烷基硫醇与几种不饱和脂肪烃电子传输性能的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统硅基电子器件的尺寸逼近纳米数量级时,将面临因量子效应(如隧穿,散射和电子干涉等)而产生的一系列难以逾越的挑战。解决上述问题的出路之一在于发展分子尺度的电子器件(分子电子器件)。扫描探针显微术(SPM)和量子化学计算的发展为研究分子电子器件提供了强有力的工具。尽管目前对分子电子器件的研究已经取得了一些重要进展,但关于功能分子在器件中的行为、分子的电子输运机理等一些最基本的问题还缺乏全面深入的认识。因此研究分子的这些性质对分子电子器件的设计和优化具有非常重要的意义。
     使用电化学方法研究了Au(111)电极上的烷基硫醇分子自组装膜的电子传递动力学。在KCl溶液中用快速循环伏安法测量了自组装膜的微分电容,以确定自组装膜结构的完好性;以Fe(CN)6-4/-3为探针离子,研究了自组装膜的电子传递特性。结果表明,随着分子链长的增加,分子的隧穿电流减小,测得的电流衰减常数β为0.98/CH2。使用导电原子力显微镜(CAFM)方法研究了在Au(111)表面上的硫醇分子自组装膜的电子输运特性。研究表明,分子的电子输运具有显著的非线性特性,分子的电流电压(I-V)曲线可以用Simmons隧穿模型来很好的拟合。分子电流随着分子链长的增加呈指数衰减,其电流衰减常数β为1.16/CH2,这与使用电化学方法和非平衡态格林函数(NEGF)方法计算得到的β值(分别为0.98/CH2和0.99/CH2)非常接近,说明分子的导电机理主要是隧穿机理。CAFM针尖压力对分子的导电性质有很大影响,随着针尖压力的增加,分子的电流显著增大。NEGF方法可以较好地模拟分子的电子输运特性。
     为了更加准确地模拟分子电子材料在器件中的行为,提出了一种类似于“现场”的静态理论研究方法。以典型的线型π-共轭分子,聚乙炔(PA)为模型分子,在HF/6-31G*水平上研究了外电场作用下分子性质的变化。结果表明,分子的几何结构和电子结构对外电场有明显的依赖性。随着外电场的增大,分子的碳碳单键变短,碳碳双键变长,分子的共轭程度得到了加强,分子在共轭平面内发生了明显的几何弯曲。外电场使分子的LUMO-HOMO能隙减小,分子的偶极矩增大。外电场作用下,分子的HOMO空间分布移向分子的低电势端,LUMO空间分布移向分子的高电势端。随着分子链长的增加,分子的上述性质随外电场的变化都得到了进一步的加强。对一系列其它类型的线型π-共轭分子(聚对苯撑乙炔(PPV)、聚苯乙炔(PPE)、聚噻吩(PT)和聚苯(PP))进行了类似的计算研究,也得到了相同的结果。
     使用B3LYP/6-311+G**方法研究了二苯乙炔分子在电场作用下扭转势能面和电子结构。结果表明,随着外电场的增加,分子的扭转势垒增大,并且扭转势垒的高度与外电场的平方具有线性关系;随着扭转角的增加,分子的前线轨道能量和空间分布对外电场的依赖性增强。使用NEGF方法模拟了二苯乙炔分子处于不同构象时的I-V特性。结果表明,分子的I-V特性与分子构象之间的关系可以从分子LUMO-HOMO能隙和前线轨道的空间分布随外电场的变化来解释。
     使用NEGF方法模拟了一系列具有不同共轭结构的线型π-共轭分子导线(PA、PT、PPV、PPE和PP)的I-V特性,比较了它们的导电性差异,并从分子LUMO-HOMO能隙、分子轨道空间分布和隧穿谱等方面分析了各分子之间导电性差异的原因。在此基础上,还考察了在分子骨架上引入供电子基团(-NH2)和吸电子基团( -NO2)对分子电子输运特性的影响。结果表明,在分子骨架上修饰功能基团可以成功地引入不对称性,进而使分子获得不对称的输运特性。这为分子二极管、分子开关等功能分子电子器件的设计提供了理论参考。
     使用HF/6-31G*方法探索了一类新型的分子电子材料,苯乙炔大环分子(PAMs)的几何结构、电子结构和环张力特性。基于对大环分子构单元二苯乙炔分子的构象分析,提出了一种新的环张力能分析方法,并且用这种方法分析了分子环张力特性和几何结构特性。与以往的环张力能分析方法相比,这种方法更加的简便、高效并且还能分析出分子环张力能的具体来源。电子结构分析表明,平面构型大环分子的LUMO-HOMO能隙和分子轨道空间分布具有明显的奇偶差异特性。
The continuous miniaturization of conventional silicon-based electronics will eventually face the insurmountable challenge of the quantum effect, such as tunneling, diffraction, and interference of electron. One of the most promising solutions is to develop molecular-scale electronics (Molecular electronics). The development of scanning probe microscopes (SPM) techniques and quantum chemistry calculations provides powerful tools for exploring the molecular electronics. Although significant progress has been made during the last two decades, some most basic issues such as the behavior of the functional molecules working in the circuit and the electron transport mechanism through the molecules are still not very clear. So, it is essentially important to investigate these properties of the moelcules for the design and rationalization of molecular electrnics.
     The electron transfer kinetics of n-alkanethiol monolayers on Au(111) electrode is investigated. The structure of the monolayer is examized by measuring the double layer capacitance in 1 mol/L KCl solution with the rapid cyclic voltammetric method. The electron tunneling parameter for the monolayer is studied by using Fe(CN)6-4/-3 as the redox probe. It demonstrates that with the increase of the chain length of the n-alkanethiols the current decreases dramatically. A decay constantβof 0.98 per methylene group is measured. Electron transport propeties for n-alkanedithiol monolayers on Au(111) is investigated using conducting atomic force microscopy (CAFM). The measured current-voltage (I-V) curves show obvious nonlinear behavior and can be fitted with Simmons tunneling model. The molecular current decays exponentially with the increase of chain lenth. The measured decay constantβis 1.16 per methylene, which is in reasonable agreement with the values of 0.98 per methylene and 0.99 per methylene obtained from the electrochemical method and the nonequilibrium Green’s functions (NEGF) method, respectively, indicating that the main conduction mechanism of the alkane molecules is tunneling. The CAFM tip-loading force is found to dramically influence the molecular electric properties, showing that the molecular current increases dramatically with the the the tip-loading force increasing. The NEGF calculations can simulate the molecular electron transport properties qualitatively.
     To simulate the properties of the molecular electronic materials working in electronics more precisely, a more likely in-situ theoretical method by considering the interaction from the external electric field (EF) is proposed. Typically, a series of molecular wires, polyacetylens (PA), are systematically studied at the HF/6-31G* level by this method. It proves that both the geometric and the electronic structures of the molecular wires are sensitive to the external EF. In particular, the external EF makes the carbon-carbon single bonds become shorter and the carbon-carbon double bonds become longer, leading to a higher conjugation. The external EF decreases the LUMO-HOMO gap and increases the molecular dipole moment. The spatial distributions of frontier molecular orbitals vary from the fully delocalized form to the partly localized form with the increase of the external EF. All of these features are more pronounced with increasing conjugation chain length. The same calculations are also carried out for several other typical linear conjugated molecules (poly(phenylene vinylene) (PPV), poly(phenylene ethylene) (PPE), polythiophene (PT), and polyphenylene (PP) molecules) and similar results as those of the PA are obtained. Moreover, the torsional potential energy surface and the electronic structure of diphenylacetylene are investigated at the B3LYP/6-311+G** level by considering the influence of the external EF. It domostrates that with the increase of the external EF the molecular torsional barrier increases and the increment is proportional to the square of EF. With the increase of molecular torsional angle, the EF dependence of the LUMO-HOMO gap and the spatial distributions of the HOMO and LUMO are enhanced. The I-V behavior corresponding to different conformers is evaluated by the NEGF method. Further, the evolutions of the LUMO-HOMO gap and the spatial distribution of molecular orbital are used to analyze these structure-property relationships.
     The I-V property for a series of lineare conjugated molecular wires (PA, PPV, PPE, PT, and PP) with different conjugation strucres is investigated by the NEGF method. The conductivity of these molecules is compared and analyzed from the the LUMO-HOMO gap, the spatial distributions of the HOMO and LUMO, and the transmission spectra of the molecules. Moreover, the effect of introducing functional groups (electron-donating group, -NH2, and electron-withdrawing group, -NO2) into the molecular backbone on the electron transport properties of the molecules is also studied. It demonstrates that the introduction of specific functional groups on the molecular backbone can successfully lead to molecular asymmetry, which may lead the assymmetric I-V behaviors. These results provide a theoretical guidance for the further design of novel molecular electronics, such as molecular diodes, molecular switches, and molecular storage devices.
     The geometry, electronic structures, and ring strain energy of a kind of new molecular electronic material, phenylene-acetylene macrocycles (PAMs), are explored by HF/6-31G* method. Based on the conformational analysis of diphenylacetylene, which can be viewed as the structural unit of PAMs, a new method for analyzing ring strain energy is proposed and used to analyzing the ring stain energy and the structural characteristics of the PAMs. Compared with the conventional theoretical method for ring strain energy, this new method is more convenient and higher efficient. Moreover, this new method can analyze the origin of the ring strain energy within the macrocycles. In view of their potential applications as electronic materials, the electronic structures of a series of PAMs are also investigated. The LUMO-HOMO gaps and the HOMO spatial distributions of the planar PAMs show obvious odd-even difference behavior.
引文
1 A. E. Brenner. Moore's Law. Science. 1997, 275(5306): 1551~1551.
    2 D. J. Frank, R. H. Dennard, E. Nowak et al. Device Scaling Limits of Si MOSFETs and Their Application Dependencies. Proc. IEEE. 2001, 89(3): 259~288.
    3 G. Maruccio, R. Cingolani, R. Rinaldi. Projecting the Nanoworld: Conceptes, Results and Perspectives of Molecular Electronics. J. Mater. Chem. 2004, 14(4): 542~554.
    4 R. F. Service. Can Chemists Assemble a Future for Molecular Electronics. Science. 2002, 29(295): 2398~2399.
    5 S. Creager, C. J. Yu, C. Bamdad et al. Electron Transfer at Electrodes through Conjugated "Molecular Wire" Bridges. J. Am. Chem. Soc. 1999, 121(5): 1059~1064.
    6 B. L. Feringa, R. A. Van Delden, N. Koumura et al. Chiroptical Molecular Switches. Chem. Rev. 100(5): 1789~1816.
    7 A. Aviram, M. A. Ratner. Molecular Rectifier.Chem. Phys.Lett. 1974, 29(2): 277~283.
    8 K. M. Roth, N. Dontha, R. B. Dabke et al. Molecular Approach toward Information Storage Based on the Redox Properties of Porphyrins in Self-assembled Monolayers. J. Vac. Sci. Technology B. 2000, 18(5): 2359~2364.
    9 A. W. Ghosh, P. Damle, S. Datta et al. Molecular Electronics: Theory and Device Prospects. MRS. Bull. 2004, 29(6): 391~395.
    10 J. M. Tour. Conjugated Macromolecules of Precise Length and Constitution. Organic Synthesis for the Construction of Nanoarchitectures. Chem. Rev. 1996, 96(1): 537~553.
    11 J. M. Tour. Molecular Electronics. Synthesis and Testing of Components. Acc. Chem. Res. 2000, 33(11): 791~804.
    12 J. M. Tour, A. M. Rawlett, M. Kozaki et al. Synthesis and Preliminary Testing of Molecular Wires and Devices. Chem. Eur. J. 2001, 7(23):5118~5134.
    13 M. R. Stan, P. D. Franzon, S. C. Goldstein et al. Molecular Electronics: From Devices and Interconnect to Circuits and Architecture. Proc. IEEE. 2003, 91(11): 1940~1957.
    14 V. Narayanamurti, C. N. R. Rao. Electronic Materials-Frontiers in Electronic Materials-Editorial Overview. Curr. Opin. Solid State Mater. Sci. 1998, 3(1): 3~4.
    15 L. A. Bumm, J. J. Arnold, M. T. Cygan et al. Are Single Molecular Wires Conducting? Science. 1996, 271(5256): 1705~1707.
    16 D. Kennedy. Breakthrough of the year. Science. 2001, 294(5551): 2429~2429.
    17 X. D. Cui, A. Primak, X. Zarate et al. Reproducible Measurement of Single-Molecule Conductivity. Science. 2001, 294(5542): 571~574.
    18 M. A. Reed. Molecular Electronics: Back under Control. Nat. Mater. 2004, 3(5): 286~287.
    19 R. P. Feynman. There Is Plenty of Room at the Bottom. Engineering and Science, The Caltech Alumni Magazine.1960, 23(5):22~22.
    20 L. M. Goldenberg. Electrochemical Properties of Langmur-Blodgett- Films. J. Electroanal. Chem. 1994, 379(1-2): 3~19.
    21 A. Ulman. Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 1996, 96(4): 1533~1554.
    22 L. A. Bottomley. Scanning Probe Microscopy. Anal. Chem.1998, 70(12): 425R~475R.
    23 M. Brandbyge, J. L. Mozos, P. Ordejon et al. Density-Functional Method for Nonequilibrium Electron Transport. Phys. Rev. B. 2002, 65(16): 165401-17.
    24 J. M. Soler1, E. Artacho, J. D. Gale et al. The SIESTA Method for Ab Initio Order-N Materials Simulation. J. Phys.: Condens. Matter. 2002, 14(11): 2745~2779.
    25 Y. Q. Xue, M. A. Ratner. Theoretical Principles of Single-Molecule Electronics: A Chemical and Mesoscopic View. Int. J. Quantum Chem. 2005, 102(5): 911~924.
    26 C. Joachim, J. K. Gimzewski, A. Aviram. Electronics Using Hybrid-Molecular and Mono-Molecular Devices. Nature. 2000, 408(6812): 541~548.
    27 R. E. Martin, F. Diederich. Linear Monodisperse π-Conjugated Oligomers: Model Compounds for Polymers and More. Angew. Chem. Int. Ed. 1999, 38(10): 1350~1377.
    28 U. H. F. Bunz. Poly(aryleneethynylene)s: Syntheses, Properties, Structures, and Applications. Chem. Rev. 2000, 100(4): 1605~1644
    29 N. Robertson, C. A. McGowan. A Comparison of Potential Molecular Wires as Components for Molecular Electronics. Chem. Soc. Rev. 2003, 32(2): 96~103.
    30 R. Dembinski, T. Bartik, B. Bartik et al. Toward Metal-Capped One-Dimensional Carbon Allotropes: Wirelike C-6-C-20 Polyynediyl Chains That Span Two Redox-Active (eta(5)-C5Me5)Re(NO)(PPh3) Endgroups. J. Am. Chem. Soc. 2000, 122(5): 810~822.
    31 H. L. Anderson. Conjugated Porphyrin Ladders. Inorg. Chem. 1994, 33(5): 972~981.
    32 R. C. Jagessar, J. M. Tour. Synthesis of Porphyrins Bearing trans-Thiols. Org. Lett. 2000, 2(2): 111~113.
    33 A. Tsuda, A. Osuka. Fully Conjugated Porphyrin Tapes with Electronic Absorption Bands That Reach into Infrared. Science. 2001, 293(5527): 79~82.
    34 P. Avouris. Molecular Electronic with Carbon Nanotubes. Acc. Chem. Res. 2002, 35(12): 1026~1034.
    35 T. W. Odom, J. L. Huang, P. Kim et al. Atomic Structure and Electronic Properties of Single-Walled Carbon Nanotubes. Nature. 1998, 391(6662): 62~64.
    36 F. Robert. Assembling Nanocircuits from the Bottom Up. Science. 2001, 293(5531): 782~785.
    37 P. A. Smith, C. D. Nordquist, T. N. Jackson et al. Electric Field Assisted Assembly and Alignment of Metallic Nanowires. Appl. Phys. Lett. 2000, 77(9): 1399~1401.
    38 H. W. Fink, C. Schonenberger. Electrical Concuction through DNA Molecules. Nature, 1999, 398(6726): 407~410.
    39 A. J. Storm, J. van Noort, S. de Vries et al. Insulating Behavior for DNA Molecules between Nanoelectrodes at the 100nm Length Scale. Appl. Phys. Lett. 2001, 79(23): 3881~3883.
    40 Y. A. Berlin,I. V. Kurnikov, D. Beratan et al. DNA Electron Transfer Processes: Some Theoretical Notions. Top. Curr. Chem. 2004, 237: 1~36.
    41 D. Porath, G. Cuniberti, R. Di Felice. Charge Transport in DNA-Based Devices. Top. Curr. Chem. 2004, 237: 183~227.
    42 M. A. Reed, C. Zhou, C. J. Muller et al. Conductance of a Molecular Junction. Science. 1997, 278(5336): 252~254.
    43 D. Porath, A. Bezryadin, V. Simon de et al. Direct Measurement of Electrical Transport through DNA Molecules. Nature. 2000, 403(6770): 635~638.
    44 S. Datta, W. D. Tian, S. H. Hong et al. Current-Voltage Characteristics of Self Assembled Monolayers by Scanning Tunneling Microscopy. Phys. Rev. Lett. 1997, 79(13): 2530~2533.
    45 R. Haag, M. A. Rampi, R. E. Holmlin et al. Electrical Breakdown of Aliphatic and Aromatic Self-Assembled Monolayers Used as Nanometer-Thick Organic Dielectrics. J. Am. Chem. Soc. 1999, 121(34): 7895~7906.
    46 R. E. Holmlin, R. Haag, M. L. Chabinyc et al. Electron Transport through Thin Organic Films in Metal-Insulator-Metal Junctions Based on Self-Assembled Monolayers. J. Am. Chem. Soc. 2001, 123(21): 5075~5085.
    47 R. E. Holmlin, R. F. Ismagilow, R. Haag et al. Correlating Electron Transport and Molecular Structure in Organic Thin Films. Angew. Chem. Int. Ed. 2001, 40(12): 2316~2320.
    48 K. N. Mbindyo, T. E. Mallouk, J. B. Mattzela et al. Template Synthesis of Metal Nanowires Containing Monolayer Molecular Junctions. J. Am. Chem. Soc. 2002, 124(15): 4020~4026.
    49 L. T. Cai, H. Skulason, J. G. Kushmerick et al. Nanowire-Based Molecular Monolayer Junctions: Synthesis, Assembly, and Electrical Characterization. J. Phys. Chem. B. 2004, 108(9): 2827~2832.
    50 C. E. Gardner, M. A. Ghanern, J. W. Wilson et al. Development of a Nanowire-Based Test Bed Device for Molecular Electronics Applications. Anal. Chem. 2006, 78(3), 951~955.
    51 C. Zhou, M. R. Deshpande, M. A. Reed et al. Nanoscale Metal/Self-Assembled Monolayer/Metal Heterostructures. Appl. Phys. Lett. 1997, 71(5): 611~613.
    52 T. Lee, W. Wang, J. J. Zhang et al. Cross-platform Characterization of Electron Tunneling in Molecular Self-Assembled Monolayers. Curr. Appl. Phys. 2005, 5(3): 213~217.
    53 J. G. Kushmerick, D. B. Holt, S. K. Pollack et al. Effect of Bond-Length Alternation in Molecular Wires. J. Am. Chem. Soc. 2002, 124(36): 10654~10655.
    54 J. G. Kushmerick, J. Naciri, J. C. Yang et al. Conductance Scaling of Molecular Wires in Parallel. Nano. Lett. 2003, 3(7): 897~900.
    55 I. Amlani, A. M. Rawlett, L. A. Nagahara et al. An Approach to Transport Measurements of Electronic Molecules. Appl. Phys. Lett. 2002, 80(15): 2761~2763.
    56 T. Dadosh, Y. Gordin, R. Krahne et al. Measuement of the Conductance of Single Conjugated Molecules. Nature. 2005, 436(7051): 677~680.
    57 X. L. Fan, C. Wang, D. L. Yang et al. Molecule Rectifier Fabricated by Capillary Tunnel Junction. Chem. Phys. Lett. 2002, 361(5-6): 465~468.
    58 X. Xiao, B. Xu, N. J. Tao. Measurement of Single Molecule Conductance: Benzenedithiol and Benzenedimethanethiol. Nano. Lett. 2004, 4(2): 267~271.
    59 J. Loos. The Art of SPM: Scanning Probe Microscopy in Materials Science. Adv. Mater. 2005, 17(15): 1821~1833.
    60 L. Venkataraman, J.E. Klare, C. Nuckolls et al. Dependence of Single-Molecule Junction Conductance on Molecular Conformation. Nature. 2006, 442(7105):904~907.
    61 J. Reichert, R. Ochs, D. Beckmann, H. B. Weber et al. Driving Current through Single Organic Molecules. Phys. Rev. Lett. 2002, 88(17): 176804-4
    62 X. Y. Xiao, L. A. Nagahara, A. M. Rawlett et al. Electrochemical Gate-Controlled Conductance of Single Oligo(Phenylene Ethynylene)s. J. Am. Chem. Soc. 2005, 127(25): 9235~9240.
    63 X. Yin, H. M. Liu, J. W. Zhao. Electronic Transportation Through Asymmetrically Substituted Oligo(Phenylene Ethynylene)s: Studied by First Principles Nonequilibrium Green's Function Formalism. J. Chem. Phys. 2006, 125(9): 094711.
    64 C. Zhou, J. Kong, E. Yenilmez et al. Modulated Chemical Doping of Individual Carbon Nanotubes. Science. 2000, 290(5496): 1552~1555.
    65 H. Park, J. Zhao, J. P. Lu. Effects of Sidewall Functionalization on Conducting Properties of Single Wall Carbon Nanotubes. Nano. Lett. 2006, 6(5): 916~919.
    66 X. Y. Zhu. Electronic Structure and Electron Dynamics at Molecular-Metal Interfaces: Implications for Molecular-Based Electronics. Surf. Sci. Rep. 2004, 56(1-2): 1~83.
    67 P. Tarakeshwar, J. J. Palacios, D. M. Kim. Modulation of Molecular Conductance Induced by Electrode Atomic Species and Interface Geometry. J. Phys. Chem. B. 2006, 110: 7456~7462.
    68 A. Grigoriev, J. Skoldberg, G. Wendin G et al. Critical Roles of Metal-Molecule Contacts in Electron Transport Through Molecular-Wire Junctions. Phys. Rwv. B. 2006, 74(4): 045401.
    69 J. M. Seminario, C. E. De la Cruz, P. A. Derosa. A Theoretical Analysis of Metal-Molecule Contacts. J. Am. Chem. Soc. 2001, 123(23): 5616~5617.
    70 Y. Q. Xue, M. A. Ratner. End Group Effect on Electrical Transport through Individual Molecules: A Microscopic Study. Phys. Rev. B. 2004, 69(8): 085403.
    71 R. L. McCreery. Molecular Electronic Junctions. Chem. Mater. 2004, 16(23): 4477~4496.
    72 D. Vuillaume, S. Lenfant. The Metal/Organic Monolayer Interface in Molecular Electronic Devices. Microelectron. Eng. 2003, 70(2-4): 539~550.
    73 B. Kim, S. J. Ahn, J. G. Park, S. H. Lee et al. Temperature-DependentMolecular Conduction Measured by the Electrochemical Deposition of a Platinum Electrode in a Lateral Configuration. Appl. Phys. Lett. 2004, 85(20): 4756~4758.
    74 G. M. Morales, P. Jiang, S. W. Yuan et al. Inversion of the Rectifying Effect in Diblock Molecular Diodes by Protonation. J. Am. Chem. Soc. 2005, 127(30): 10456~10457.
    75 Z. J. Donhauser, B. A. Mantooth, K. F. Kelly et al. Conductance Switching in Single Molecules Through Conformational Changes. Science. 2001, 292(5525): 2303~2307.
    76 J. W. Zhao, K. Uosaki. Dielectric Properties of Organic Monolayers Directly Bonded on Silicon Probed by Current Sensing Atomic Force Microscope. Appl. Phys. Lett. 2003, 83(10): 2034~2036.
    77 H. B. Akkerman, P. W. M. Blom, D. M. de Leeuw et al. Towards Molecular Electronics with Large-Area Molecular Junctions. Nature. 2006, 441(7089): 69~72.
    78 F. MEYERS, S. R. MARDER, B. M. PIERCE et al. Electric-Field Modulated Nonlinear-Optical Properties OF Donor-Acceptor Polyenes -Sum-Over-States Investigation of the Relationship between Molecular Polarizabilities (alpha, beta, and gamma) and Bond-Length Alternation. J. Am. Chem. Soc. 1994, 116(23): 10703~10714.
    79 J. W. Zhao. Conformational Analysis of 2,2'-Bithiophene under Interaction of External Electric Field Defined by Point Charges. Chem. Phys. Lett. 2002, 351(5-6): 481~485.
    80 Y. W. Li, J. W. Zhao, X. Yin et al. Ab Initio Investigations of the Electric Field Dependence of the Geometric and Electronic Structures of Molecular Wires. J. Phys. Chem. A. 2006, 110(38): 11130~11135.
    81 J. Q. Lu, J. Wu, H. Chen et al. Electronic Transport Mechanism of a Molecular Electronic Device: Structure Effects and Terminal Atoms. Phys. Lett. A. 2004, 323(1-2): 154~158.
    82 C. Majumder, H. Mizuseki, Y. Kawazoe. Effect of Substituent Groups on the Electronic Properties of a Molecular Device: Ab initio Theoretical Study. J. Mol. Stru. THEOCHEM. 2004, 681(1-3): 65~69.
    83 J. M. Seminario, A. G. Zacarias, J. M. Tour. Theoretical Study of aMolecular Resonant Tunneling Diode. J. Am. Chem. Soc. 2000, 122(13): 3015~3020.
    84 R. L. Carroll, C. B. Gorman. The Genesis of Molecular Electronics. Angew. Chem. Int. Ed. 2002, 41(23): 4379~4400.
    85 N. J. Geddes, J. R. Sambles, A. S. Martin. Organic Molecular Rectifiers. Adv. Mater. Opt. Electron. 1995, 5 (6): 305~320.
    86 A. Aviram, C. Joachim, M. Pomerantz. Evidence of Switching and Rectification by a Single Molecule Effected with a Scanning Tunneling Microscope. Chem. Phys. Lett. 1988, 146 (6): 490~495.
    87 R. M. Metzger. Unimolecular Electrical Rectifiers. Chem. Rev. 2003, 103: 3803~3834.
    88 L. Yu, M. K. Ng. Synthesis of Amphiphilic Conjugated Diblock Oligomers as Molecular Diodes. Angew. Chem. Int. Ed. 2002, 41(24): 4612~4612.
    89 M. Elbing, R. Ochs, M. Koentopp et al. A Single-Molecule Diode. P NAS. 2005, 102(25): 8815-8820.
    90 A. S. Martin, J. R. Sambles, G. J. Ashwell. Molecular Rectifier. Phys. Rev. Lett. 1993, 70(2): 218~221.
    91 A. Dhirani, P. H. Lin, P. GuyotSionnest et al. Self-Assembled Molecular Rectifiers. J. Chem. Phys. 1997, 106 (12): 5249~5253.
    92 S. Zhou, Y. Liu, W. Qiu et al. Synthetic Molecular Rectifier of a Langmuir-Blodgett Film Based on a Novel Asymmetrically Substituted Dicyano-tri-tert-butylphthalocyanine. Adv. Funct. Mater. 2002, 12(1): 65~69.
    93 S. Zhou, Y. Liu, Yu Xu et al. Rectifying Behaviors of Langmuir- Blodgett Films of an Asymmetrically Substituted Phthalocyanine. Chem. Phys. Lett., 1998, 297(1-2): 77~82.
    94 Y. Selzer, A. Salomon, D. Cahen. Effect of Molecule-Metal Electronic Coupling on Through-Bond Hole Tunneling across Metal-Organic Monolayer-Semiconductor Junctions. J. Am. Chem. Soc. 2002, 124 (12): 2886~2887.
    95 C. Zhou, M. R. Deshpande, M. A. Reed et al. Nanoscale Metal/Self-Assembled Monolayer/Metal Heterostructures. Appl. Phys.Lett. 1997, 71(5): 611~612.
    96 M. K. Ng, L. P. Yu. Synthesis of Amphiphilic Conjugated Diblock Oligomers as Molecular Diodes. Angew. Chem. Int. Ed. 2002, 41(19): 3598~3601.
    97 M. K. Ng, D. C. Lee, L. P. Yu. Molecular Diodes Based on Conjugated Diblock Co-Oligomers. J. Am. Chem. Soc. 2002, 124 (40): 11862~11863.
    98 P. Jiang, G. G. Morales, W. You et al. Synthesis of Diode Molecules and Their Sequential Assembly to Control Electron Transport. Angew. Chem. Int. Ed. 2004, 43(34): 4471~4475.
    99 K. Stokbro, J. Taylor, M. Brandbyge. Do Aviram-Ratner Diodes Rectify? J. Am. Chem. Soc. 2003, 125(13): 3674~3675.
    100 Y. Chen, D. A. A. Ohlberg, X. M. Li et al. Nanoscale Molecular-Switch Devices Fabricated by Imprint Lithography. Appl. Phys. Lett. 2003, 82(10): 1610~1612.
    101 S. A. Nepogodiev, J. F. Stoddart. Cyclodextrin-Based Catenanes and Rotaxanes. Chem. Rev. 1998, 98(5): 1959~1976.
    102 M. Asakawa. Construction of Molecular Switches Based on Catenanes and Rotaxanes. Kobunshi Bonbunshu.1999, 56(8): 524~531.
    103 R. A. Bissell, E. Cordova, A. E. Kaifer et al. A Chemically and Electrochemically Switchable Molecular Shuttle. Nature. 1994, 369(6476): 133~137.
    104 C. P. Collier, E. W. Wong, M. Belohradsky et al. Electronically Configurable Molecular-Based Logic Gates. Science. 1999, 285(5426): 391~394.
    105 A. R. Pease, J. O. Jeppesen, J. F. Stoddart et al. Switching Devices Based on Interlocked Molecules. Acc. Chem. Res. 2001, 34(6): 433~444.
    106 C. P. Collier, G. Mattersterig, E. W. Wang et al. A Catenane-Based Solid State Electronically Reconfigurable Switch. Science. 2000, 289(5482): 1172~-1175.
    107 M. A. Reed, J. Chen, A. M. Rawlett et al. Molecular Random Access Memory Cell. Appl. Phys. Lett. 2001, 78 (23): 3735~3737.
    108 J. Chen, M. A. Reed. Electronic Transport of Molecular Systems. Chem. Phys. 2002, 281(2-3): 127~145.
    109 D. Gryko, J. Z. Liu, J. R. Diers et al. Studies Related to the Design and Synthesis of a Molecular Octal Counter. J. Mater. Chem. 2001, 11(4): 1162~1180.
    110 K. M. Roth, J. S. Lindsey, D. F. Bocian et al. Characterization of Charge Storage in Redox-Active Self-Assembled Monolayers. Langmuir. 2002, 18(10): 4030~4040.
    111 K. M. Roth, A. A. Yasseri, Z. M. Liu et al. Measurements of Electron-Transfer Rates of Charge-Storage Molecular Monolayers on Si(100). Toward Hybrid Molecular/Semiconductor Information Storage Devices. J. Am. Chem. Soc. 2003, 125(2): 505~517.
    112 Z. M. Liu, A. A. Yasseri, J. S. Lindsey et al. Molecular Memories That Survive Silicon Device Processing and Real-World Operation. Science. 2003, 302(5650): 1543~1545.
    113 A. Bilic, J.R. Reimers. The Structure, Energy, and Nature of the Chemical Bonding of Phenylthiol Adsorbed on the Au(111) surface: Implications for Density-Functional Calculaations of Molecular- Electronic Conduction. J. Chem. Phys. 2005, 122(9): 094708~15.
    114 H. Kondo, H. Kino, J. Nara et al. Contact-Structure Dependence of Transport Properties of a Single Organic Molecule between Au Electrodes. Phys. Rev. B. 2006, 73(23): 235323.
    115 H. Basch, R. Cohen, M. A. Ratner. Interface Geometry and Molecular Junction Conductance: Geometric Fluctuation and Stochastic Switching. Nano. Lett. 2005, 5(9): 1668~1675.
    116 C. Majumder. Interactions of a Conjugated Molecular Diode with Small Meta Clusters of Cu, Ag, and Au: First-Principles calculations. J. Chem. Phys. 2002, 117(16): 7669~7675.
    117 H. Mizuseki, N. Igarashi, C. Majumder. Theoretical Study of Donor-Spacer-Acceptor Structure Molecue for Use as Stable Molecular Rectifier: Geometric and Electronic Structures. Thin Solid Film. 2003, 438: 235~237.
    118 Y. Karzazi, J. Cornil, J.L. Bredas. Theoretical Investigation of theOrigin of Negative Differential Resistance in Substituted Phenylene Ethynylene Oligomers. Nanotechnology. 2003, 14(2): 165~171.
    119 J. M. Seminario, A. G. Zacarias, P. A. Derosa. Theoretical Analysis of Complementary Molecular Memory Devices. J. Phys. Chem. A. 2001, 105(5): 791~795.
    120 W. Charles, J. Bauschlicher, R. Alessandra. Do Individual Molecule Rotational Barriers Explain the Retention Times of Molecular Memories? Chem. Phys. Lett. 2003, 375(5-6): 459~462.
    121 B. Kirtman, B. Champagne, D. M. Bishop. Electric Field Simulation of Substituents in Donor-Acceptor Polyenes: A Comparison with Ab Initio Predictions for Dipole Moments, Polarizabilities, and Hyperpolarizabilities. J. Am. Chem. Soc. 2000, 122(33): 8007~8012.
    122 C. Krzeminski, C. Delerue, G. Allan. Tight Binding Description of the Electronic Response of A molecular Device to an Applied Voltage. J. Phys. Chem. B. 2001, 105(27): 6321~6323.
    123 S. Mujica, M. Kemp, M.A. Ranter. Electron Conduction in Molecular Wires. J. Chem. Phys. 1994, 101(8): 6849~6864.
    124 S. Datta. Nanoscale Device Modeling: The Green's Function Method. Superlattices and Microstructures. 2000, 28(4): 253~278.
    125 Y. Q. Xue, S. Datta, M. A. Ratner. First-Principles Based Matrix Green's Function Approach to Molecular Electronic Devices: General Formalism. Chem. Phys. 2002, 281(2-3): 151~170.
    126 N. D. Lang, M. Di Ventra. Comment on "First-Principles Treatments of Electron Transport Properties for Nanoscale Junctions". Phys. Rev. B. 2003, 68(15): 157301.
    127 P. A. Derosa, J. M. Seminario. Electron Transport Through Single Molecules: Scattering Treatment Using Density Functional and Green Function Theories. J. Phys. Chem. B. 2001, 105(2): 471~481.
    128 M. Di Ventra, S. T. Pantelides, N. D. Lang. First-Principles Calculation of Transport Properties of a Molecular Device. Phys. Rev. Lett. 2000, 84(5): 979~982.
    129 朱道本, 杨立英, 金碧辉. 分子器件. 中国基础科学. 2005, 7(3): 20~22.
    130 J. Clavilier, D. Armand, S. G. Sun. et al. Electrochemical AdsorptionBehavior of Platinum Stepped Surfaces in Sulfuric Acid Solutions. J. Electroanal. Chem. 1986, 205(122): 267~277.
    131 H. Angerstein-Kozlowska, B.C. Conway. Elementary Steps of Electrochemical Oxidation of Single-Crystal Planes of Au-Ι. Chemidal Basis of Processes Involving Geometry of Anions and the Electrode Surfaces. Electrochimica Acta. 1986, 31(8): 1051~1061.
    132 J. F. Smalley, S. W. Feldberg, C. E. D. Chidsey et al. The Kinetics of Electron-Transfer through Ferrocene-Terminated Alkanethiol Monolayers on Gold. J. Phys. Chem. 1995, 99(35): 13141~13149.
    133 Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel et al. Gaussian, Inc., Wallingford CT, 2004.
    134 L. Fu, L. C. Cao, Y. Q. Liu et al. Molecular and Nanoscale Materials and Devices in Electronics. Adv. Colloid Interface Sci. 2004, 111(3): 133~157.
    135 G.J. Edens, X. Gao, M.J. Weaver. The Adsorption of Sulfate on Gold(111) in Acidic Aqueous-Media-Adlayer Structural Inferences from Infrared-Spectroscopy and Scanning-Tunneling-Microscopy. J. Electroanal. Chem. 1994, 375(1-2): 357~366.
    136 A. Custa, M. Kleinert, D.M. Kolb. The Adsorption of Sulfate and Phosphate on Au(111) and Au(100) Electrodes: An In Situ STM Study. Phys. Chem. Chem. Phys. 2000, 2(24): 5684~5690.
    137 A. Hamelin. Cyclic Voltammetry at Gold Single-Crystal Surfaces.1. Behaviour at Low-Index Faces. J. Electroanal. Chem. 1996, 407(1-2): 1~11.
    138 A.A Gewirth, B.K. Niece. Electrochemical Applications of In Situ Scanning Probe Microscopy. Chem. Rev. 1997, 97(4): 1129-1162.
    139 K. Itaya. In Situ Scanning Tunneling Microscopy in Electrolyte Solutions. Prog. Surf. Sci. 1998, 58 (3): 121~247.
    140 M. D. Porter, T. B. Bright, D. L. Allara et al. Spontaneously Organized Molecular Assemblies. 4. Strcuctural Characterization of n-Alkyl Thiol Monolayers on Gold by Optical Ellipsometry, Infrared Spectroscopy, and Electrochemistry. J. Am. Chem. Soc. 1987, 109(12): 3559~3568.
    141 查全性. 电极过程动力学导论(第三版). 科学出版社, 2002: 33~34.
    142 A. M. Becka, C.J. Miller. Electrochemistry at .Omega.-Hydroxy Thiol Coated Electrodes. 3. Voltage Independence of The Electron Tunneling Barrier and Measurements of Redox Kinetics at Large Overpotentials. J. Phys. Chem. 1992, 96(6): 2657~2668.
    143 K.B. Oldman. Signal-Independent Elecroanalytical Method. Anal. Chem. 1972, 44(1): 196~198.
    144 R. Joe Lawson, J.T. Maloy. Mechanistic Studies Using Double Potential Step Chronoamplometry. EC, ECE, and Second-Order Dimerization Mechanisms. Anal. Chem. 1974, 46(4): 559~562.
    145 O. Chailapakul, R. M. Crooks. Synthesis and Characterization of Simple Self-Assembling, Nanoporous Monolayer Assemblies: A New Strategy for Molecular Recognition. Langmuir. 1993, 9(4): 884~888.
    146 D. T. Sawyer, J. L. Roberts. Experimental Electrochemistry for Chemists. Wiley, New York, 1974: 77.
    147 C. Miller, P. Cuendet, M. Gratzel. Adsorbed .Omega.-Hydroxy Thiol Monolayers on Gold Electrodes: Evidence for Electron Tunneling to Redox Species in Solution. J. Phys. Chem. 1991, 95(2): 877~886.
    148 D. A. Brevnov, H.O. Finklea, H. V. Ryswyk. Ac Voltammetry Studies of Electron Transfer Kinetics for a Redox Couple Attached via Short Alkanethiols to a Gold electrode. J. Electroanal. Chem. 2001, 500(1-2): 100~107.
    149 K. Slowinski, R. V. Chamberlain, C. J. Miller et al. Through- Bond and Chain-to-Chain Coupling. Two Pathways in Electron Tunneling Through Liquid Alkanethiol Monolayers on Mercury Electrodes. J. Am. Chem. Soc. 1997, 119(49): 11910~11919.
    150 H. T. Rong, S. Frey, Y. J. Yang et al. On the Importance of the Headgroup Substrate Bond in Thiol Monolayers: A Study of Biphenyl-Based Thiols on Gold and Silver. Langmuir. 2001, 17(5): 1582~1593.
    151 J. Xu, H. Li, Y. Zhang. Relationship between Electronic Tunneling Coefficient and Electrode Potential Investigated by Using Self-Assembled Alkanethiol Monolayers on Gold Electrodes, J. Phys.Chem. 1993, 97(44): 11497~11500.
    152 X. D. Cui, A. Primak, X. Zarate et al. Changes in the Electronic Properties of a Molecule when It Is Wired into a Circuit. J. Phys. Chem. B. 2002, 106(34): 8609~8614.
    153 H. Ishii, H. Oji, E. Ito et al. Energy Level Alignment and Band Bending at Model Interfaces of Organic Electroluminescent Devices. J. Lumin. 2000, 87-89: 61~65.
    154 J. G. Simmons. Generalized Formula for the Electronic Tunnel Effect between Similiar Electrodes Separated by a Thin Insulating Film. J. Appl. Phys. 1963, 34(6): 1793~1803.
    155 H. B. Akkerman, P. W. M. Blom, D. M. Leeuw et al. Towards Molecular Electronics with Large-Area Molecular Junctions. Nature. 2006, 441(7089): 69~72.
    156 X. D Cui, X. Zarate, J. Tomfohr et al. Making Electrical Contacts to Molecular Monolayers. Nanotechnology. 2002, 13(1): 5~14.
    157 N. A. Burnham, R. J. Colton. Measuring the Nanomechanical Properties and Surface Forces of Materials Using An Atomic Force Microscope. J. Vac. Sci. Technol. A. 1989, 7(4): 2906~2913.
    158 L. E. Hall, J. R. Reimers, N. S. Hush et al. Formalism, Analytical Model and a Priori Green's-Function-Based Calculations of the Current-Voltage Characteristics of Molecular Wires J.Chem.Phys. 2000, 112(3): 1510~1521.
    159 S. N. Yaliraki, A. E. Roitberg, C. Gonzalez et al. The Injecting Energy at Molecule/metal Interfaces:Implications for Conductance of Molecular Junctions from an Ab Initio Molecular Description. J. Phys. Chem. 1999, 111(15): 6997~7002.
    160 J. Taylor, M. Brandbyge, K. Stokbro. Theory of Rectification in Tour Wires: the Role of Electrode Coupling. Phys. Rev. Lett. 2002, 89(13): 138301.
    161 A. Salomon, D. Cahen, S. Lindsay et al. Comparison of Electronic Transport Measurements on Organic Molecules. Adv. Mater. 2003, 15(22): 1881~1890.
    162 H. Shirakawa. The Discovery of Polyacetylene Film: The Dawning ofan Era of Conducting Polymers (Nobel Lecture). Angew. Chem. Int. Ed. 2001, 40(14): 2575~2580.
    163 A.S. Blum, J. C. Yang, R. Shashidhar et al. Comparing the Conductivity of Molecular Wires with the Scanning Tunneling Microscope. Appl. Phys. Lett. 2003, 82(19): 3322~3324.
    164 J. G. Kushmerick, D. B. Holt, S. K. Pollack et al. Effect of Bond-Length Alternation in Molecular Wires. J. Am Chem Soc. 2002, 124(36): 10654~10655.
    165 K. W. Hipps. Molecular Electronics-It's All about Contacts. Science. 2001, 294(5542): 536~537.
    166 A. Johansson, S. Stafstrom. Interactions between Molecular Wires and a Gold Surface. Chem. Phys. Lett. 2000, 322(5): 301~306.
    167 J. M. Beebe, V. B. Engelkes, L .L Miller et al. Contact Resistance in Metal-Molecule-Metal Junctions Based on Aliphatic SAMs: Effects of Surface Linker and Metal Work Function. J. Am Chem. Soc. 2002, 124(38): 11268~11269.
    168 Y. Q. Xue, S. Datta, S. Hong et al. Negative Differential Resistance in the Scanning-Tunneling Spectroscopy of Organic Molecules. Phys. Rev. B.1999, 59(12): R7852~R7855.
    169 Y.W. Li, Y. Zhang, G. P. Yin et al. Theoretical Investigations on Molecular Conducting Wire under Electric Field. Chem. J. Chin. Univ. 2006, 27(2): 292~296.
    170 J. W. Zhao, P. Li, Y.W. Li, Z. Q, Huang. Theoretical Investigation on Conformational Behavior of 2,2′-Bithiophene under the Influence of External Electric Field at Ab Initio Levels. J. Mol. Struct. (THEOCHEM). 2007, 808(1-3): 125~134.
    171 J. Chen, M. A. Reed, A. M. Rawlett et al. Large on-off Ratios and Negative Differential Resistance in a Molecular Electronic Device. Science. 1999, 286(5444): 1550~1552.
    172 R. Pati, S. P. Karna. Current Switching by Conformational Change in a Pi-Sigma-Pi Molecular Wire. Phys. Rev. B. 2004, 69(15): 155419.
    173 A. Troisi, M. A. Ratner. Conformational Molecular Rectifiers. Nano Lett. 2004, 4(4): 591~595.
    174 A. W. Ghosh, T. Rakshit, S. Datta. Gating of a Molecular Transistor: Electrostatic and Conformational. Nano Lett. 2004, 4(4): 565~568.
    175 S. R. Marder, C.B. Gorman, F. Meyers et al. A Unified Description of Linear and Nonlinear Polarization in Organic Polymethine Dyes. Science. 1994, 265(5172): 632~635.
    176 J. Li, J. K. Tomfohr, O. F. Sankey. Theoretical Study of Carotene as a Molecular Wire. Physica E.2003, 19(1-2): 133~138.
    177 R. G. Parr, R. G. Pearson. Absolute Hardness: Companion Parameter to Absolute Electronegativity. J. Am. Chem. Soc. 1983, 105(26): 7512~ 7516.
    178 T. Yamabe, K. Tanaka, H. Terama et al. Electronic Properties of Pure and Doped Polyacetylenes J. Phys. C: Solid State Phys. 1979, 12: L257~L262.
    179 M. Kertesz, J. Koller, A. Azman. Ab Initio Hartree-Fock Crystal Orbital Studies. Energy Bands in Polyene Reconsidered. J. Chem. Phys. 1977, 67: 1180~1186.
    180 H. Shirakawa, T. Ito, S. Ikeda. Polym. Raman Scattering and Electronic Spectra of Poly(acetylene). J. 1973, 4(4): 460~462.
    181 T. C. Chung, A. Feldblum, A. J. Heeger et al. Experimental Studies of Sodium-Doped Polyacetylene: Optical and ESR Results for Metallic (CHNay)x. J. Chem. Phys. 1981, 74(10): 5504~5507.
    182 X. Yin, Y. Li, Y. Zhang et al. Theoretical Analysis of Geometry- Correlated Conductivity of Molecular Wire. Chem. Phys. Lett. 2006, 422(1-3): 111-116.
    183 J. Taylor, M. Brandbyge, K. Stokbro. Phys. Rev. B: Condens. Matter: Condens. Matter. Conductance Switching in a Molecular Device: The Role of Side Groups and Intermolecular Interactions. 2003, 68(12): 121101
    184 J. C. Cuevas, J. Heurich, F. Pauly et al. Theoretical Description of the Electrical Conduction in Atomic and Molecular Junctions. Nanotechnology. 2003, 14(8): R29~R38.
    185 J. M. Seminario, P. A. Derosa. Molecular Gain in a Thiotolane System. J. Am. Chem. Soc. 2001, 123(49): 12418~12419.
    186 A. Ricca, C. W. Bauschlicher. Effect of Packing and Tilt on the Rotational Barriers of an Amino, Nitro-Substituted Phenylene Ethynylene Trime. J. Phys. Chem. B. 2005, 109(18): 9059~9065.
    187 J. M. Seminario, A. G. Zacarias, J. M. Tour. Theoretical Interpretation of Conductivity Measurements of a Thiotolane Sandwich. A Molecular Scale Electronic Controller. J. Am. Chem. Soc. 1998, 120(16): 3970~ 3974.
    188 A. H. Flood, J. F. Stoddart, D. W. Steuerman et al. Whence Molecular Electronics? Science. 2004, 306(5704): 2055~2056.
    189 M. Moroni, J. Lemoigne, S. Luzzati. Rigid-Rod Conjugated Polymers for Nonlinear Optics.1. Characterization and Linear Optical- Properties of Poly(aryleneethynylene) Derivatives. Macromolecules. 1994, 27(2): 562~571.
    190 C. Li, D. H. Zhang, X. L. Liu et al. Fabrication Approach for Molecular Memory Arrays. Appl. Phys. Lett. 2003, 82(4): 645~647.
    191 A. Blaszczyk, M. Chadim, C. von Hanisch C et al. Synthesis of Macrocyclic Molecular Rods as Potential Electronic Devices. Eur. J. Org. Chem. 2006, (17): 3809~3825.
    192 K. Okuyama, T. Hasegawa, M. Ito, N. Mikami. Electronic Spectra of Tolane in a Supersonic Free Jet: Large-Amplitude Torsional Motion. J. Phys. Chem. 1984, 88(9): 1711~1716.
    193 Y. Meir, N.S. Wingreen. Landauer Formula for the Current through an Interacting Electron Region. Phys. Rev. Lett. 1992, 68(16): 2512-2515.
    194 S. Woitellier, J.P. Launay, C. Joachim. The Possibility of Molecular Switching: Theoretical Study of [(NH3)5Ru-4,4’-BIPY-Ru(NH3)5]5+. Chem. Phys. 1989, 131(2-3): 481~488.
    195 A. Nitzan. Electron Transmission through Molecules and Molecular Interfaces. Annu. Riv. Phys. Chem. 2001, 52: 681~750.
    196 H.A. Duarte, H.F. Dos Santos, W.R. Rocha et al. Improved Quantum Mechanical Study of the Potential Energy Surface for the Bithiophene Molecule. J. Chem. Phys. 2000, 113(10): 4206~4215.
    197 A. Karpfen, C. H. Choi, M. Kertesz. Single-Bond Torsional Potentials in Conjugated Systems: A Comparision of Ab Initio and DensityFunctional Results. J. Phys. Chem. A. 1997, 101(40): 7426~7433.
    198 S. Samdal, E.J. Samuelsen, H.V. Volden. Molecular Confromational of 2,2’-Bithiophene Determined by Gas Phase Electron Diffraction and ab Initio Calculations. Synth. Met. 1993, 59(2): 259~265.
    199 P.E. Kornilovitch, A.M. Bratkovsky, R.S. Williams. Bistable Molecular Conductors Wih a Field-Switchable Dipole Group. Phys. Rev. B. 2002, 66(24): 245413.
    200 M. Kondo, T. Tada, K. Yoshizawa. Wire-Length Dependence of the Conductance of Oligo(p-phenylene) Dithiolate Wires: A Consideration from Molecular Orbitals. J. Phys. Chem. A. 2004, 108(42): 9143~9149.
    201 M. P. Samanta, W. Tian, S. Datta et al. Electronic Conduction through Organic Molecules. Phys. Rev. B. 1996, 53(12): R7626~R7629.
    202 H. Siltinghaus, N. Tessler, R. H. Friend. Integrated Optoelectronic Devices Based on Conjugated Polymers. Science, 1998, 280(5370): 1741~1744.
    203 G. A. Nemnes, U. Wulf U, P. N. Racec. Nonlinear I-V Characteristics of Nanotransistors in the Landauer-Buttiker Formalism. J. Appl. Phys. 2005, 98(8): 084308.
    204 S. Hoger. Shape-Persistent Macrocycles: From Molecules to Materials. Chem. Eur. J. 2004, 10(6): 1320~1329.
    205 D. Venkataraman, S. Lee, J. S. Zhang et al. An Organic-Solid with Wide Channels Based on Hydrogen-Bonding between Macrocycles. Nature. 1994, 371(6498): 591~593.
    206 Y. Hosokawa, T. Kawase, M. Oda. 8,16,24,32,40,48-Hexamethoxy [2.(6)]Metacyclophane-1,9,17,25,33,41-Hexayne: A Novel Near- Planar Ammonium-Selective Ionophore. Chem. Commun.2001, (19): 1948~1949.
    207 D. Zhao, J. S. Moore. Shape-Persistent Arylene Ethylene Macrocycles: Syntheses and Superamolecular Chemistry. Chem. Commun. 2003, (7): 807~818.
    208 J. S. Moore. Shape-Persistent Molecular Architectures of Nanoscale Dimension. Acc. Chem. Res. 1997, 30(10): 402~413.
    209 C. Liu, D. Walter, D. Neuhauser. et al. Molecular Recognition andConductance in CRown Ether. J. Am. Chem. Soc. 2003, 125(46): 13936~13937.
    210 J. S. Zhang, D. J. Pesak, J. L. Ludwick et al. Nanoarchitectures .5. Geometrically-Controlled and Site-Specifically-Functionalized Phenylacetylene Macrocycles. J. Am. Chem. Soc.1994, 116(10): 4227~4239.
    211 B. Traber, T. Oeser, R. Gleiter. Donor-Acceptor-Substituted Phenylacetylene Macrocycles with Threefold Symmetry. Eur. J. Org. Chem. 2005, (7): 1283~1292.
    212 M. Fischer, G. Lieser, A. Rapp et al. Shape-Persistent Macrocycles with Intraannular Polar Groups: Synthesis, Liquid Crystallinity, and 2D Organization. J. Am. Chem. Soc. 2004, 126(1): 214~222
    213 J. C. Ellenbogen, J. C. Love. Architectures for Molecular Electronic Computers: 1. Logic Structures and an Adder Designed from Moelcular Electronic Diodes. Proc. IEEE. 2000, 88(3): 386~426.
    214 S. Ami, M. Hliwa, C. Joachim. Molecular ‘OR’ and ‘AND’ Logic Gates Integrated in a Single Molecule. Chem. Phys. Lett. 2003, 367(5-6): 662~668.
    215 V. Balzani, A. Credi. Artificial Molecular-Level Machines. Chemical Record. 2001, 1(6): 422~435.
    216 A. Karpfen, C. H. Choi, M. Kertesz. Single-Bond Torsional Potentials in Conjugated Systems: A Comparison of Ab Initio and Density Functional Results. J. Phys. Chem. A. 1997, 101(40): 7426~7433.
    217 O. S. Lee, J. G. Saven. Simulation Studies of a Helicalm-Phenylene Ethynylene Foldamer. J. Phys. Chem. B. 2004, 108(32): 11988~11994.
    218 T. Kawase., N. Ueda, M. Oda. [2.2.2]Metacyclophane-1,9,17-triyen. Tetrahedron Lett. 38(38): 6681~3384.
    219 A. S.Shetty, J. S. Zhang, J. S. Moore. Aromatic Pi-Stacking in Solution as Revealed through the Aggregation of Phenylacetylene Macrocycles. J. Am Chem. Soc.1996, 118(5): 1019~1027.
    220 W. Zhang, J. S. Moore. Reaction Pathways Leading to Arylene Ethynylene Macrocycles via Alkyne Metathesis.J. A. Chem. S. 2005, 127(33): 11863~11870.
    221 P.C. Haake, F.H. Westheimer. Hydrolysis and Exchange in Esters of Phosophoric Acid. J. Am. Chem. Soc. 1961. 83(5): 1102~1109。
    222 J.F. Liebman, A. Greenberg. A Survey of Strained Organic Molecules. Chem. Rev. 1976, 76(3): 311~356.
    223 T. Dudev, C. Lim. Ring Strain Energies from Ab Initio Calculations. J. Am Chem Soc.1998, 120(18): 4450~4458.
    224 A. Nitzan, M. A. Ratner. Electron Transport in Molecular Wire Junctions. Science. 2003, 300(5624): 1384~1389.