锂离子电池正极材料富锂层状氧化物的可控制备及组分优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池作为储能设备已经广泛的应用于移动电子设备如手机、笔记本电脑等。但是尚不能满足大功率、高能量密度的汽车用动力电池的需求。锂离子电池的性能和成本主要取决于正极材料,目前商业化使用的锂离子电池正极材料LiCoO2、LiMn2O4和LiFePO4等的放电比容量只有110-160mAh g-1,发展高比容量的锂离子电池正极材料已成为电极材料研究的热点之一。富锂层状氧化物xLi2MnO3·(1-x)LiMO2(M=Ni, Co, Mn, Fe, Cr, Ki1/2Mn1/2, Ni1/3Co1/3Mn1/3...)的放电比容量能够达到230-300mAhg-1,远高于商业化的正极材料,同时具有较好的循环稳定性,是一种有发展前景的正极材料;但是富锂层状氧化物较低的首次库伦效率,较差的倍率性能和循环中电压衰减等问题影响了它的发展。目前制备具有良好结晶性和纳米尺寸的富锂层状氧化物,优化富锂层状氧化物中各种化学组分的含量,杂原子掺杂和功能材料表面修饰等手段是改善该材料缺陷的有效途径。本论文选取一种具有较好电化学性能的富锂层状氧化物Li1.2Ni0.13Co0.13Mn0.54O2)作为研究对象,重点对此材料进行了可控制备和组分优化研究,分为以下几个方面:
     (1)以P-MnO2纳米棒作为牺牲模板通过固相反应制备了富锂层状氧化物Li1.2Ni0.13Co0.13Mn0.54O2,重点考察了煅烧温度对材料结构和电化学性能的影响。随着煅烧温度的提高,产物的层状有序性明显提升,颗粒尺寸变大,同时颗粒的表面也变得更加光滑。在较低的煅烧温度(750和800℃)下,形成的是Li1.2Ni0.13Co0.13Mn0.54O2纳米棒,而在较高的煅烧温度(850和900℃)下,产物转变为结晶性更好,尺寸更大的多面体纳米颗粒。作为锂离子电池正极材料,材料显示了结构和形貌决定的电化学性能。在850℃的煅烧温度下,产物具有最优的电化学性能:在0.1C的电流密度和2.0-4.7V的电压区间,其首次放电比容量达到239.2mAh g-1;在1000mA g-1电流密度下,放电比容量为92.8mAh g-1;在100mAg-1电流密度下,经过70次循环,容量保持率超过90%。
     (2)分别以球形的Ni0.13Co0.13Mn0.54(CO3)0.8和MnO2作为牺牲模板制备了多孔和实心的Li1.2Ni0.13Co0.13Mn0.54O2微球。当以球形碳酸盐作为模板时,由于在反应中C02的逸出,形成的是由尺寸为100-300nm纳米颗粒堆积而成的多孔微球,其比表面积为1.91m2g-1。当以球形MnO2作为牺牲模板时,由于过渡金属元素在固相反应中的化学嵌入,形成的是由纳米颗粒密堆积形成的实心微球,其比表面积为1.41m2g-1。作为锂离子电池正极材料,多孔微球在0.1C的电流密度和2.0-4.8V的电压区间,其首次放电比容量达到255.7mAh g-1;在5C的电流密度下,放电比容量也能达到121.4mAh g-1。但是实心微球在0.1C的电流密度下,其首次放电比容量只有159.9mAh g-1。
     (3)通过一个起始的80℃丙烯酸聚合,450℃分解和最后850℃晶化的方法制备了富锂层状Li1.2Ni0.13Co0.13Mn0.54O2纳米颗粒。制备目标产物的颗粒尺寸为173.2±66.2nm,并具有良好的层状结构。通过高分辨透射电子显微镜(HRTEM)和选区电子衍射(SAED)测试表明:产物具有单晶结构和超晶格特征。作为锂离子电池正极材料,产物在20mAg-1的电流密度和2.0-4.8V的电压区间,其首次放电比容量和库伦效率达到290.7mAh g-1和78.3%;在100mAg-1的电流密度下,经过60次循环剩余容量为182.7mAh g-1;在1000mAg-1的电流密度下,其放电比容量也能达到122.5mAh g-1。
     (4)通过丙烯酸聚合分解法制备了不同Co含量的0.5Li2MnO3·0.5LiNi1/3+xCo1/3-2xMn1/3-xO2(-1/12≤x<1/12)样品,这些样品呈现由纳米颗粒堆积而成的片状结构,Co含量的增加促使纳米颗粒尺寸的变大。作为锂离子电池正极材料,Co含量的增加略微降低了材料的放电比容量,但起始库伦效率和循环稳定性明显提升。综合成本和电化学性能考虑,最优的x值应该在0到1/12之间,这与目前主要研究的和商业化的富锂层状氧化物的钴含量接近。
     (5)通过柠檬酸辅助的溶胶-凝胶法制备了具有良好结晶性的Li1.2Ni0.i3+xCo0.13Mn0.54-xO2(-0.06≤x≤0.06)纳米颗粒。Mn含量的增加提高了产物中Li2MnO3组分的含量和产物颗粒尺寸;Ni含量的增加引起了材料中更强的Li/Ni阳离子混排。当作为锂离子电池正极时,x=0的样品具有最高的起始放电比容量和库伦效率;增加材料的Mn含量能够提高产物的循环稳定性;增加材料的Ni含量能够提高材料的倍率性能和导电性,同时抑制电压衰减。最优的x值应该是-0.03到0.03。此外,考察了截止电压(4.5-4.8V)对Li1.2Ni0.13Co0.13Mn0.54O2纳米颗粒电化学性能的影响,通过降低截止电压能够有效的提高材料的循环稳定,倍率性能;同时抑制电压的衰减,但是却会降低材料的放电比容量和比能量。综合考虑,最优的截止电压应该为4.6-4.7V。
Nowdays, lithium ion battery (LIB) have been widely used in portable electronic devices such as mobile phone and computer. However, they are difficult to meet the demands of high power and energy densities for electric and hybrid electric vehicles. It is well known that, the electrochemical performance and cost of LIB are determined by the cathode materials. Commercial cathode materials such as LiCoO2, LiMn2O4and LiFePO4only have a specific discharge capacity within100-160mAh g-1, which limits the further development of LIB. The exploration and development of cathode materials with higher specific discharge capacity are of great importance. In recent years, the lithium-rich layered oxides in the chemical formula of xLi2MnO3·(1-x)LiMO2(M=Ni, Co, Mn, Fe, Cr, Ni1/2Mn1/2, Ni1/3Co1/3Mn1/3...) have attracted specialists more and more attentions and have been recognized as one of the most promising next generation cathodes due to their high specific discharge capacities of230-300mAh g-1. However, their high irreversible capacity loss in the initial cycle, low rate capability and decrease of discharge midpoint voltage upon cycling still exist. In order to solve or alleviate these shortages, preparation of well-constructed and nanosized materials, optimization of the chemical compositions of lithium rich layered oxides, doping with other ions and surface modification with functional compounds have been successfully used. Herein, a promising lithium-rich layered oxides Li1.2Ni0.13Co0.13Mn0.54O2(0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2) has been selected as research target, and a serie of controlling synthesis and content optimization studies have been carried out, shown as below:
     (1) Lithium-rich layered oxides Li1.2Ni0.13Co0.13Mn0.54O2have been successfully prepared by a template directed route using β-MnO2nanorods as sacrificed templates. The influence of calcination temperature on the structures and electrochemical properties of as-prepared materials are systematically studied. The elevated calcination temperature helps to improve the layered structures and particle sizes. At the low temperatures (i.e.,750and800℃), rod-like Li1.2Ni0.13Co0.13Mn0.54O2can be obtained, and which will be transformed into polyhedral Li1.2Ni0.13Co0.13Mn0.54O2nanoparticles at a higher temperature (i.e.,850or900℃). The electrochemical performances of as-prepared Li1.2Ni0.13Co0.13Mn0.54O2are determined by their different particle sizes and layered structures. At the optimal calcination temperature of850℃, the resulting Li1.2Ni0.13Co0.13Mn0.54O2shows the highest discharge capacity of239.2mAh g-1at20mA g-1within2.0-4.7V, and a stable discharge capacity of92.8mAh g-1at1000mA g-1. The good electrochemical performances of850℃sample should be attributed to the better layered structure and/or the more appropriate particle size comparing with those of other samples.
     (2) Porous and solid Li1.2Ni0.13Co0.13Mn0.54O2spheres have been successfully prepared by using templates of spherical Ni0.13Co0.13Mn0.54(CO3)0.8and MnO2. Porous Li1.2Ni0.13Co0.13Mn0.54O2spheres obtained from carbonate precursor are composed of well-defined primary nanoparticles with the size of100-300nm, and the porous feature can be visually determined. While the solid Li1.2Ni0.13Co0.13Mn0.54O2spheres are made of tightly clustered nanoparticles. The former porous structures come from the generation of CO2, and the latter results from the excessive ions insertion during calcination. Correspondingly, the porous spheres have higher BET surface area than solid spheres. As lithium ion battery cathodes, the porous spheres exhibit a higher initial discharge capacity of255.7mAh g-1at0.1C between2.0and4.8V. After50cycles, a discharge capacity of177.7mAh g-1could be retained at0.5C. Even at a high charge-discharge rate of5C (1000mA g-1), a specific value of121.4mAh g-1can be reached. By comparison, the solid spheres only deliver initial discharge capacity of159.9mAh g-1at0.1C.
     (3) A combination of the primary polymerization of acrylic acid (AA) monomers, the subsequent pyrolysis of PAA polymer gels at450℃and the final high-temperature crystallization (850℃) is used to prepare Li1.2Ni0.13Co0.13Mn0.54O2nanoparicles. The as-prepared Li1.2Ni0.13Co0.13Mn0.54O2nanoparicles have an average particle size of173.2±66.2nm and a good layered structure. HRTEM and SAED results show that, these nanoparticles possess a single-crystalline nature and a superlattice ordering. As LIB cathodes, these single-crystalline nanoparticles can deliver a high initial discharge capacity of290.7mAh g-1and the first cycle coulombic efficiency of78.3%at20mA g-1between2.0and4.8V, remain a reversible value of182.7mAh g-1at100mA g-1over60charge-discharge cycles and reach a capacity of122.5mAh g-1at a high current rate of1000mAg-1.
     (4) A series of cathode materials0.5Li2MnO3·0.5LiNi1/3+xCo1/3-2xMn1/3+xxO2(-1/12≤x≤1/12) are prepared by a PAA polymerization-pyrolysis-assisted crystallization route. All powders possess a two-dimensional sheet-like superstructure composed of crystalline nanoparticles, and the added Co content helps to increase the particle size. As LIB cathodes, the samples with an increasing Co content can slightly increase the diacharge capacity, but are unfavorable to the initial coulombic efficiency and cycling stability. The optimal Co contents correspond to the x value of1/12and0, which is closed to the Co content of most used and commercial lithium-rich layered oxides.
     (5) The influences of Mn-Ni contents on the structures and electrochemical performances of Li1.2Ni0.13+xCo0.13Mn0.54-xO2(-0.06≤x≤0.06) are clearly studied. A citric acid-assisted sol-gel route has been successfully used for the nanofabrication of these materials. The elevated Mn contents can increase the content of Li2MnO3component and particle sizes, and the elevated Ni contents lead to more Li/Ni cation mixing. As LIB cathodes, the x=0sample shows the highest discharge capacity and coulombic efficiency, the elevated Mn content helps to improve the cycling stability, and the elevated Ni content are favorable to the rate capability, electrochemical conductivity and discharge voltage. The optimal x value should be between-0.03and0.03. Furthermore, the upper cutoff voltage (4.5-4.8V) studies are also carried out for Li1.2Ni0.13Co0.13Mn0.54O2nanoparticles. Based on the total considerations of discharge capacity, discharge energy, cycling stability and rate capability, the optimal upper cutoff coltage should be4.6-4.7V.
引文
[1]郭炳馄,徐徽,王先友,肖立新,“锂离子电池[M]”,中南大学出版社(2002).
    [2]黄可龙,王兆翔,刘素琴,“锂离子电池原理与关键技术[M]”,化学工业出版社(2007)
    [3]B. Dunn, H. Kamath, J. M. Tarascon, "Electrical energy storage for the grid:a battery of choices [J]" Science,2011,334,928-935.
    [4]B. L. Ellis, K. T. Lee, L. F. Nazar, "Postive electrode materials for Li-ion and Li-batteries [J]" Chem. Mater.,2010,22,691-714.
    [5]M. J. Armstrong, C. O'Dwyer, M. J. Macklin, J. D. Holmes, "Evaluating the performance of nanostructured materials as lithium-ion battery electrodes [J]" Nano Res.,2014,7,1-65.
    [6]J. B. Goodenough, Y. Kim, "Challenges for rechargeable Li batteries [J]" Chem. Mater.,2010,22,587-603.
    [7]黄友桥,管道安,“锂离子电池隔膜材料的研究进展[J]”船电技术,2011,31,26-29.
    [8]K. Mitzushima, P. C. Jones, P. J.Wiseman, J. B.Goodenough, "LixCoO2 (0< x< 1):A new cathode material for batteries of high energy density [J]" Mater. Res. Bull.,1980,15,783-789.
    [9]R. Yazami, Y. Ozawa, H. Gabrisch, B. Fultz, "Mechanism of electrochemical performance decay in LiCoO2 aged at high voltage [J]" Electrochim. Acta,2004, 50,385-390.
    [10]E. Antolini, "LiCoO2:formation, structure, lithium and oxygen nonstoichiometry, electrochemical behavior and transport properties [J]" Solid State Ionics,2004,170,159-171.
    [11]L. Wang, J. G. Li, X. M. He, W. H. Pu, C. R. Wang, C. Y. Jiang, "Recent advances in layered LiNixCoyMn1-x-y02 cathode materials for lithium ion batteries [J]" J Solid State Electrochem.,2009,13,1157-1164.
    [12]T. H. Cho, Y. Shiosaki, H. Noguchi, "Preparation and characterization of layered as a cathode material by an oxalate co-precipitation method [J]" J. Power Sources,2006,159,1322-1327.
    [13]J. F. Li, S. L. Xiong, Y. R. Liu, Z. C. Ju, Y. T. Qian, "uniform LiNi1/3Co1/3Mn1/3O2 hollow microspheres:designed synthesis, topotactical structural transformation and their enhanced electrochemical performance [J]" Nano Energy,2013,2,1249-1260.
    [14]Y. W. Wang, Y. Cai, X. M. He, J. R. Ying, "Development of spinel LiMn2O4 for positive electrode material of Li-ion batteries [J]"J. Ionrg. Mater.,2004,19,1-8.
    [15]H. W. Lee, P. Muralidharan, R. Ruffo, C. M. Mari, Y. Cui, D. K. Kim, "Ultrathin spinel LiMn2O4. nanowires as high power cathode materials for Li-ion batteries [J]" Nano Lett.,2010,10,3852-3856.
    [16]贺周初,庄新娟,彭爱国,“锂离子电池正极材料尖晶石型锰酸锂的研究进展[J]”精细工中间体,2010,40,7-11.
    [17]R. Santhanam, B. Rambanu, "Research progress in high voltage spinel LiNi0.5Mn1.5O4 material [J]" J. Power Sources,2010,195,5442-5451.
    [18]T. F. Yi, Y. Xie, M. F. Ye, L. J. Jiang, R. S. Zhu, Y. R. Zhu, "Recent developments in the doping of LiNi0.5Mn1.5O4 cathode material for 5 V lithium-ion batteries [J]" Ionics,2010,17,383-389.
    [19]H. B. Kang, S. T. Myung, K. Amine, S. M. Lee, Y. K. Sun, "Improved electrochemical properties of BiOF coated 5 V spinel Li[Ni0.5Mn1.5]O4 for rechargeable lithium batteries [J]" J. Power Sources,2010,195,2023-2028.
    [20]Z. L. Gong, Y. Yang, "Recent progress in the research of polyanion-type cathode materials for Li-ion batteries [J]" Energy Environ. Sci,2011,4,3223-3242.
    [21]L. X. Yuan, Z. H. Wang, W. X. Zhang, X. L. Hu, J. T. Chen, Y. H. Huang, J. B. Goodenough, "Development and challenges of LiFePO4 cathode material for lithium ion batteries [J]" Energy Environ. Sci,2011,4,269-284.
    [22]P. Gibot, M. Casas-cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J. M. Tarascon, C. Masquelier, "Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4 [J]" Nat. Mater.,2008,8,741-747.
    [23]Y. G. Wang, P. He, H. S. Zhou, "Olivine LiFePO4:development and future [J]" Energy Environ. Sci.,2011,4,805-817.
    [24]C. Q. Qu, Y. J. Wei, T. Jiang, "Research progress in Li3V2(PO4)3 as polyanion-type cathode materials for lithium-ion batteries [J]" J. Inorg. Mater., 2012,27,561-567.
    [25]M. Hu, X. L. Pang, Z. Zhou, "Recent progress in high-voltage lithium ion batteries [J]" J. Power Sources,2013,237,229-242.
    [26]H. J. Yu, H. S. Zhou, "High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries [J]" J. Phys Chem. Lett.,2013,4,1268-1280.
    [27]吴峰,李宁,安然,苏岳峰,包丽颖,李月姣,陈实,“基于Li2Mn03的富锂类高比容量锂离子电池正极材料的研究进展[J]”北京理工大学学报,2012,32,1-11.
    [28]M. M. Thackeray, C. S. Johnson, J. T. Vaughey, N. Li, S. A. Hackney, "Advance in manganese-oxide 'composite'electrodes for lithium-ion batteries [J]" J. Mater. Chem.,2005,15,2257-2267.
    [29]M. M. Thackeray, S. H. Kang, C. S, Johnson, J. T. Vaughey, R. Benedek, S. A. Hackney, "Li2MnO3-stabilized LiMO2 (M= Mn, Ni, Co) electrodes for lithium-ion batteries [J]" J. Mater. Chem.,2007,17,3112-3125.
    [30]Y. J. Zhao, H. L. Feng, C. S. Zhao, Z. Q. Sun, "Progress of research on the Li-rich cathode materials xLi2Mn03-(1-.x)LiM02 (M= Co, Fe, Ni1/2Mn1/2...) for Li-ion batteries [J]" J. Inorg. Mater.,2011,26,673-679.
    [31]P. He, H. J. Yu, D. Le, H. S. Zhou, "Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries [J]" J. Mater. Chem.,2012,22, 3680-3695.
    [32]M. H. Rossouw, M. M. Thackeray, "Lithium manganese oxides from Li2Mn03 for rechargeable lithium battery applications [J]" Mater. Res. Bull,1991,26, 463-473.
    [33]P. Kalyani, S. Chitra, T. Mohan, S. Gopukumar, "Lithium metal rechargeable cells using Li2Mn03 as the positive electrode [J]" J. Power Sources,1999,80, 103-106.
    [34]J. H. Ju, S. W. Cho, S. G. Hwang, S. R. Yun, Y. Lee, H. M. Jeong, M. J. Hwang, K. M. Kim, K. S. Ryu, Electrochemical performance of Li[Co0.1Ni0.15Li0.2Mn0.55]02 modified by carbons as cathode materials [J]" Electrochim. Acta,2011,56,8791-8796.
    [35]K. A. Jarvis, Z. Q. Deng, L. F. Allard, A. Manthiram, P. J. Ferreira, "Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution [J]" Chem. Mater.,2011,23,3614-3621.
    [36]J. Bareno, M. Balasubramanian, S. H. Kang, J. G. Wen, C. H. Lei, S. V. Pol, I. Petrov, D. P. Abraham, "Long-range and local structure in the layered oxide Li1.2Co0.4Mn0.4O2 [J]" Chem. Mater.,2011,23,2039-2050.
    [37]J. G. Wen, J. Bareno, C. H. Lei, S. H. Kang, M. Balasubramanian, I. Petrov, D. P. Abraham, "Analytical electron microscope of Li1.2Co0.4Mn0.4O2 for lithium-ion batteries [J]" Solid State Ionics,2011,182,98-107.
    [38]N. Yabuuchi, K. Yoshii, S. T. Myung, I. Nakai, S. Komaba, "Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2 [J]" J. Am. Chem. Soc,2011,133,4404-4419.
    [39]H. J. Yu, R. Ishikawa, Y. G. So, N. Shibata, T. Kudo, H. S. Zhou, Y. Ikuhara, "Direct atomic-resolution observation of two phases in the Li1.2Mn0.567Ni0.166Co0.067O2 cathode material for lithium-ion batteries [J]" Angew. Chem. Int. Ed,2013,52,5969-5973.
    [40]O. Toprakci, H. A. K. Toprakci, Y. Li, L. W. Ji, L. G. Xue, X. W. Zhang, "Synthesis and characterization of xLi2MnO3·(1-x)LiMn1/3Ni1/3Co1/3O2 composite cathode materials for rechargeable lithium-ion batteries [J] J. Power Sources, 2013,241,522-528.
    [41]Z. L. Tao, S. Chen, L. Li, X. F. Zhang, R. J. Chen, I. Belharouak, F. Wu, K. Amine, "Synthesis, characterization and electrochemistry of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]02 using organic chelating agent for lithium-on batteries [J]" J. Power Sources,2013,228,206-213.
    [42]J. M. Zheng, X. B. Wu, Y. Yang, "A comparison of preparation methods on the electrochemical performance of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]02 for lithium ion battery [J]" Electrochim. Acta,2011,56,3071-3078.
    [43]K. C. Jiang, X. L. Wu, Y. X. Yin, J. S. Lee, J. Kim, Y. G. Guo, "Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries [J]" ACS Appl. Mater. Interfaces,2012,4,4858-4863.
    [44]C. H. Zhao, X. X. Wang, X. L, Liu, H. Zhang, Q. Shen, "Mn-Ni content-dependent structures and electrochemical behaviors of series Li1.2Ni0.13+xCo0.13Mn0.54-xO2 as lithium-ion battery cathodes [J]" ACS Appl. Mater. Interfaces,2014,6,42386-2392.
    [45]W. C. West, J. Soler, B. V. Ratnakumar, "preparation of high quality layered-layered composite Li2MnO3-LiMO2 (M= Ni, Mn, Co) Li-ion cathodes by a ball milling-annealing process [J]" J. Power Sources,2012,204,200-204.
    [46]S. Kim, C. Kim, Y. I. Jhon, J. K. Noh, S. H. Vemuri, R. Smith, K. Y. Chung, M. S. Jhon, B. W. Cho. "Synthesis of layered-layered 0.5Li2MnO3·0.5LiCoO2 nanocomposite electrode materials by the mechanochemical process and first principles study [J]" J. Mater. Chem.,2012,22,25418-25426.
    [47]J. B. Li, Y. L. Xu, X. F. Li, Z. W. Zhang, "Li2Mn03 stabilized LiNi1/3Co1/3Mn1/3O2 cathode with improved performance for lithium ion batteries [J]"Appl. Surf. Set,2013,285P,235-240.
    [48]J. Li, R. Klopsch, M. C. Stan, S. Nowak, M. Kunze, M. Winter, S. Passerini, "Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability [J]" J. Power Sources, 2011,196,4821-4825.
    [49]H. J. Kim, H. G. Jung, B. Scrosati, Y. K. Sun, "Synthesis of Li[Li0.19Ni0.16Co0.08Mn0.57]O2 cathode materials with a high volumetric capacity for Li-ion batteries [J]" J. Power Sources,2012,203,115-120.
    [50]F. Q. Cheng, Y. L. Xin, J. T. Chen, L. Lu, X. X. Zhang, H. H. Zhou, "Monodisperse Li1.2Mn0.6Ni0.2O2 spheres with enhanced lithium storage capability [J]"J.Mater. Chem. A,2013,1,5301-5308.
    [51]L. J. Zhang, B. R. Wu, N. Li, D. B. Mu, C. Z. Zhang, F. Wu, "Rod-like hierarchical nano/micro Li1.2Ni0.2Mn0.6O2 as high performance cathode materials for lithium-ion batteries [J]" J. Power Sources,2013,240,644-652.
    [52]L. J. Zhang, B. R. Wu, N. Li, F. Wu, "Hierarchially porous micro-rod lithium-rich cathode material Li1.2Ni0.13Co0.13Mn0.54O2 for high performance lithium-ion batteries [J]" Electrochim. Acta,2014,118,67-74.
    [53]J. W. Zhang, X. Guo, S. M. Yao, W. T. Zhu, X. P. Qiu, "Tailored synthesis of Ni0.25Mn0.75CO3 spherical precursors for high capacity Li-rich cathode materials via a urea-based precipitation method [J]" J. Power Sources,2013,238,245-250.
    [54]X. D. Xiang, X. Q. Li, W. S. Li, "Preparation and characterization of size-uniform Li[Li0.13iNi0.304Mn0.565]02 particles as cathode materials for high energy lithium ion battery [J]" J. Power Sources,2013,230,89-95.
    [55]L. H. Yu, H. X. Yang, Y. L. Cao, X. P. Ai, "Structural and electrochemical characterization of nanocrystalline Li[Li0.12Ni0.32Mn0.56]O2 synthesized by a polymer-pyrolysis route [J]" J. Phys Chem. B,2005,109,1148-1154.
    [56]H. Y. Xu, Q. Y. Wang, C. H. Chen, "Synthesis of Li[Li0.2Ni0.2Mn0.6]O2 by radiated polymer gel method and impact of deficient Li on its structure and electrochemical properties [J]" J. Solid State Electrochem.,2008,12,1173-1178.
    [57]J. L. Liu, L. Chen, M. Y. Hou, F. Wang, R. C. Che, Y. Y. Xia, "General synthesis of xLi2MnO3·(1-x)LiMn1/3Ni1/3Co1/3O2 nanomaterials by a molten-salt method:towards a high capacity and high power cathode for rechargeabledithium batteries [J]" J. Mater. Chem.,2012,22,25380-25387.
    [58]S. J. Shi, J. P. Tu, Y. Y. Tang, X. Y. Liu, X. Y. Zhao, X. L. Wang, C. D. Gu, "Morphology and electrochemical performance of Li[Li1.2Mn0.54Ni0.13Co0.13]O2 cathode materials treated in molten salt [J]" J. Power Source,2013,241,186-195.
    [59]Y. J. Zhao, W. F. Ren, R. Wu, Y. Y. Yue, Y. C. Sun, "Improved molten salt synthesis and structure evolution upon cycling of 0.5Li2MnO3-0.5LiCoO2 in lithium-ion batteries [J]'J. Solid State Electrochem.,2013,17,2259-2267.
    [60]Y. Jiang, Z. Yang, W. Luo, X. L. Hu, Y. H. Huang, "Hollow 0.3Li2MnO3·0.7LiNi0.5Mn0.5O2 microspheres as a high-performance cathode material for lithium-ion batteries [J]" Phys. Chem. Chem. Phys.,2013,15, 2954-2960.
    [61]X. He, J. Wang, R. Kloepsch, S. Krueger, H. P. Jia, H. D. Liu, B. Bortmann, J. Li, "Enhaced electrochemical properties in lithium ion batteries of a hollow spherical lithium-rich cathode material synthesized by a molten salt method [J]" Nano Res.,2014,7,110-118.
    [62]J. G. Yang, F. Y. Cheng, X. D. Zhang, H. T. Gao, Z. L. Tao, J. Chen, "Porous 0.2Li2MnO3·0.8LiNi0.5Mn0.5O2 nanorods as cathode materials for lithium-ion batteries [J]" J. Mater. Chem. A,2014,2,1636-1640.
    [63]Y. Jiang, H. Zhuang, Q. L. Ma, Z. Jiao, H. J. Zhang, R. Z. Liu, Y. L. Chu, B. Zhao, "Synthesis of porous Li2MnO3-LiNi1/3Co1/3Mn1/3O2 nanoplates via colloidal crystal template [J]"J. Mater. Res.,2013,28,1505-1511.
    [64]S. J. Shi, J. P. Tu, Y. Y. Tang, Y. Q. Zhang, X. L. Wang, C. D. Gu, "Preparation and characterization of macroporous Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion batteries via aerogel route [J]" J. Power Source,2013,240,140-148.
    [65]Z. H. Zhong, N. Q. Ye, H. Wang, Z. Ma, "Low temperature combustion synthesis and performance of spherical 0.5Li2MnO3-LiNi0.5Mn0.sO2 cathode material for Li-ion batteries [J]" Chem. Eng. J.,2011,175,579-584.
    [66]Z. J. He, Z. X. Wang, H. J. Guo, X. H. Li, P. Yue, J. X. Wang, X. H. Xiong "Synthesis and electrochemical performance of xLi2MnO3-(1-x)LiMn0.5Ni0.4Co0.1O2 for lithium ion battery [J]" Powder Technol, 2013,235,158-162.
    [67]J. M. Min, C. J. Yim, W. B. Im, "Facile synthesis and electrospun of Li1.2Ni0.17Co0.17Mn0.5O2 nanofiber and its enhanced high-rate performance for lithium-ion battery applications [J]" ACS Appl. Mater. Interfaces,2013,5, 7765-7769.
    [68]E. S. Lee, A. Manthiram, "Smart design of lithium-rich layered oxide cathode compositions with suppressed voltage decay [J]" J. Mater. Chem. A,2014,2, 3932-3939.
    [69]X. H. Zhang, C. Yu, X. D. Huang, J. Zheng, X. F. Guan, D. Luo, L. P. Li, "Novel compositions of Li[LixNi0.34-xMn0.47Co0.19]O2 (0.18≤x≤0.21):synthesis and applications as high-voltage cathode with improved electrochemical performance for lithium ion batteries [J]" Electrochim. Acta,2012,81,233-238.
    [70]C. Yu, G. S. Li, X. F. Guan, J. Zheng, L. P. Li, "Compositions Li1+xMn0.5+0.5xNi0.5-0.5xO2 (0.1≤x≤0.4):optimized preparation to yield an excellent cycling performance as cathode for lithium-ion batteries [J]" Electrochim. Acta,2012,61,216-224.
    [71]F. Li, S. X. Zhao, K. Z. Wang, B. H. Li, C. W. Nan, "Structures and electrochemical performance of layered high-Mn cathode materials Li1+n[NimComMn1-2m]O2 for lithium rechargeable batteries [J]" Electrochim. Acta, 2013,97,17-22.
    [72]C. H. Zhao, W. P. Kang, R. Liu, Q. Shen, "Influences of cobalt content on the electrochemical properties of sheet-like 0.5Li2MnO3·0.5LiNi1/3+xCo1/3-2xMn1/3+xO2 as lithium ion battery [J]" RSC Adv.,2013,3,2362-2368.
    [73]X. J. Guo, Y. X. Li, M. Zheng, J. W. Zheng, J. Li, Z. L. Gong, Y. Yang, "Structural and electrochemical characterization of xLi[Li1/3Mn2/3]O2-(1-x)Li[Ni1/3Co1/3Mn1/3]O2 (0< x< 0.9) as cathode materials for lithium ion batteries [J]" J. Power Sources,2008,184,414-419.
    [74]J. Wang, B. Qiu, H. L. Cao, Y. G. Xia, Z. P. Liu, "Electrochemical properties of 0.6Li[Li1/3Mn2/3]O2-0.4LiNixMnyCo1-x-y]O2 cathode materials for lithium-ion batteries [J]" J. Power Sources,2012,218,128-133.
    [75]Y. N. Jo, K. Prasanna, S. J. Park, C. W. Lee, "Characterization of Li-rich xLi2MnO3-(1-x)Li[MnyNizCo1-y-z]O2 as cathode active materials for Li-ion batteries [J]" Electrochim. Acta,2013,108,32-38.
    [76]Y. Wu, A. Manthiram, "Structural stability of chemically delithiated layered zLi[Li1/3Mn2/3]O2-(1-z)Li[Mn0.5-yNi0.5-yCo2y]O2 solid solution cathodes [J]" J. Power Sources,2008,183,749-754.
    [77]H. J. Yu, H. S. Zhou, "Initial coulombic efficiency improvement of the Li1.2Mn0.567Ni0.166Co0.067O2 lithium-rich material by ruthenium substitution for manganese [J]" J Mater. Chem.,2012,22,15507-15510.
    [78]N. Li, R. An, Y. F. Su, F. Wu, L. Y. Bao, L. Chen, Y. Zheng, H. F. Shou, S. Chen, "The role of yttrium content in improving electrochemical performances of layered lithium-rich cathode materials for Li-ion batteries [J]" J. Mater. Chem. A, 2013,1,9760-9767.
    [79]D. Wang, Y. Huang, Z. Q. Huo, L. Chen, "Synthesis and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material [J]" Electrochim. Acta,2013,107,461-466.
    [80]K. Du, F. Yang, G. R. Hu, Z. D. Peng, Y. B. Cao, K. S. Ryu, "Sodium additive to improve the rate performance of Li[Li0.2Ni0.13Co0.13Mn0.54]O2 material for Li-ion batteries [J]" J. Power Sources,2013,244,29-34.
    [81]W. He, D. D. Yuan, J. F. Qian, X. P. Ai, H. X. Yang, Y. L. Cao, "Enhanced high-rate capability and cycling stability of Na-stabilized layered Li1.2[Co0.13Ni0.13Mn0.54]02 cathode material [J]" J. Mater. Chem. A,2013,1, 11397-11403.
    [82]T. L. Zhao, L. Li, S. Chen, R. J. Chen, X. X. Zhang, J. Lu, F. Wu, K. Amine, "The effect of chromium substitution on improving electrochemical performance of low-cost Fe-Mn based Li-rich layered oxide as cathode material for lithium-ion batteries [J]" J. Power Sources,2014,245,898-907.
    [83]M. Tabuchi, Y. Nabeshima, T. Takeuchi, H. Kageyama, K. Tatsumi, J. Akimoto, H. Shibuya, J. Imaizumi, "Synthesis and electrochemical characterization of Fe and Ni substituted Li2MnO3-An effective mean to use Fe for constructing "Co-free" Li2MnO3 based positive electrode material [J]" J. Power Sources,2011, 196,3611-3622.
    [84]T. H. Tang, X. H. Li, Z. X. Wang, "Effect of Al doping for Li[Li0.09Mn0.65*0.91Ni0.35*0.91]02 cathode material [J]" Ionics,2013,19,1495-1501.
    [85]H. Z. Zhang, Q. Q. Qiao, G. R. Li, X. P. Gao, "PO43- polyanion-doping for stabilizing Li-rich layered oxides as cathode for advanced lithium-ion batteries [J]"J. Mater. Chem. A,2014, DOI:10.1039/C4TA00699B.
    [86]F. Wu, N. Li, Y. F. Su, H. Q. Lu, L. J. Zhang, R. An, Z. Wang, L. Y. Bao, S. Chen, "Can surface modification be more effective to enhance the electrochemical performance of lithium rich materials? [J]" J. Mater. Chem.,2012,22,1489-1497.
    [87]J. Liu, A. Manthiram, "Functional surface modification of a high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode [J]" J. Mater. Chem.,2010,20, 3961-3967.
    [88]Y. K. Sun, M. J. Lee, C. S. Yoon, J. Hassoun, K. Amine, B. Scrosati, "The role of AIF3 coating in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries [J]" Adv. Mater.,2012,24, 1192-1196.
    [89]X. Y. Liu, J. L. Liu, T. Huang, A. S. Yu, "CaF2-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries [J]" Electrochim. Acta,2013,109,52-58.
    [90]J. Liu, B. Reeja-jayan, A. Manthiram, "Conductive surface modification with aluminum of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes [J]" J. Phys Chem. C,2010,114,9828-9833.
    [91]Q. Q. Zhang, H. Z. Zhang, G. R. Li, S. H. Ye, C. W. Wang, X. P. Wang, "Surface modification of Li-rich layered Li(Li0.i7Ni0.25Mn0.58)O2 oxide with Li-Mn-PO4 as the cathode for lithium-ion batteries [J]" J. Mater. Chem. A,2013,1, 5262-5268.
    [92]B. Liu, Q. Zhang, S. C. He, Y. Sato, J. W. Zheng, D. C. Li, "Improved electrochemical perperties of Li1.2Ni0.18Mn0.59Co0.03O2 by surface modification with LiCoPO4 [J]" Electrochim. Acta,2011,56,6748-6751.
    [93]S. K. Martha, J. Nanda, Y. Kim, R. R. Unocic, S. Pannala, N. J. Dudney, "Solid electrolyte coated high voltage layered-layered lithium-rich composite cathode: Li1.2Mn0.525Ni0.175Co0.102[J]"J. Mater. Chem.,A,2013,1,5587-5595.
    [94]B. H. Song, M. O. Lai, Z. W. Liu, H. W. Liu, L. Lu, "Graphene-based surface modification on layered Li-rich cathode for high-performance Li-ion batteries [J]" J. Mater. Chem. A,2013,1,9954-9965.
    [95]Z. J. He, Z. X. Wang, H. J. Guo, X. H. Li, X. W. Wu, P. Yue, J. X. Wang, "A simple method of preparing graphene-coated Li[Li0.2Mn0.13Co0.13]O2 for lithium-ion batteries [J]" Mater. Lett.,2013,91,261-264.
    [96]C. R. Wu, X. P. Fang, X. W. Guo, Y. Mao, C. C. Zhao, Z. X. Wang, L. Q. Chen, "Surface modification of Li1.2Mn0.54Co0.13Ni0.13O2 with conducting polypyrrole [J]" J. Power Sources,2013,231,44-49.
    [97]J. Gao, J. Kim, A. Manthiram, "High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2 -V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries [J]" Electrochem. Commun.,2009,11,84-86.
    [98]S. H. Guo, H. J. Yu, P. Liu, X, Z. Liu, D. Li, M. W. Chen, M. Ishida, H. S. Zhou, "Surface coating of lithium-manganese-rich layered oxides with delaminated MnO2 nanosheets as cathode materials for Li-ion batteries [J]" J. Mater. Chem. A, 2014,2,4422-4428.
    [99]Z. Y. Wang, E. Z. Liu, C. N. He, C. S. Shi, J. J. Li, N. Q. Zhao, "Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for Li-ion batteries [J]" J. Power Sources,2013,236,25-32.
    [100]F. Wu, Z. Wang, Y. F. Su, N. Yan, L. Y. Bao, S. Chen, "Li[Lio.2Mno.54Nio.i3Coo.i3]02-Mo03 composite cathodes with low irreversible capacity loss for lithium ion batteries [J]" J. Power sources,2014,247,20-25.
    [101]E. S. Lee, A. Manthiram, "High capacity Li[Lio.2Mno.54Nio.i3Coo.i3]02-VO2OB) composite cathodes with controlled irreversible capacity loss for lithium-ion batteries [J]" J. Electrochem. Soc,2011,158, A47-A50.
    [102]J. Gao, A. Manthiram, "Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts [J]" J. Power Sources,2009,191,644-647.
    [103]F. Wu, N. Lin, Y. F. Su, H. F. Shou, L. Y. Bao, W. Yang, L. J. Zhang, R. An, S. Chen, "Spinel/Layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries [J]" Adv. Mater.,2013,25,3722-3726.
    [1]H. J. Yu, H. S. Zhou, "High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries [J]" J. Phys Chem. Lett,2013,4,1268-1280.
    [2]N. Yabuuchi, K. Yoshii, S. T. Myung, I. Nakai, S. Komaba, "Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2 [J]" J. Am. Chem. Soc,2011,133,4404-4419.
    [3]F. Y. Cheng, Z. L. Tao, J. Liang, J. Chen, "Template-directed materials for rechargeable lithium-ion batteries [J]" Chem. Mater.2008,20,667-681.
    [4]A. Vu, Y. Q. Qian, A. Stein, "Porous electrode materials for lithium-ion batteries-how to prepare them and what makes them special [J]" Adv. Energy Mater.,2012,2,1056-1085.
    [5]Z. Y. Wang, L. Zhou, X. W. Lou, "Metal oxide hollow structures for lithium-ion batteries [J]" Adv. Mater.,2012,24,1903-1911.
    [6]X. He, J. Wang, R. Kloepsch, S. Krueger, H. P. Jia, H. D. Liu, B. Bortmann, J. Li, "Enhaced electrochemical properties in lithium ion batteries of a hollow spherical lithium-rich cathode material synthesized by a molten salt method [J]" Nano Res.,2014,7,110-118.
    [7]J. G. Yang, F. Y. Cheng, X. D. Zhang, H. T. Gao, Z. L. Tao, J. Chen, "Porous 0.2Li2Mn03*0.8LiNio.5Mno.502 nanorods as cathode materials for lithium-ion batteries [J]"J. Mater. Chem. A,2014,2,1636-1640.
    [8]N. N. Wang, H. Y. Xu, L. Chen, X. Gu, J. Yang, Y. T. Qian, "A general approach for MFe2O4 (M=Zn, Co, Ni) nanorods and high performance as anode materials for lithium ion batteries [J]" J. Power Sources,2014,247, 163-169.
    [9]S. W. Kim, H. W. Lee, P. Muralidharan, D. H. Seo, W. S. Yoon, D. K. Kim, K. Kang, "Electrochemical performances and ex situ analysis of ZnMn2O4 nanowires as anode materials for lithium rechargeable batteries [J]" Nano Res., 2011,4,505-510.
    [10]Y. M. Liu, B. L. Chen, F. Cao, X. Z. Zhao, J. K. Yuan, "Synthesis of nanoarchitectured LiNio.5Mno.5O2 spheres for high-performance rechargeable lithium-ion batteries via an in situ conversion route [J]" J. Mater. Chem.,2011, 21,10437-10441.
    [11]J. W. Zhang, X. Guo, X. M. Yao, W. T. Zhu, X. P. Qiu, "Tailored synthesis of Nio.2sMno.75C03 spherical precursors for high capacity Li-rich cathode materials via a urea-based precipitation route [J]" J. Power Sources,2013,238, 245-250.
    [12]A. M. Cao, A. Manthiram, "Shaped-controlled synthesis of high tap density cathode oxides for lithium ion batteries [J]" Phys. Chem. Chem. Phys.,2012, 14,6724-6728.
    [13]H. W. Liu, L. Tan, "A novel method for preparing lithium manganese oxide nanorods from nanorod precursor [J]"J.Nanopart. Res.,2010,12,301-305.
    [14]H. W. Lee, P. Muralidharan, R. Ruffo, C. M. Mari, Y. Cui, D. K. Kim, "Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries [J]" Nano Lett,2010,10,3852-3856.
    [15]L. J. Wang, B. Liu, S. H. Ran, L. M. Wang, L. N. Gao, F. Y. Qu, D. Chen, G. Z. Shen, "Facile synthesis and electrochemical properties of CoMn2O4 anodes for high capacity lithium-ion batteries [J]" J. Mater. Chem. A,2013,1, 2139-2143.
    [16]L. Tan, H. W. Liu, "High rate charge-discharge properties of LiNi1/3Co1/3Mn1/3O2 synthesized via a low temperature solid-state method [J]" Solid State Ionics,2010,181,1530-1533.
    [17]Y. Jiang, Z. Yang, W. Luo, X. L. Hu, Y. H. Huang, "Hollow 0.3Li2MnO3·0.7LiNi0.5Mn0.5O2 microspheres as a high-performance cathode material for lithium-ion batteries [J]" Phys. Chem. Chem. Phys.,2013,15, 2954-2960.
    [18]F. Dang, T. Hoshino, Y. Oaki, E. Hosono, H. S. Zhou, H. Imai, "Synthesis of Li-Mn-O mesocrystals with controlled crystal phases through topotactic transformation of MnCO3 [J]" Nanoscale,2013,5,2352-2357.
    [19]X. Wang, Y. D. Li, "Selected-control hydrothermal synthesis of α-and β-MnO2 single crystal nanowires [J]"J. Am. Chem. Soc.,2002,124, 2880-2881.
    [20]C. H. Zhao, W. P. Kang, X. X. Wang, S. Q. Zhao, Q. Shen, "Sacrificial templating synthesis of rod-like LiNixMn2-xO4 spinels and their improved cycling performances [J]" Micro Nano Lett,2012,7,558-560.
    [21]吴峰,李宁,安然,苏岳峰,包丽颖,李月姣,陈实.“基于Li2MnO3的富锂类高比容量锂离子电池材料的研究进展[J]”北京理工大学学报,2012,32,1-11.
    [22]X. Y. Han, Q. F. Meng, T. L. Sun, J. T. Sun, "Preparation and electrochemical characterization of single-crystalline spherical LiNi1/3Co1/3Mn1/3O2 powders cathode material for Li-ion batteries [J]" J. Power Sources,2010,195,3047-3052.
    [23]R. Santhanam, B. Rambabu, "High rate cycling performance of Li1.05Ni1/3Co1/3Mn1/3O2 materials prepared by sol-gel and co-precipitation methods for lithium-ion batteries [J]" J. Power Sources,2010,195, 4313-4317.
    [24]F. Wu, M. Wang, Y. F. Su, L. Y. Bao, S. Chen, "A novel layered material of LiNi0.32Mn0.33Co0.33Al0.01O2 for advanced Lithium ion batteries [J]" J. Power Sources,2010,195,2900-2905.
    [25]J. W. Wen, D. W. Zhang, Y. C. Teng, C. H. Chen, Y. Xiong, "One-step synthesis and improved electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2 by a modified radiated polymer gel method [J]" Electrochim. Acta,2010,55, 2306-2310.
    [26]J. M. Zheng, X. B. Wu, Y. Yang, "A comparison of preparation method on the electrochemical performance of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]02 for lithium ion battery [J]" Electrochim. Acta, 2011,56,3071-3078.
    [27]Z. L. Tao, S. Chen, L. Li, X. F. Zhang, R. J. Chen, I. Belharouak, F. Wu, K. Amine, "Synthesis, characterization and electrochemistry of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 using organic chelating agent for lithium-on batteries [J]" J. Power Sources,2013,228,206-213.
    [28]A. R. Armstrong, N. Dupre, A. J. Paterson, C. P. Grey, P. G. Bruce, "Combined neutron diffraction, NMR, and electrochemical investigation of the layered-to-spinel transformation in LiMnO2 [J]" Chem. Mater.,2004,16, 3106-3118.
    [29]B. H. Song, Z. W. Liu, M. O. Lai, L. Lu, "Structural evolution and the capacity fade mechanism upon long-term cycling in Li-rich cathode material [J]"Phys. Chem. Chem. Phys.,2012,14,12875-12883.
    [1]J. W. Zhang, X. Guo, X. M. Yao, W. T. Zhu, X. P. Xiu, "Tailored synthesis of Ni0.25Mn0.75CO3 spherical precursors for high capacity Li-rich cathode materials via a urea-based precipitation route [J]" J. Power Sources,2013,238,245-250.
    [2]A. M. Cao, A. Manthiram, "Shaped-controlled synthesis of high tap density cathode oxides for lithium ion batteries [J]" Phys. Chem. Chem. Phys.,2012,14, 6724-6728.
    [3]H. J. Kim, H. G. Jung, B. Scrosati, Y. K. Sun, "Synthesis of Li[Li0.19Ni0.16Co0.08Mn0.57]O2 cathode materials with a high volumetric capacity for Li-ion batteries [J]" J. Power Sources,2012,203,115-120.
    [4]A. Vu, Y. Q. Qian, A. Stein, "Porous electrode materials for lithium-ion batteries-how to prepare them and what makes them special [J]" Adv. Energy Mater.,2012,2,1056-1085.
    [5]J. Wang, X. Y. Yao, X. F. Zhou, Z. P. Liu, "Synthesis and electrochemical properties of layered lithium transition metal oxides [J]" J. Mater. Chem.,2011, 21,2544-2549.
    [6]L. Zhou, D. Y. Zhao, X. W. Lou, "LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries [J]" Angew. Chem. Int. Ed, 2012,51,239-241.
    [7]J. B. Fei, Y. Cui, X. H. Yan, W. Qi, Y. Yang, K. W. Kang, Q. He, J. B. Li, "Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment [J]" Adv. Mater.,2008,20,452-456.
    [8]J. M. Zheng, X. B. Wu, Y. Yang, "A comparison of preparation method on the the electrochemical peroformance of cathode material Li[Li0.2Mn0.54Ni0.BCo0.13]O2 for lithium ion battery [J]" Electrochim. Acta,2011, 56,3071-3078.
    [9]C. H. Zhao, X. X. Wang, X. R. Liu, H. Zhang, Q. Shen, "Mn-Ni content-dependent structures and electrochemical behaviors of series Li1.2Ni0.13+xCo0.13Mn0.54-xO2 as lithium-ion battery cathodes [J]" ACS Appl. Mater. Interfaces,2014,6,2386-2392.
    [10]C. H. Zhao, X. X. Wang, R. Liu, F. F. Xu, Q. Shen, "β-MnO2 sacrificial template synthesis of Li1.2Ni0.13Co0.13Mn0.54O2 for lithium ion battery cathodes [J]" RSC Adv.,2014,4,7154-7159.
    [11]J. F. Li, S. L. Xiong, X. W. Li, Y. T. Qian, "A facile route to synthesis multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties [J]" Nanoscale,2013,5,2045-2054.
    [12]R. Santhanam, P. Jones, A. Sumana. B. Rambabu, "Influence of lithium content on high rate cycleability of layered Li1+xNi0.30Co0.30Mn0.40O2 cathodes for high power lithium-ion batteries [J]" J. Power Sources,2010,195, 7391-7396.
    [13]J. F. Li, S. L. Xiong, X. W. Li, Y. T. Qian, "Spinel Mn1.5Co1.5O4 core-shell spheres as Li-ion battery anode materials with a long cycle life and high capacity [J]" J. Mater. Chem.,2012,22,23254-23259.
    [14]Z. H. Zhong, N. Q. Ye, H Wang, Z. Ma, "Low-temperature combustion synthesis and performance of spherical 0.5Li2Mn03-0.5LiNi0.5Mn0.5O2 cathode material for Li-ion batteries [J]" Chem. Eng. J.,2011,175,579-584.
    [1]Z. L. Tao, S. Chen, L. Li, X. F. Zhang, R. J. Chen, I. Belharouak, F. Wu, K. Amine, "Synthesis, characterization and electrochemistry of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 using organic chelating agent for lithium-on batteries [J]" J. Power Sources,2013,228,206-213.
    [2]K. C. Jiang, X. L. Wu, Y. X. Yin, J. S. Lee, J. Kim, Y. G. Guo, "Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries [J]"ACS Appl. Mater. Interfaces,2012,4,4858-4863.
    [3]Y. Chen, G. F. Xu, J. L. Li, Y. K. Zhang, Z. Chen, F. Y. Kang, "High capacity 0.5Li2MnO3·0.5LiNi0.333Co0.333Mn0.333O2 cathode material via a fast co-precipitation method [J]" Electrochim. Acta,2013,87,686-692.
    [4]J. H. Lim, H. Bang, K. S. Lee, K. Amine, Y. K. Sun, "Electrochemical characterization of Li2MnO3-Li[Ni1/3Co1/3Mn1/3]O2-LiNiO2 cathode synthesized via co-precipitation for lithium secondary batteries [J]" J. Power Sources,2009, 189,571-575.
    [5]J. Wang, B. Qiu, H. L. Cao, Y. G. Xia, Z. P. Liu, "Electrochemical properties of 0.6Li[Li1/3Mn2/3]O2-0.4LiNixMnyCo1+x-y]O2 cathode materials for lithium-ion batteries [J]" J. Power Sources,2012,218,128-133.
    [6]S. J. Shi, J. P. Tu, Y. Y. Tang, X. Y. Liu, X. Y. Zhao, X. L. Wang, C. D. Gu, "Morphology and electrochemical performance of Li[Li1.2Mn0.54Ni0.13Co0.13]02 cathode materials treated in molten salt [J]" J. Power Source,2013,241,186-195.
    [7]J. L. Liu, L. Chen, M. Y. Hou, F. Wang, R. C. Che, Y. Y. Xia, "General synthesis of xLi2MnO3-(1-x)LiMn1/3Ni1/3Co1/3O2 nanomaterials by a molten-salt method: towards a high capacity and high power cathode for rechargeable lithium batteries [J]" J Mater. Chem.,2012,22,25380-25387.
    [8]S. Kim, C. Kim, J. K. Noh, S. Yu, S. J. Kim, W. Chang, W. C. Choi, K. Y. Chung, B. W. Cho, "Synthesis of layered-layered xLi2MnO3-(1-x)LiM02 (M=Mn, Ni, Co) nanocomposite electrodes materials by mechanochemical process [J]" J. Power Sources,2012,220,422-429.
    [9]C. H. Zhao, X. X. Wang, R. Liu, F. F. Xu, Q. Shen, "β-MnO2 sacrificed template synthesis of Li1.2Ni0.13Co0.13Mn0.54O2 for lithium ion battery cathodes [J]" RSC Adv.,2014,4,7154-7159.
    [10]S. J. Shi, J. P. Tu, Y. Y. Tang, Y. Q. Zhang, X. L. Wang, C. D. Gu, "Preparation and characterization of macroporous Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion batteries via aerogel route [J]" J. Power Sources,2013,240, 140-148.
    [11]L. H. Yu, H. X. Yang, X. P. Ai, Y. L. Cao, "Structure and electrochemical characterization of nanocrystalline Li[Li0.12Ni0.32Mn0.56]O2 synthesized by a polymer-pyrolysis route [J]" J. Phys. Chem.B,2005,109,1148-1154.
    [12]H. Y. Xu, S. Xie, N. Ding, B. L. Niu, Y. Shang, C. H. Chen, "Improvement of electrochemical properties of LiNio.5Mn1.5O4 spinel prepared by a radiated polymer gel method [J]" Electrochim. Acta,2006,51,4352-4357.
    [13]J. W. Wen, D. W. Zhang, Y. C. Teng, C. H. Chen, Y. Xiong, "One-step synthesis and improved electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2by a modify radiated polymer gel method [J]" Electrochim. Acta,2010,55, 2306-2310.
    [14]Y. Chen, X. C. Zheng, H. Q. Qian, Z. Q. Mao, D. Ding, X. Q. Jiang, "Hollow core-porous shell strcture poly(acrylic acid) nanogels with a superhigh capacity of drug loading [J]" ACS Appl. Mater. Interfaces,2010,2,3532-3538.
    [15]J. Li, Y. L. Jin, X. G. Zhang, H. Yang, "Microwave solid-state synthesis of spinel Li4Ti5O12 nanocrystallites as anode material for lithium-ion batteries [J]" Solid State Ionics,2007,178,1590-1594.
    [16]S. W. Hwang, A. Umar, S. H. Kim, S. A. Sayari, M. Abaker, "Low-temperature growth of well-crystalline CO3O4 hexagonal nanodisks as anode material for lithium-ion batteries [J]" Electrochim. Acta,2011,56,8534-8538.
    [17]T. Mei, K. B. Tang, Y. C. Zhu, Y. T. Qian, "Preparation of LiCoO2 concaved cuboctahedra and their electrochemical behavior in lithium-ion battery [J]" Dalton Trans.,2011,40,7645-7650.
    [18]J. G. Wen, J. Bareno, C. H. Lei, S. H. Kang, D. P, Abraham, "Analytical electron microscopy of Li1.2Co0.4Mn0.4O2 for lithium-ion batteries [J]" Solid State Ionics, 2011,182,98-107.
    [19]J. Bareno, M. Balasubramanian, S. H. Kang, J. G. Wen, C. H. Lei, D. P. Abraham, "Long-range and local structure in the layered oxide Li1.2Co0.4Mn0.4O2 [J]" Chem. Mater.,2011,23,2039-2050.
    [20]H. J. Yu, R. Ishikawa, Y. G. So, N. Shibata, T. Kudo, H. S. Zhou, Y. Ikuhara, "Direct atomic-resolution observation of two phases in the Li1.2Mn0.567Ni0.166Co0.067O2 cathode material for lithium-ion batteries [J]" Angew. Chem. Int. Ed,2013,52,5969-5973.
    [21]J. M. Zheng, X. B. Wu, Y. Yang, "A comparison of preparation method on the electrochemical performance of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]02 for lithium ion battery [J]" Electrochim. Acta,2011,56,3071-3078.
    [22]S. H. Kang, P. Kempgens, S. Greenbaum, A. J. Kropf, K. Amine, M. M. Thackeray, "Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M=Mn0.5-xNi0.5-xCo2x,0 ≤x≤0.5) [J]" J. Mater. Chem.,2007,17,2069-2077.
    [1]X. J. Guo, Y. X. Li, M. Zheng, J. W. Zheng, J. Li, Z. L. Gong, Y. Yang, "Structural and electrochemical characterization of xLi[Li1/3Mn2/3]O2-(1-x)Li[Ni1/3Co1/3Mi1/3]O2 (0≤x≤0.9) as cathode materials for lithium ion batteries [J]" J. Power Sources,2008,184,414-419.
    [2]J. H. Lim, H. Bang, K. S. Lee, K. Amine, Y K. Sun, "Electrochemical characterization of Li2MnO3-Li[Ni1/3Co1/3Mn1/3]O2-LiNiO2 cathode synthesized via co-precipitation for lithium secondary batteries [J]" J. Power Sources,2009, 189,571-575.
    [3]王昭,吴峰,苏岳峰,包丽颖,陈来,李宁,陈实,“锂离子电池正极材料xLi2MnO3·(1-x)Li[Ni1/3Mn1/3Co1/3]O2的制备及表征[J]”物理化学学报,2012,28,823-830.
    [4]Y. Chen, G. F. Xu, J. L. Li, Y. K. Zhang, Z. Chen, F. Y. Kang, "High capacity 0.5Li2MnO3·0.5LiNi0.333Co0.333Mn0.333O2 cathode material via a fast co-precipitation method [J]" Electrochim. Acta,2013,87,686-692.
    [5]J. H. Ryu, B. G. Park, S. B. Kim, Y. J. Park, "Effect of surface area on the electrochemical performance of Li[Li0.2Ni0.2Mn0.6]O2 cathode material [J]" J. Appl. Electrochem.,2009,39,1059-1066.
    [6]F. Q. Cheng, Y. L. Xin, J. T. Chen, L. Lu, X. X. Zhang, H. H. Zhou, "Monodisperse Li1.2Mn0.6Ni0.2O2 spheres with enhanced lithium storage capability [J]" J. Mater. Chem. A,2013,1,5301-5308.
    [7]Y. Jiang, Z. Ynag, W. Luo, X. L. Hu, W. X. Wang, Y. H. Wang, "Facile synthesis of mesoporous 0.4Li2MnO3·0.6LiNi2/3Mn1/3O2 foams with superior performance for lithium-ion batteries [J]" J. Mater. Chem.,2012,22, 14964-41969.
    [8]S. Kim, C. J. Kim, Y. I. Jhon, J. K. Noh, S. H. Vemuri, R. Smith, K. Y. Chung, M. S. Jhon, B. W. Cho, "Synthesis of layered-layered 0.5Li2MnO3·0.5LiCoO2 nanocomposite electrode materials by the mechanochemical process and first principles study [J]" J. Mater. Chem.,2012,22,25418-25426.
    [9]C. C. Fu, G. S. Li, D. Luo, J. Zheng, L. P. Li, "Gel-combustion synthesis of Li1.2Mn0.4Co0.4O2 composites with a high capacity and superior rate capability for lithium-ion batteries [J]" J. Mater. Chem. A,2014,2,1471-1483.
    [10]S. J. Shi, J. P. Tu, Y. Y. Tang, Y. Q. Zhang, X. L. Wang, C. D. Gu, "Preparation and characterization of macroporous Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion batteries via aerogel route [J]" J. Power Sources,2013,240, 140-148.
    [11]S. J. Shi, J. P. Tu, Y. Y. Tang, X. Y. Liu, X. Y. Zhao, X. L. Wang, C. D. Gu, "Morphology and electrochemical performance of Li[Li1.2Mn0.54Ni0.13Co0.13]02 cathode materials treated in molten salt [J]" J. Power Sources,2013, 241,186-195.
    [12]H. J. Yu, Y. R. Wang, D. Asakura, E. Hosono, T. Zhang, H. S. Zhou, "Electrochemical kinetics of the 0.5Li2MnO3·0.5LiMn0.42Ni0.42Co0.1602 'composite' layered cathode material for lithium-ion batteries [J]" RSC Adv., 2012,2,8797-8807.
    [13]J. Li, R. Klopsch, M. C. Stan, S. Nowak, M. Kunze, M. Winter, S. Passerini, "Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]02 with improved rate capability [J]" J. Power Sources, 2011,196,4821-4825.
    [14]S. K. Martha, J. Nanda, G. M. Veith, N. J. Dudney, "Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2 [J]"J. Power Sources,2012,199,220-226.
    [15]C. H. Zhao, W. P. Kang, Q. B. Que, Q. Shen, "Polymerization-pyrolysis assisted nanofabrication of solid solution of Li1.2Ni0.13Co0.13Mn0.54O2 for lithium-ion battery cathode [J]" J. Nanopart. Res.,2012,14,1240.
    [16]J. G. Li, L. Wang, Q. Zhang, H. M. He, "Synthesis and characterization of LiNi0.6Mn0.4-xCox02 as cathode materials for Li-ion batteries [J]" J. Power Sources,2009,189,28-33.
    [17]J. M. Kim, S. Tsuruta, N. Kumagai, "Electrochemical properties of Li(Li(1-x)/3CoxMn(2-2x)/3)O2 (0≤x≤1) solis solutions prepared by poly-vinyl alcohol (PVA) method [J]" Electrochem. Commun.,2007,9,103-108.
    [18]S. H. Kang, P. Kempgens, S. Greenbaum, A. J. Kropf, K. Amine, M. M. Thackeray, "Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M=Mn0.5-xNi0.5-xCo2x,0 ≤x≤0.5) [J]"J. Mater. Chem.,2007,17,2069-2077.
    [19]F. L. Liu, S. Zhang, C. Deng, Q. Wu, M. Zhang, F. L. Meng, H. Gao, Y. H. Sun, "Cobalt optimization of layered 0.6Li[Li1/3Mn2/3]O2-0.4LiNi0.5-xMn0.5-xCo2x02 (0 ≤x≤0.5) cathode materials prepared by the carbonate coprecipitation [J]" J. Electrochem. Soc,2012,159, A1591-A1597.
    [20]Z. H. Tang, Z. X. Wang, X. H. Li, W. J. Peng, "Preparation and electrochemical properties of Co-doped and none-doped Li[LixMn0.65(1-x)Ni0.35(1-x)]O2 cathode materials for lithium battery batteries [J]" J. Power Sources,2012,204,187-192.
    [21]C. Yu, G. S. Li, X. F. Guan, J. Zheng, D. Luo, L. P. Li, "The impact of upper cut-off voltages on the electrochemical behaviors of composite electrode 0.3Li2MnO3·0.7LiMn1/3Ni1/3Co1/3O2 [J]" Phys. Chem. Chem. Phys.,2012,14, 12368-12377.
    [1]Z. Q. Deng, A. Manthiram, " Influences of cationic substitutions on the oxygen loss and reversible capacity of lithium-rich layered oxide cathode [J]" J. Phys Chem. C,2011,115,7097-7103.
    [2]D. Wang, Y. Huang, Z. Q. Huo, L. Chen, "Synthesis and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material [J]" Electrochim. Acta,2013,107:461-466.
    [3]K. Du, F. Yang, G. R. Hu, Z. D. Peng, Y. B. Cao, K. S. Ryu, "Sodium additive to improve the rate performance of Li[Li0.2Ni0.13Co0.13Mn0.54]O2 material for Li-ion batteries [J]" J. Power Sources,2013,244,29-34.
    [4]C. H. Zhao, W. P. Kang, R. Liu, Q. Shen, "Influences of cobalt content on the electrochemical properties of sheet-like 0.5Li2MnO3·0.5LiNi1/3+xCo1/3-2XMn1/3+xO2 as lithium ion battery [J]" RSC Adv.,2013,3,2362-2368.
    [5]E. S. Lee, A. Manthiram, "Smart design of lithium-rich layered oxide cathode compositions with suppressed voltage decay [J]" J. Mater. Chem. A,2014,2, 3932-3939.
    [6]N. Li, R. An, Y. F. Su, F. Wu, L. Y. Bao, L. Chen, Y. Zheng, H. F. Shou, S. Chen, "The role of yttrium content in improving electrochemical performances of layered lithium-rich cathode materials for Li-ion batteries [J]" J. Mater. Chem. A, 2013,1,9760-9767.
    [7]C. C. Wang, A. Manthiram, "Influences of cationic substitutions on the first charge and reversible capacities of lithium-rich layered oxide cathodes [J]" J. Mater. Chem. A,2013,1,10209-10217.
    [8]H. J. Yu, H. S. Zhou, "Initial coulombic efficiency improvement of the Li1/2Mn0.567Ni0.166Co0.06702 lithium-rich material by ruthenium substitution for manganese [J]" J. Mater. Chem.,2012,22,15507-15510.
    [9]M. Tabuchi, Y. Nabeshima, T. Takeuchi, H. Kageyama, J. Imaizumi, H. Shibuya, J. Akimoto "Synthesis of high-capacity Ti-and/or Fe-substituted Li2MnO3 positive electrode materials with high initial cycle efficiency by application of the carbothermal reduction method [J]" J. Power Sources,2013,221,427-434.
    [10]X. H. Zhang, C. Yu, X. D. Huang, J. Zheng, X. F. Guan, D. Luo, L. P. Li, "Novel compositions of Li[LixNi0.34-xMn0.47Co0.19]O2 (0.18≤x≤0.21):synthesis and applications as high-voltage cathode with improved electrochemical performance for lithium ion batteries [J]" Electrochim. Acta,2012,81,233-238.
    [11]C. Yu, G. S. Li, X. F. Guan, J. Zheng, L. P. Li, "Compositions Li1+xMn0.5+0.5xNi0.5-0.5xO2 (0.1≤x≤0.4):optimized preparation to yield an excellent cycling performance as cathode for lithium-ion batteries [J]" Electrochim. Acta,2012,61,216-224.
    [12]F. Li, S. X. Zhao, K. Z. Wang, B. H. Li, C. W. Nan, "Structures and electrochemical performance of layered high-Mn cathode materials Li1+n[NimComMn1-2m]O2 for lithium rechargeable batteries [J]" Electrochim. Acta, 2013,97,17-22.
    [13]X. J. Guo, Y. X. Li, M. Zheng, J. W. Zheng, J. Li, Z. L. Gong, Y. Yang, "Structural and electrochemical characterization of xLi[Li1/3Mn2/3]O2-(1-x)Li[Ni1/3Co1/3Mn1/3]O2 (0≤x≤0.9) as cathode materials for lithium ion batteries [J]" J. Power Sources,2008,184,414-419.
    [14]J. H. Lim, H. Bang, K. S. Lee, K. Amine, Y. K. Sun, "Electrochemical characterization of Li2MnO3-Li[Ni1/3Co1/3Mn1/3]O2-LiNiO2 cathode synthesized via co-precipitation for lithium secondary batteries [J]" J. Power Sources,2009, 189,571-575.
    [15]S. H. Kang, P. Kempgens, S. Greenbaum, A. J. Kropf, K. Amine, M. M. Thackeray, "Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M=Mno.5-xNi0.5-xCo2x,0 ≤x≤ 0.5) [J]"J. Mater. Chem.,2007,17,2069-2077.
    [16]王昭,吴峰,苏岳峰,包丽颖,陈来,李宁,陈实,“锂离子电池正极材料xLi2MnO3·(1-x)Li[Ni1/3Mn1/3Co1/3]O2的制备及表征[J]”物理化学学报,2012, 28,823-830.
    [17]J. Wang, B. Qiu, H. L. Cao, Y. G. Xia, Z. P. Liu, "Electrochemical properties of 0.6Li[Li1/3Mn2/3]O2-0.4LiNixMnyCo1-x-y]O2 cathode materials for lithium-ion batteries [J]" J. Power Sources,2012,218,128-133.
    [18]Y. N. Jo, K. Prasanna, S. J. Park, C. W. Lee, "Characterization of Li-rich xLi2MnO3-(1-x)LiNixMnyCo1-x-y]O2 as cathode active materials for Li-ion batteries [J]" Electrochim. Acta,2013,108,32-38.
    [19]O. Toprakci, H. A. K. Toprakci, Y. Li, L. W. Ji, L. G. Xue, X. W. Zhang, "Synthesis and characterization of xLi2MnO3-(1-x)LiMn1/3Ni1/3Co1/3O2 composite cathode materials for rechargeable lithium-ion batteries [J] J. Power Sources, 2013,241,522-528.
    [20]S. K. Martha, H. Sclar, Z. S. Framowitz, D. Kovacheva, N. Saliyski, Y. Gofer, P. Sharon, E. Golik, B. Markovsky, D. Aurbach, "A comparative study of electrode comprising nanometric and submicron particles of LiNi0.50Mn0.50O2, LiNi0.33Mn0.33Co0.33O2, and LiNi0.40Mn0.40Co0.20O2 layered compounds [J]" J. Power Sources,2009,189,248-255.
    [21]P. Singh, A. Sil, M. Nath, S. Ray, "Preparation and characterization of lithium manganese oxide cubic spinel Li1.03Mn1.97O4 doped with Mg and Fe [J]" Phys. B, 2010,405,649-654.
    [22]J. Xiao, N. A. Chernova, M. S. Whittingham, "Layered mixed transition metal oxide cathodes with reduced cobalt content for lithium ion batteries [J]" Chem. Mater.,2008,20,7454-7464.
    [23]C. S. Johnson, N. C. Li, C. Lefief, J. T. Vaughey, M. M. Thackeray," Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1-x)LiMn0.333Ni0.333Co0.333O2 (0≤x≤0.7) [J]" Chem. Mater.,2008, 20,6095-6106.
    [24]Z. L. Tao, S. Chen, L. Li, X. F. Zhang, R. J. Chen, I. Belharouak, F. Wu, K. Amine, "Synthesis, characterization and electrochemistry of cathode material Li[Lio.2Mno.54Nio.i3Coo.i3]02 using organic chelating agent for lithium-on batteries [J]"J. Power Sources,2013,228,206-213.
    [25]X. L. Wu, L. Y. Jiang, F. F. Cao, Y. G. Guo, L. J. Wan, "LiFePO4 nanoparticles embedded in a nanoporous carbon matrix:superior cathode material for electrochemical energy-storage devices [J]"Adv. Mater.,2009,21,2710-2714.
    [26]S. H. Yu, T. Yoon, J. Mun, S. Park, Y. S. Kang, J. H. Park, S. M. Oh, Y. E. Sun, "Continuous activation of Li2MnO3 component upon cycling in Li1.167Ni0.233Co0.100Mn0.467Mo0.033O2 cathode material for lithium ion batteries [J]" J. Mater. Chem. A,2013,1,2833-2839.
    [27]B. H. Song, Z. W. Liu, M. O. Lai, L. Lu, "Structural evolution and the capacity fade mechanism upon long-term cycling in Li-rich cathode material [J]" Phys. Chem. Chem. Phys.,2012,14,12875-12833.