running-in process of cylinder; increasing friction speed is in favor of the running-in of cylinder. Besides, it is shown that the spectrographic analysis and ferrographic analysis of lubricant can be taken as a judging criterion for the running-in process, synthesizing of both method makes the result more accurate and reliable. Compared to common lubricant, Kangsheng oil makes the friction pair to undertake a larger load and more rapid friction speed, as result, to accelerate running-in process and to make surface quality better.
    
    
    
    The results can be taken as a guidance and reference for the improvement of running-in or design of running-in program.
引文
[1] 李兴林,李建平等.国外摩擦副磨合过程的研究.《轴承》2000,(3):43-47.
    [2] E.R. Brainthwaite. The Influence of MoS2 on the Mechanism of Piston-ring. Wear during the Running-in Process. Industrial Lub &Trib,1999,Vol.51,No.6: 274-286.
    [3] Martin E Jensen, J(?)rgen B(?)tiger, Henrik H. Reitz, Michael E. Benzon. Simulation of wearing characteristics of engine cylinders, Wear, 2002,Vol.253:1044-1056
    [4] H. So.R.C. Lin. The combined effects of ZDDP surface texture and hardness on the running-in of ferrous metals. Tribology International 32, 1999:243-253
    [5] E.S. Gadelmawla, M. M. Koura, T. M. A. Maksoud, I. M. Elewa, H. H. Soliman. Roughness parameters. Journal of Materials Processing Technology123, 2002: 133-145.
    [6] W. Wang, E L. Wong. Z. Zhang. Experimental study of the real time changes in surface roughness during running-in for PEHL contacts. Wear 244, 2000:140-146
    [7] Ge Shirong, Chen Gouan. Fractal prediction models of sliding wear during the running-in process. Wear231, 1999: 249-255.
    [8] Yoshio Kumada, Katsuyuki Hashizume, Yoshitsugu Kimura. Running-in Property. JSAE Reviewl7, 1996: 435-458.
    [9] 张昭霖,巫佛珍.发动机快速磨合规范的讨论及磨合机理分析.中南林学院学报,1996,16(1):61-64.
    [9] 张家玺,马保吉,朱均.内燃机缸套、活塞环磨合实验与规范.车用发动机,1998,114(2):25.31.
    [10] 杨贵恒.内燃机磨合研究.移动电源与车辆,1997,1:15-18.
    [11] 周昌登,申屠淼等.确定中小型柴油机磨合期方法的研究.农业机械学报,1994,25(3):102-106.
    [12] 万德玉,岳政.柴油机出厂试车磨合规范的试验研究.山东内燃机,2002,72(2) 31-39.
    
    
    [13] 石心余,沈权.内燃机车柴油机磨合规范的试验研究.西南交通大学学报,2000,35(5):517-521.
    [14] 肖建成.16V240ZJB型柴油机厂修台架试验规范.内燃机车,1996,266(4):29-33.
    [15] 陈宾权,霍权,王薇.东风4型机车柴油机中修磨合试验规范合理性初探.内燃机车,2001,326(4):15-21.
    [16] 刘晋冀,刘混举,武丕炯.油液分析状态监测技术及其应用.山西机械,2000,109(4):3-6.
    [17] 张焕梅.大型机械设备监测使用的分布油液分析法.露天采煤技术,1999,2:22-24;
    [18] 马怀祥,徐明新,金钰.应用油液分析法和振动法诊断往复机械故障.石家庄铁道学院学报,1998,11(2):39-43.
    [19] 陈铭,王成焘.车用内燃机润滑系统的状态监测技术.内燃机工程,2000,3:64-70.
    [20] 刘卫华,郁永章.往复压缩机故障诊断方法的研究.压缩机技术,2001,165(1):3-6.
    [21] 张红,李柱国.油液分析技术在重大机加工设备状态监测中的应用.润滑与密封,2002,5:60-62.
    [22] 朱新河,严志军,刘一梅等.油液监测技术在船舶主柴油机中的应用及其维修决策研究.润滑与密封,2001,5:57-59.
    [23] 李柱国,张红,俞五全.柴油机磨合油选用的试验研究.内燃机工程,2002,23(5):61-63.
    [24] 聂钢,雷爱莲,靳印牢.内燃机磨合油磨合性能试验方法研究.润滑油,1999,14(4):36-40.
    [25] 夏延秋,刘维民,薛群基.几种内燃机磨合油的摩擦学性能评价及在缸套和活塞环摩擦副上的应用.摩擦学学报,2001,21(5):358-361.
    [26] Tao Xu, Jiazheng Zhao, Kang Xu etc. Study on the tribological properties of ultra-dispersed diamond containing soot as oil additive. Tribology transactions, 1997,
    
    40: 178-182.
    [27] 张家玺.再探纳米金刚石对缸套表面摩擦学改性机理.润滑与密封,2001,3:38-40.
    [28] 陈生玉,陈增凯.纳米级金刚石系列产品的现状及展望.宇航材料工艺,1999,2:9.11.
    [29] 严立,余宪海.内燃机磨损及可靠性技术.北京:人民交通出版社.1992:26-28.
    [30] 陆大雄.摩擦学导论.北京:北京出版社,1990:263-265.
    [31] T.R. Thomas, The characterization of changes in surface topography during running-in, in: D. Dowson etc. Eds. Proceedings of the 4th Leeds-Lynon Symposium on Tribology, Mechanical Engineering Publications, Leeds, 1977: 99-108.
    [32] S.K. Roy Chowdhury, H. Kaliszer, G. W. Rowe, An analysis of changes in surface topography during running-in of plain bearings, Wear 16, 1979:331-343.
    [33] D. Forcher, L. Flamand, D. Berthe, Running-in of lubricated hertzian contacts, in: D. Dowson etc. Eds. Proceedings of the 8th Leeds-Lynon Symposium on Tribology, Butterworth, England, 1981: 58-61.
    [34] K. J. Stout. T.G. King, D. J. Whitehouse, Analytical techniques in surface topography and their application to a running-in experiment. Wear43 1977:99-115.
    [35] P. Pawlus, A study on the functional properties of honed cylinder surface during nmning-in, Wear176 1994:247-254.
    [36] 马争,桂长林.评定表面的最佳形貌参数.摩擦学学报,1995,15(2):133-137.
    [37] 萧汉梁.机械工况监测与故障诊断.武汉:武汉交通科技大学 1994:63-73.
    [38] 张鄂.铁谱技术及其工业应用.西安:西安交通大学出版社,2001:127-133.
    [39] 樊东黎.热处理工程师手册.北京:机械工业出版社,2002:753-767.
    [40] 柯开波.活塞环使用中的初期磨合.汽车技术,1999,6:36-39.
    [41] 张移山,孔宪梅,陈大融.关于柴油机缸套活塞环磨合过程的数学模型.机械科学与技术,1997,16(1):1-6.
    
    
    [42] 余宪海.缸套内壁平台网纹试验研究.广州航海高等专科学校学报,1999,13(2):22-24.
    [43] 贾锡印.柴油机的润滑与磨损.北京:国防工业出版社,1988:6-7.
    [44] 温诗铸.摩擦学原理.北京:清华大学出版社,1990:444-445.
    [45] 李建明.磨损金属学[M].北京:冶金工业出版社,1990:229-233.
    [46] 杜荣铭.船舶柴油机[m].大连:大连海事大学出版社,1997:18-19.
    [47] [苏]柳巴尔斯基著.高彩桥译.摩擦的金属物理,1984:13-14.
    [48] 金允文.浅谈柴油机车柴油机润滑油的品质.铁道物资科学管理,1998,95(4):29-30.
    [49] 张绪寿,余来贵,陈建敏.表面工程摩擦学研究进展[J].摩擦学学报,2000,20(2):156-160
    [50] 宋占魁,吴志春.发动机轴瓦损伤分析[J].黑龙江交通科技,1995,3:56-58.
    [51] 薛伯.轴瓦电镀Pb-Sn-Cu三元合会工艺的优化[J].电镀与环保,2000,20(1):8-10.
    [52] 顾卡丽,赵源等.柴油机轴瓦、曲轴轴颈摩擦副摩擦学性能研究[J].摩擦学报,2001,21(6):491-493.
    [53] 陶益民,姚振强等.微型轴承性能测试与分析.机械工程学报,2002,38(11): 88-91.
    [54] 胡庚祥.金属学.上海:上海科技出版社,1987:176-180.
    [55] 满一新.轮机工程材料.大连:大连海事大学出版社,1996:142-145.