有机分子功能器件电输运特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,利用单分子组装电子器件引起了人们极大的兴趣。随着实验手段的不断进步和人们对分子器件电输运理论的深入研究,在单分子器件研究领域产生了许多令人鼓舞的成果。单分子器件研究领域的最大的挑战之一就是如何表征电子是通过连接在两个金属电极之间的有机分子进行传输的。众所周知,分子器件内部的微观结构在金属层-有机分子-金属层隧道结的电子输运过程中起着决定性的作用。因此,确定分子器件的几何接触构型在制作分子功能器件过程中变得非常重要。单纯从实验的角度来讲,很难确定分子结是否由一个分子构成。即使能够制备出单分子结,分子结内部结构的确定也相当困难。非弹性电子隧穿谱技术作为探测分子结内部接触构型的有效手段,已经被广泛的应用于分子电子学领域。有机分子的电子非弹性隧穿过程的产生源于电子与有机分子振动的耦合,它与分子动力学以及电荷的转移、发生化学反应的过程等诸多因素密切相关。因此,电子非弹性隧穿的研究工作对分子电子学的研究和实验技术的发展都有十分重要的意义。
     近年来,国际上已经有多个实验组对多种分子功能器件的非弹性电子隧穿谱进行了相关研究,并且取得了很多有意义的成果。尽管非弹性电子隧穿谱技术是非常灵敏有效的探测手段,然而由于缺乏可以参考的标准,因此仅仅依靠实验很难提供足够的信息来确定分子结的内部结构。这就需要发展理论来指认和解释分子器件非弹性电子隧穿谱的谱峰。在理论方面,目前已有多个研究小组利用数学建模的方法或者采用第一性原理计算来模拟分子器件的非弹性电子隧穿谱,也取得了与实验符合较好的结果。然而理论模拟的结果在谱峰的位置和相对强度上很难与实验符合得较好,不同研究小组对同一分子的研究结果也有较大差异。存在以上问题的主要原因有:影响分子的非弹性电子隧穿谱的因素很多,不但受分子结构的影响,而且依赖于电极与分子的接触方式和接触形状,此外还受分子相对于衬底的取向以及外界其他因素的影响。本论文在杂化密度泛函理论的基础上,发展了第一性原理的理论方法来模拟分子器件的非弹性电子隧穿过程,详细讨论了电极构型,分子的倾斜取向以及末端甲基的碳原子相对金探针的距离对分子非弹性电子隧穿的影响,并研究了分子间的相互作用以及不同电极对分子非弹性电子隧穿的影响。
     癸烷硫醇分子的非弹性电子隧穿谱的理论计算表明分子结的电极构型、分子的倾斜取向以及末端甲基的碳原子相对金探针的距离对癸烷硫醇扩展分子非弹性电子隧穿谱有很大的影响。理论模拟结果较好地符合了实验结果,且给出了该分子结的内部结构信息。理论计算结果表明Hallb?ck小组实验中测量的分子结接触构型是末端甲基上的碳原子位于金电极的桥位,另一端的硫原子处于金衬底的空位,分子相对金衬底的倾角θ=20°,而末端甲基上的碳原子与STM探针的距离是0.309nm。
     从第一性原理出发,我们系统研究了电极与辛烷硫醇分子间距和两分子交叠程度对双辛烷硫醇扩展分子体系的非弹性电子隧穿谱的影响。理论计算结果表明,辛烷硫醇扩展分子体系的非弹性电子隧穿谱与电极接触构型有着密切的联系,当调整扩展分子的电极接触构型时,体系的非弹性电子隧穿谱随之出现较大的变化。通过计算不同链间距下的双辛烷硫醇扩展分子体系的非弹性电子隧穿谱,发现当两分子间距为2.6?时,体系的非弹性电子隧穿谱有了明显的变化。我们推断此时在分子间作用力的影响下,可能出现了电荷的链间非弹性隧穿。同时,还研究了在分子间距为2.6?不变的情况下部分交叠的双辛烷硫醇扩展分子体系的非弹性电子隧穿谱,计算结果表明分子的交叠程度对有机分子的非弹性电子隧穿谱有很大的影响。
     选取1,6-己二硫醇分子和1,4-二巯基苯分子为研究对象,初步研究了不同元素的金属电极对链烃硫醇分子和共轭分子两类分子的非弹性电子隧穿谱的影响。计算结果表明,采用不同元素的金属电极时1,6-己二硫醇分子和1,4-二巯基苯分子的非弹性电子隧穿谱有较大变化,由此表明金属电极的材料对链烃硫醇分子和由π键构成其主体结构的共轭分子的非弹性电子隧穿谱均有较大影响。我们认为这主要是由于不同的金属原子的线度、质量和电子结构不同,从而导致电极与分子间的相互作用能发生变化,由此影响了有机分子的非弹性电子隧穿谱。此结果有助于帮助确定相关实验中各振动模式的贡献。
     论文共由七章组成:第一章为综述部分,简要介绍了分子器件的研究现状,非弹性电子隧穿谱技术的产生、发展和在分子电子学领域的应用及目前存在的不足;第二章简单介绍了密度泛函理论(DFT)的基本理论,包括Hohenberg-Kohn定理、Kohn-Sham方程和交换关联泛函等,而且总结了分子的振动模式以及Gaussian程序中的振动分析方法;在第三章中详细地推导了分子器件非弹性电子隧穿谱的理论公式;第四章到第六章介绍了本人所做的工作和计算结果,第四章系统地讨论了电极接触构型、末端甲基碳原子相对金探针的距离以及分子主链相对金属衬底的倾斜角度对癸烷硫醇分子非弹性电子隧穿谱的影响,并且与实验结果进行了比较。第五章讨论了不同的电极接触构型对辛烷硫醇分子非弹性电子隧穿谱的影响,同时讨论了分子间相互作用对非弹性电子隧穿谱的影响。第六章研究了不同电极材料对1,6-己二硫醇分子和1,4-二巯基苯分子的非弹性电子隧穿谱的影响;第七章是对论文工作的总结和对下一步研究工作的展望。
The possibility of using single molecules to build electronic devices has attracted much attention in recent decades. Many exciting developments have been made in the field by virtue of technological advances and in-depth understanding of electron transport in molecular junctions. It is known that the detailed geometrical configuration of metal-molecule-metal junctions plays a key role in the charge transport properties. Thus, resolving the configuration of molecular junctions is a key issue for the controlled formation of molecular devices with required functions. However, from an experimental point of view, it is very difficult to ensure that the junction consists of just a single molecule, and,even when such junctions are realized,it is hard to know the microscopic arrangement, e.g., how the molecule is bound to the electrodes or the pathway followed by the electrons in the molecule. Inelastic electron tunneling spectroscopy (IETS) of molecular junctions has been introduced recently to the field of molecular electronics as a way of probing the molecular junctions as well as extracting information about the molecular conformation. Inelastic electron tunneling (IET) is induced by the coupling of electron and nuclear motions in molecules. Moreover, the IET process is also strongly associated with molecular dynamics, charge transfer, and chemical reactions. Therefore, IETS is an promising technique for the development of molecular electronics.
     Recently, inelastic electron transports in molecular junctions have been studied by several experiment groups, and many valuable achievements have been obtained. Only experimental results are not enough to determine molecular configurations. Theory is thus needed to make accurate assignments and to interpret features of the spectra. Inelastic electron transports in molecular junctions have been studied in theory by using either model calculations or first-principles simulations. The position and intensity of the peaks in the simulated spectra do not always agree with the experimental measurement well. The main reason for the questions mentioned above is that IETS is very sensitive to the molecular geometry, the molecule-metal contact structure, orientation of the molecule adsorbed on the surface and other external factors. In this thesis, a first-principles computational method based on hybrid density functional theory is introduced to simulate the inelastic electron tunneling process of molecular junctions. The influence of the molecule-metal contact structure, orientation of the molecule adsorbed on the surface, the distance between the carbon of the terminal methyl group and the gold surface of the electrode, the intermolecular interaction and the electrodes of different metal element on the IETS of molecular devices are investigated.
     We study the IETS of decanethiolate related to three molecule-metal contact structures, orientation of the molecule backbone relative to the surface, the distance between the carbon of the terminal methyl group and the gold surface of the electrode. The computational results show that the theoretical simulation has not only reproduced the experimental spectra, but also provided reliable and detailed information about configuration of the molecular junction. The molecular junctions formed by H?llback et al. experimentally are determined. The contact conformation is a triangle gold cluster at one side and a parallelogram gold cluster at the other side with the sulfur atoms are placed above the middle of the triangle, while the carbons of the terminal methyl group are positioned above the middle of the triangle and the center of the parallelogram (i.e. the bridge site). The titled angle is determined to be 20°, while the distance of the terminal carbon from the STM tip is determined to be 3.09 ? .
     A first-principles computational method based on the hybrid density functional theory is used to calculate the IETS of octanethiolate molecular electronic devices in the nonresonant tunneling regime. The computational results show that the IETS of octanethiolate is very sensitive to the molecule-metal contact structure. The IETS changes a lot with the adjusting of the electrodes’configuration. The IET spectra of a pair of octanethiolates with various molecular backbone to molecular backbone distances are investigated. The results demonstrate that intermolecular interactions affect IET spectra obviously when the distance is about 2.6 ?. It indicates that intermolecular inelastic electron tunneling appears and this process depends on the transverse modes. The IETS of a pair of octanethiolates with molecular backbone partly overlaped with the backbone to backbone distance fixed to 2.6 ? is also investigated. The result shows that the figures of IETS of these systems are quite different with the varying overlap degree.
     To evaluate the effects of electrodes with different element, the IET spectra of 1,6-hexanedithiol and 1,4-benzenedithiol molecular junctions with different electrodes have been calculated. The calculated results of both 1,6-hexanedithiol and 1,4-benzenedithiol show great discrepancy with different metal electrodes. It indicates that the IETS of both alkanethiols and phenylthoils are influenced by the electrodes with different element. The influence is maybe caused by the different dimension,mass and electron structure with different metal electrodes which induce the variation of the coupling energy between the electrodes and the moleculars.
     This thesis consists of seven chapters as follows. In the first chapter, the present state of molecular electronic devices, the background of IETS of molecular electronic devices and recent advance of experimental and theoretical work in this field are introduced. The questions needed to be solved in IETS area are also mentioned in this chapter. The density functional theory (DFT) is presented in the second chapter which includes the Hohenberg-Kohn Theorems, the Kohn-Sham equations and the exchange-correlation functionals in DFT. Moreover, the method of exhibiting the vibration of molecule and the vibrational analysis in the Gaussian program are also introduced briefly in this chapter. The computational theory and formulas for the IETS of the molecular junctions are presented in the third chapter. From the fourth chapter to the sixth chapter, the computational work and the main theoretical results are contained. In the fourth chapter, we systematic investigate the influence of the molecule-metal contact structure, orientation of the molecule adsorbed on the surface, the distance between the carbon of the terminal methyl group and the gold surface of the electrode on the IETS. The theoretical work has been compared with the experimental result. The influence of the electrodes contact structures on the inelastic electron tunneling spectroscopy of octanethiolate molecular junction is discussed in the fifth chapter, and the intermolecular interactions is also investigated. We discuss the IETS of 1,6-hexanedithiol and 1,4-benzenedithiol molecular junctions in the sixth chapter, in which the element of electrodes is varied. The seventh chapter draws a conclusion for the whole work of this thesis and gives the prospect on the development of the IETS of molecular electronic devices in the future.
引文
[1] Frank D J, Dennard R H, Nowak E, et al. Devices scaling limis of Si2MOSFET and their application dependencies [J ]. Proc IEEE, 2001, 89(3): 259-288.
    [2] Maruccio G,Cingolani R ,Rinaldi R. Projecting the nanoworld :Concept s , result s and perspectives of molecular elect ronics [J]. J Mater Chem, 2004, 14(4): 542-554.
    [3] McCreery R L. Molecular elect ronic junctions [J] . ChemMater ,2004 ,16(23): 4477-4496.
    [4] Donhauser Z J, Mantooth B A, Kelly K F, et al. Conductance switching in single molecules through conformational changes [J]. Science ,2001, 292(5525): 2303-2307.
    [5] Ellenbogen J C, Love J C. Logic st ructures and an adder designed f rom molecular elect ronic diodes [J]. Proc IEEE , 2000, 88(3): 386-426.
    [6] Liang W J, Shores M P , Bockrath M , et al. Kondo resonance in a single2molecular t ransistor [J]. Nature ,2002 ,417(6890): 725-729.
    [7] Carroll R L, Gorman C B. The genesis of molecular elect ronics [J]. Angew Chem Int Ed ,2002 ,41(23): 4379-4400.
    [8]李延伟,,张正刚,姚金环,姜吉琼,杨庆霞,覃艳梅.有机分子电子器件的研究进展[J].材料导报, 2009,23(11): 22-29.
    [9] Joachim C , Gimzewski J K, Aviram A. Elect ronics using hybrid2molecular and mono2molecular devices [J ]. Nature , 2000, 408(6812): 541-548.
    [10] Flood A H , Stoddart J F , Steuerman D W, et al. Enhanced : Whence molecular elect ronics [J ]. Science , 2004 , 306(5704): 2055-2056.
    [11]武晓君,李群祥,黄静,等.单分子器件电子输运性质的理论研究[J].物理化学学报, 2004 ,20 (z1): 995.
    [12]曹阳,刘松,申茜,甘霖,郭雪峰等.单分子电子器件概况及其研究进展[J].大学化学,2009 ,24 (3): 1-4.
    [13]黄群武,王一平,胡瑞杰,韩立君等.分子器件制作方法研究进展[J].化学工业与工程,2004 ,21(3): 210-215.
    [14] Aviram A , Ratner M A. Molecular rectifiers [ J ] . Chem Phys Lett. ,1974 ,29: 277.
    [15] Mujica V, Kemp M, Ratner M A. Electron Conduction in Molecular Wires .1. a Scattering Formalism[J ] . J. Chem. Phys. , 1994, 101(8): 6849-6856.
    [16] Ecunomou, E. N. Green’s functions in quantum physics [M]. Berlin: Springer, 1990.
    [17] Datta, S. Electronic transport in mesoscopic systems [M]. Cambridge: University Press, 1997.
    [18] Tian W D, Datta S, Hong S H, et al. Conductance spectra of molecular wires[J ] . J. Chem. Phys., 1998, 109(7): 2874-2882.
    [19] Emberly E G, Kirczenow G. Electron standing-wave formation in atomic wires [J ] . Phys. Rev. B., 1999, 60(8): 6028-6033.
    [20] Papaconstantopoulos, D. A. Handbook of the Band Structure of Elemental Solids [M]. New York: Plenum, 1986.
    [21] Derosa P A, Seminario J M. Electron transport through single molecules: Scattering
    [22] Damle P S, Ghosh A W, Datta S. Unified description of molecular conduction: From molecules to metallic wires [J ] . Phys. Rev. B., 2001, 64(20): 6028-6033.
    [23] Xue Y Q, Datta S, Ratner M A. Charge transfer and "band lineup" in molecular electronic devices: A chemical and numerical interpretation [J]. J. Chem. Phys., 2001, 115(9): 4292-4299.
    [24] Xue Y Q, Ratner M A. Microscopic theory of single-electron tunneling through molecular-assembled metallic nanoparticles [J]. Phys. Rev. B., 2003, 68(11): 115406.
    [25] Di Ventra M, Pantelides S T, Lang N D. First-principles calculation of transport properties of a molecular device [J ] . Phys. Rev. Lett., 2000, 84(5): 979-982.
    [26] Lang N D, Avouris P. Electrical conductance of individual molecules [J]. Phys. Rev. B., 2001, 64(12): 125323.
    [27] Hall L E, Reimers J R, Hush N S, et al. Formalism, analytical model, and a priori Green's-function-based calculations of the current-voltage characteristics of molecular wires [J]. J. Chem. Phys., 2000, 112(3): 1510-1521.
    [28] Yaliraki S N, Roitberg A E, Gonzalez C, et al. The injecting energy at molecule/metal interfaces: Implications for conductance of molecular junctions from an ab initio molecular description [J]. J. Chem. Phys., 1999, 111(15): 6997-7002.
    [29] Yaliraki S N, Kemp M, Ratner M A. Conductance of molecular wires: Influence of molecule-electrode binding [J ]. J. Am. Chem. Soc., 1999, 121(14): 3428-3434.
    [30] Y. Luo, C.-K. Wang, and Y. Fu. Effects of chemical and physical modifications on the electronic transport properties of molecular junctions [J]. J. Chem. Phys., 2002 117(22): 10283-10290.
    [31] C.-K. Wang and Y. Luo. Current–voltage characteristics of single molecular junction: Dimensionality of metal contacts [J]. J. Chem. Phys., 2003 119(9): 4923-4928.
    [32] Brandbyge M, Mozos J L, Ordejon P, et al. Density-functional method for nonequilibrium electron transport [J]. Phys. Rev. B., 2002, 65(16): 165401.
    [33] Brandbyge M, Kobayashi N, Tsukada M. Conduction channels at finite bias in single-atom gold contacts [J]. Phys. Rev. B., 1999, 60(24): 17064.
    [34] Soler J M, Artacho E, Gale J D, et al. The SIESTA method for ab initio order-N materials simulation [J]. J. Phys.: Condens. Matter., 2002 14(11): 2745-2779.
    [35] Taylor J, Guo H, Wang J. Ab initio modeling of quantum transport properties of molecular electronic devices [J]. Phys. Rev. B., 2001, 63(24): 245407.
    [36] Lu W G, Wang E G, Guo H. Quantum conductance of a carbon nanotube superlattice [J]. Phys. Rev. B., 2003, 68(7): 075407.
    [37]武晓君,李群祥,黄静,杨金龙,等.单分子器件电子输运性质的理论研究[J ] .物理化学学报,2004 ,20: 995-1002.
    [38] Kay E R , Leigh D A , Zerbetto F. Synthetic molecular motors and mechanical machines [J]. Angew Chem Int Ed, 2007 ,46: 72.
    [39] Appelbaum J A and Shen L Y L. Zero-Bias-Conductance-Peak Anomaly of Ta-I-Al Tunnel Junctions at 0.3 K and 90 kG [J]. Phys. Rev. B, 1972, 5(2): 544-553.
    [40] C J Adkins,W A Phillips.Inelastic electron tunnelling spectroscopy [J]. J. Phys. C:Solid State Phys., 18 (1985): 1313-1346.
    [41]舒启清.电子隧穿原理.北京:科学出版社,1998: 96-102.
    [41] R. C. Jaklevic and J. Lambe. Molecular Vibration Spectra by Electron Tunneling [J]. Phys. Rev. Lett., 1966, 17(22): 1139–1140.
    [43] Mark A. Reed. Inelastic electron tunnelling spectroscopy [J]. Materials Today, 2008, 11(11): 46-50.
    [44] Y. Yamaguchi, M. Frisch, J. Gaw, H. F. Schaefer III, and J. S. Binkley. Analytic evaluation and basis set dependence of intensities of infrared spectra [J]. J. Chem. Phys., 1986, 84(4): 2262-2278. J. Chem. Phys., 1986, 85(10): 6251.
    [45] M. J. Frisch, Y. Yamaguchi, J. F. Gaw, H. F. Schaefer III, and J. S. Binkley. Analytic Raman intensities from molecular electronic wave functions [J]. J. Chem. Phys., 1986, 84(1): 531-532.
    [46] R. D. Amos. Dipole moment derivatives of H2O and H2S [J]. Chem. Phys. Lett., 1984, 108(2): 185-190.
    [47]王炜华,王兵,侯建国.扫描隧道显微术中的微分谱学及其应用[J].物理2006, 35(1): 27-33.
    [48] Lambe, J. and Jaklevic, R. C.. Molecular Vibration Spectra by Inelastic Electron Tunneling [J]. Phys. Rev., 1968, 165(3): 821–832.
    [49] Lauhon, L. J., and Ho, W.. Effects of temperature and other experimental variables on single molecule vibrational spectroscopy with the scanning tunneling microsco [J]. Rev. Sci. Instrum., 2001, 72(1), 216-223.
    [50]邹斌.分子器件非弹性电子隧穿谱的理论研究[D].济南:山东师范大学,2008.
    [51]王兰萍.隧穿谱的研究进展[J].物理,1989, 18(12): 726-730.
    [52] J. B. Maddox, U. Harbola, N. Liu, C. Silien, W. Ho, G. C. Bazan, and S. Mukamel. Simulation of Single Molecule Inelastic Electron Tunneling Signals in Paraphenylene-Vinylene Oligomers and Distyrylbenzene[2.2]paracyclophanes [J]. J. Phys. Chem. A., 2006, 110(19): 6329-6338.
    [53] Horiuchi, T., et al. New inelastic electron-tunneling spectrometer with an absolute peak intensity [J]. Rev. Sci. Instrum., 1989, 60 (6), 993-996.
    [54] Adler, J. G.. Computer-assisted determination of peak profiles, intensities, and positions, in Tunneling Spectroscopy: Capabilities, Applications, and New Techniques, Hansma, P. K. (ed.) [M]. New York: Plenum, 1982.
    [55] Binnig, G., et al.. Conductivity sensitivity of inelastic scanning tunneling microscopy [J]. Phys. Rev. B , 1985, 32(2), 1336-1338.
    [56] A. Nitzan and M. A. Ratner. Electron Transport in Molecular Wire Junctions [J]. Science , 2003, 300(5624): 1384-1389.
    [57] B. C. Stipe, M. A. Rezaei, and W. Ho. Single-Molecule Vibrational Spectroscopy and Microscopy [J]. Science , 1998, 280(5370): 1732-1735.
    [58] H. J. Lee and W. Ho. Single-Bond Formation and Characterization with a Scanning Tunneling Microscope [J]. Science, 1999, 286(5445): 1719-1722.
    [59] B. C. Stipe, M. A. Rezaei, and W. Ho. Localization of Inelastic Tunneling and the Determination of Atomic-Scale Structure with Chemical Specificity [J]. Phys. Rev. Lett., 1999, 82(8): 1724–1727.
    [60] H. J. Lee and W. Ho. Structural determination by single-molecule vibrationalspectroscopy and microscopy: Contrast between copper and iron carbonyls [J]. Phys. Rev. B, 2000, 61(24): R16347–R16350.
    [61] B. C. Stipe, M. A. Rezaei, and W. Ho. Coupling of Vibrational Excitation to the Rotational Motion of a Single Adsorbed Molecule [J]. Phys. Rev. Lett., 1998, 81(6): 1263-1266.
    [62] L. J. Lauhon and W. Ho. Single-molecule vibrational spectroscopy and microscopy: CO on Cu(001) and Cu(110) [J]. Phys. Rev. B, 1999, 60(12): R8525–R8528.
    [63] J. Gaudioso, H. J. Lee, and W. Ho. Vibrational Analysis of Single Molecule Chemistry: Ethylene Dehydrogenation on Ni(110) [J]. J. Am. Chem. Soc., 1999, 121(37): 8479-8485.
    [64] J. Gaudioso and W. Ho. Single-Molecule Vibrations, Conformational Changes, and Electronic Conductivity of Five-Membered Heterocycles [J]. J. Am. Chem. Soc., 2001, 123(41): 10095-10098.
    [65] F. E. Olsson, M. Persson, N. Lorente, L. J. Lauhon, and W. Ho. STM Images and Chemisorption Bond Parameters of Acetylene, Ethynyl, and Dicarbon Chemisorbed on Copper [J]. J. Phys. Chem. B., 2002, 106(33): 8161-8171.
    [66] L. J. Lauhon and W. Ho. Single-Molecule Chemistry and Vibrational Spectroscopy: Pyridine and Benzene on Cu(001) [J]. J. Phys. Chem. A., 2000, 104(11): 2463-2467.
    [67] X. H. Qiu, G. V. Nazin, and W. Ho. Vibronic States in Single Molecule Electron Transport [J]. Phys. Rev. Lett., 2004, 92(20): 206102.
    [68] J. Gaudioso, L. J. Lauhon, and W. Ho. Vibrationally Mediated Negative Differential Resistance in a Single Molecule [J]. Phys. Rev. Lett., 2000, 85(9): 1918-1921.
    [69] T. Komeda, Y. Kim, M. Kawai, B. N. J. Persson, and H. Ueba. Lateral Hopping of Molecules Induced by Excitation of Internal Vibration Mode [J]. Science, 2002, 295(5562): 2055-2058.
    [70] Y. Kim, T. Komeda, and M. Kawai. Single-Molecule Reaction and Characterization by Vibrational Excitation [J]. Phys. Rev. Lett., 2002, 89(12): 126104.
    [71] T. Komeda, Y. Kim, Y. Fujita, Y. Sainoo, and M. Kawai. Local chemical reaction of benzene on Cu(110) via STM-induced excitation[J]. J. Chem. Phys., 2004, 120(11), 5347-5352.
    [72] Y. Sainoo, Y. Kim, T. Okawa, T. Komeda, H. Shigekawa, and M. Kawai. Excitation of Molecular Vibrational Modes with Inelastic Scanning Tunneling Microscopy Processes: Examination through Action Spectra of cis-2-Butene on Pd(110) [J]. Phys. Rev. Lett., 2005, 95(24): 246102.
    [73] H. Ueba and B. N. J. Persson. Action spectroscopy for single-molecule motion induced by vibrational excitation with a scanning tunneling microscope[J]. Phys. Rev. B, 2007, 75(4): 041403(R).
    [74] W. Ho. Single-molecule chemistry[J]. J. Chem. Phys., 2002, 117(24): 11033-11061.
    [75] A. Troisi, M. A. Ratner, and A. Nitzan. Vibronic effects in off-resonant molecular wire conduction[J]. J. Chem. Phys., 2003, 118(13): 6072-6082.
    [76] A. H. Flood, J. F. Stoddart, D. W. Steuerman, and J. R. Heath. Enhanced: Whence Molecular Electronics? [J]. Science, 2004, 306(5704): 2055-2056.
    [77] J. G. Kushmerick, J. Lazorcik, C. H. Patterson, R. Shashidhar, D. S. Seferos, and G. C. Bazan. Vibronic Contributions to Charge Transport Across Molecular Junctions[J]. NanoLett., 2004, 4(4): 639-642.
    [78] W. Wang, T. Lee, I. Kretzschmar, and M. A. Reed. Inelastic Electron Tunneling Spectroscopy of an Alkanedithiol Self-Assembled Monolayer[J]. Nano Lett., 2004, 4(4): 643-646.
    [79] G. C. Solomon, A. Gagliardi, A.Pecchia, T. Frauenheim, A. D. Carlo, J. R. Reimers, and N. S. Hush. Understanding the inelastic electron-tunneling spectra of alkanedithiols on gold[J]. J. Chem. Phys., 2006, 124(9): 094704.
    [80] J. R. Reimers, G. C. Solomon, A. Gagliardi, A. Bili, N. S. Hush, T. Frauenheim, A. Di Carlo, and A. Pecchia. The Green's Function Density Functional Tight-Binding (gDFTB) Method for Molecular Electronic Conduction[J]. J. Phys. Chem. A, 2007, 111(26): 5692-5702.
    [81] A. J. Heinrich, J. A. Gupta. C. P. Lutz, D. M. Eigler. Single-atom spin-flip spectroscopy [J]. Science, 2004, 306(5695): 466-469.
    [82] C. F. Hirjibehedin, C. P. Lutz, A. J. Heinrich. Spin coupling in engineered atomic structures [J]. Science, 2006, 312(5776): 1021-1024.
    [83] C. F. Hirjibehedin, C.-Y. Lin, A. F. Otte, M. Ternes, C. P. Lutz, B. A. Jones, A. J. Heinrich. Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network [J]. Science, 2007, 317(5842): 1199-1203.
    [84] J. Fransson. Spin Inelastic Electron Tunneling Spectroscopy on Local Spin Adsorbed on Surface [J]. Nano Lett., 2009, 9(6): 2414-2417.
    [85] M. Persson. Theory of Inelastic Electron Tunneling from a Localized Spin in the Impulsive Approximation [J]. Phys. Rev. Lett., 2009, 103(5): 050801.
    [86] J. Fernández-Rossier. Theory of Single-Spin Inelastic Tunneling Spectroscopy [J]. Phys. Rev. Lett., 2009, 102(25), 256802 -256805.
    [87] N. Lorente and J.-P. Gauyacq. Efficient Spin Transitions in Inelastic Electron Tunneling Spectroscopy [J]. Phys. Rev. Lett., 2009, 103(17): 176601-176604.
    [88] X. Chen, Y.-S. Fu, S.-H. Ji, T. Zhang, P. Cheng, X.-C. Ma, X.-L. Zou, W.-H. Duan, J.-F. Jia, and Q.-K. Xue. Probing Superexchange Interaction in Molecular Magnets by Spin-Flip Spectroscopy and Microscopy [J]. Phys. Rev. Lett., 2008, 101(19): 197208-197211.
    [89] N. Mingo and K. Makoshi. Calculation of the Inelastic Scanning Tunneling Image of Acetylene on Cu(100) [J]. Phys. Rev. Lett., 2000, 84(16), 3694-3697.
    [90] Troisi A, Ratner M A. Molecular transport junctions: propensity rules for inelastic electron tunneling spectra [J]. Nano Lett., 2006, 6(8): 1784-1788. ; J. Chem. Phys., 2006, 125(21), 214709.
    [91] J. Jiang, M. Kula, and Y. Luo. Molecular modeling of inelastic electron transport in molecular junctions [J]. J. Phys.: Condens. Matter, 2008, 20(37), 374110.
    [92] L. Yan. Inelastic Electron Tunneling Spectroscopy and Vibrational Coupling [J]. J. Phys. Chem., 2006, A 110 (49): 13249-13252.
    [93] Jun Jiang, Chuan-Kui Wang, and Yi Luo. QCME1.1 (Quantum Chemistry for Molecular Electronics) [M]. Royal Institute of Technology, Sweden, 2006.
    [1]林梦海.量子化学计算方法与应用[M].北京:科学出版社,2004:116.
    [2] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas [J]. Phys. Rev.,1964, 136(3B): B864-B871.
    [3]丁迅雷.金团簇上小分子吸附的第一性原理研究[D].合肥:中国科学技术大学,2004.
    [4] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys. Rev., 1965, 140(4A): A1133 - A1138.
    [5]谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社,1998: 8-14.
    [6]李正中.固体理论(第二版)[M].北京:高等教育出版社,2002:334-341.
    [7] G. L. Oliver and J. P. Perdew. Spin-density gradient expansion for the kinetic energy [J]. Phys. Rev. A ,1979, 20(2): 397- 403.
    [8]邹斌.分子器件非弹性电子隧穿谱的理论研究[D].济南:山东师范大学,2008.
    [9]李震宇,贺伟,杨金龙.密度泛函理论及其数值方法新进展,化学进展,2005, 17(2): 192-202.
    [10] A. D. Becke. A new mixing of Hartree–Fock and local density-functional theories[J]. J. Chem. Phys., 1993, 98(2): 1372-1377.
    [11] Gaussian 03中文用户参考手册[M]. 2004: 20-28.
    [12]林娜.多光子吸收与圆二色光学性质及其电子振动光谱的理论研究[D].济南,山东大学,2009.
    [13] J. K. Labanowski, Simplified introduction to ab initio basis sets[C]. Terms and notation. Ohio Supercomputer Center, Columbus, OH., 2001.
    [14]李震宇.新材料物性的第一性原理研究[D].合肥:中国科学技术大学,2004.
    [15] H. B. Akkerman and B. de Boer. Electrical conduction through single molecules and self-assembled monolayers [J]. J. Phys.: Condens. Matter, 2008, 20(1): 013001.
    [16] T. Morita and S. Lindsay. Determination of Single Molecule Conductances of Alkanedithiols by Conducting-Atomic Force Microscopy with Large Gold Nanoparticles [J]. J. Am. Chem. Soc., 2007, 129(23): 7262-7263.
    [17] S. Y. Quek, J. B. Neaton, M. S. Hybertsen, E. Kaxiras, and S. G. Louie. Negative Differential Resistance in Transport through Organic Molecules on Silicon [J]. Phys. Rev. Lett., 2007, 98(6): 066807.
    [18] ?. Crljen and G. Baranovi?. Unusual Conductance of Polyyne-Based Molecular Wires [J]. Phys. Rev. Lett., 2007, 98(11): 116801.
    [19] Z. Li, I. Pobelov, B. Han, T. Wandlowski, A. Blaszczyk, and M. Mayor. Conductance of redox-active single molecular junctions: an electrochemical approach [J]. Nanotechnology, 2007, 18(4): 044018.
    [20] A.-D. Zhao, Q.-X. Li, L. Chen, H.-J. Xiang, W.-H. Wang, S. Pan, B. Wang, X.-D. Xiao, J.-L. Yang, J. G. Hou, and Q.-S. Zhu. Controlling the Kondo Effect of an Adsorbed Magnetic Ion Through Its Chemical Bonding [J]. Science, 2005, 309(5740): 1542-1544.
    [21] J.-X. Zhang, S.-M. Hou, R. Li, Z.-K. Qian, R.-S. Han, Z.-Y. Shen, X.-Y. Zhao, and Z.-Q. Xue. An accurate and efficient self-consistent approach for calculating electron transport through molecular electronic devices: including the corrections of electrodes [J]. Nanotechnology, 2005, 16(12): 3057-3063.
    [22] B. Xu and N. J. Tao. Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions [J]. Science, 2003, 301(5637): 1221-1223.
    [23] R. H. M. Smit, Y. Noat, C. Untiedt, N. D. Lang, M. C. van Hemert, and J. M. van Ruitenbeek. Measurement of the conductance of a hydrogen molecule[J]. Nature(London), 2002, 419(6910): 906-909.
    [24] C. Joachim, J. K. Gimzewski, and A. Aviram. Electronics using hybrid-molecular and mono-molecular devices [J]. Nature (London), 2000, 408: 541-548.
    [25]沈德言.红外光谱学在高分子研究中的应用[M].北京:科学出版社,1982: 1-5.
    [26] (加拿大) G.赫兹堡著,王鼎昌译.分子光谱与分子结构(第二卷)[M].北京:科学出版社,1986: 56-90.
    [27]吴国祯.分子振动光谱学原理与研究北京:清华大学出版社,2002: 43-60.
    [28] (美)lra N.赖文著,徐广智,李碧钦,张建中译.分子光谱学[M].北京:高等教育出版社,1985: 246-303.
    [29]梁映秋,赵文运.分子振动和振动光谱[M].北京:北京大学出版社,1990: 13-70.
    [30]董庆年.红外光谱法[M].北京:石油化学工业出版社,1977: 7-12.
    [31] (美)E. B.小威尔逊等著,胡皆汉译.分子振动:红外和拉曼振动光谱理论[M].北京:科学出版社,1985:12-35.
    [32] D. A. Long著,顾本源等译.喇曼光谱学[M].北京:科学出版社,1983:50-144.
    [33] (加拿大) G.赫兹堡著,徐积仁等译.简单自由基的光谱和结构——分子光谱学导论[M].北京:科学出版社,1989:80-113.
    [34] (美)D. C.哈里斯,(美)M. D.伯特卢西著,胡玉才,戴寰译.对称性与光谱学:振动和电子光谱学导论[M].北京:高等教育出版社,1985:66-154.
    [35] http://www.gaussian.com/g_whitepap/vib.htm
    [36] E. B. Wilson Jr. The Normal Modes and Frequencies of Vibration of the Regular Plane Hexagon Model of the Benzene Molecule [J]. Phys. Rev. ,1934, 45(10): 706-714.
    [37] G. Varsanyi. Assignments for vibrational spectra of seven hundred benzene derivatives[D]. New York: Wiley, 1974.
    [38] http://home.arcor.de/rothw/gauss/varsanyi/molekuele/Bz/
    [1] C.-K. Wang, Y. Fu, and Y. Luo. A quantum chemistry approach for current-voltage characterization of molecular junctions [J]. Phys. Chem. Chem. Phys., 2001, 3(22): 5017-5023.
    [2] Y. Luo, C.-K. Wang, and Y. Fu. Effects of chemical and physical modifications on the electronic transport properties of molecular junctions [J]. J. Chem. Phys., 2002, 117(22): 10283-10290.
    [3] C.-K. Wang and Y. Luo. Current–voltage characteristics of single molecular junction: Dimensionality of metal contacts [J]. J. Chem. Phys., 2003, 119(9): 4923-4928.
    [4] Y. Luo, C.-K. Wang, and Y. Fu. Electronic transport properties of single molecular junctions based on five-membered heteraromatic molecules [J]. Chem. Phys. Lett., 2003,369(3-4): 299-304.
    [5] W. Su, J. Jiang, and Y. Luo. Quantum chemical study of coherent electron transport in oligophenylene molecular junctions of different lengths [J]. 2005, Chem. Phys. Lett.,412(4-6): 406-410.
    [6] Z.-L. Li, B. Zou, C.-K. Wang, and Y. Luo. Electronic transport properties of molecular bipyridine junctions: Effects of isomer and contact structures [J]. Phys. Rev. B, 2006, 73(7): 075326.
    [7] J. Jiang, K. Liu, W. Lu, and Y. Luo. An elongation method for first principle simulations of electronic structures and electron transport properties of finite nanostructures [J]. J. Chem. Phys, 2006, 124(21), 214711 . J. Chem. Phys., 2006, 125(14): 149902.
    [8] M. Kula, J. Jiang, W. Lu, and Y. Luo. Effects of hydrogen bonding on current-voltage characteristics of molecular junctions [J]. J. Chem. Phys., 2006, 125(19): 194703.
    [9]李宗良,王传奎,罗毅,薛其坤.电极维度对单分子器件伏-安特性的影响[J].物理学报,2004, 53(5): 1490-1495.
    [10]马勇,邹斌,李宗良,王传奎,罗毅.六元杂环分子电学特性的理论研究[J].物理学报, 2006, 55(4): 1974-1978.
    [11] Jun Jiang. PhD Thesis: A Quantum Chemical View of Molecular and Nano-Electronics [D]. Stockholm: Royal Institute of Technology, 2007.
    [1] Aviram A and Ratner M A . Single-electron transfer in metallic nanostructures [J]. Chem.Phys.Lett. , 1974, 29, 277.
    [2] Bumm, L. A.; Arnold, J. J.; Cygan, M. T.; Dunbar, T. D.; Burgin, T. P.; Jones, II. L.; Allara, D. L.; Tour, J. M. ; Weiss, P. S. Are Single Molecular Wires Conducting? [J]. Science, 1996, 271(5256): 1705-1707.
    [3] Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Conductance of a Molecular Junction [J]. Science1997, 278(5336): 252-254.
    [4] Frank, S.; Poncharal, P.; Wang, Z. L.; de Heer, W. A. Carbon Nanotube Quantum Resistors [J]. Science, 1998, 280(5370): 1744-1746.
    [5] Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M. Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device [J]. Science, 1999, 286(5370): 1550-1552.
    [6] Cui, X. D.; Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O. F.; Moore, A. L.; Moore, T. A.;Gust, D.; Harris, D.; Lindsay, S. M. Reproducible measurement of single-molecule conductivity [J]. Science, 2001, 294(5542): 571-574.
    [7] Smit, R. H. M.; Noat, Y.; Untiedt, C.; Lang, N. D.; Hemert, M. C.; Ruitenbeek, J. M. Measurement of the conductance of a hydrogen molecule [J]. Nature, 2002, 419(6910): 906-909.
    [8] A. Nitzan and M. A. Ratner. Electron Transport in Molecular Wire Junctions [J]. Science, 2003, 300(5624): 1384-1389.
    [9] Xu, B-Q.; Tao, T. J. Measurement of single-molecule resistance by repeated formation of molecular junctions [J]. Science, 2003, 301(5637): 1221-1223.
    [10] Dadosh, T.; Gordin, Y.; Krahne, R.; Khivrich, I.; Mahalu, D.; Frydman, V.; Sperling , J.; Yacoby, A.; Bar, J. I. Measurement of the conductance of single conjugated molecules [J]. Nature (London), 2005, 436(7051): 677-680 .Nature (London), 2005,436(7054): 1200.
    [11] Zhao, A. D.; Li, Q. X.; Chen, L.; Xiang, H. J.; Wang, W. H.; Pan, S.; Wang, B.; Xiao, X. D.; Yang, J. L.; Hong, J. G.; Zhu, Q. S. Controlling the Kondo Effect of an Adsorbed Magnetic Ion Through Its Chemical Bonding [J]. Science, 2005, 309(5740): 1542-1544.
    [12] Wu, S. M.; González, M. T.; Huber, R.; Grunder, S.; Mayor, M.; Sch?nenberger, C.; Calame, M. Molecular junctions based on aromatic coupling [J]. Nature Nanotech., 2008, 3 (9): 569-574.
    [13] Ho, W. Single-molecule chemistry [J]. J. Chem. Phys., 2002, 117(24): 11033-11061. and references therein.
    [14] Jiang, J.; Kula, M.; Lu, W.; Luo, Y. First-Principles Simulations of Inelastic Electron Tunneling Spectroscopy of Molecular Electronic Devices [J]. Nano Lett. , 2005, 5(8): 1551-1555.
    [15] Kula, M. ;Jiang, J.; Luo, Y. Probing Molecule-Metal Bonding in Molecular Junctions by Inelastic Electron Tunneling Spectroscopy [J]. Nano Lett., 2006, 6(8): 1693-1698.
    [16] Jiang, J.; Kula, M.; Luo, Y. A generalized quantum chemical approach for elastic and inelastic electron transports in molecular electronics devices [J]. J. Chem. Phys., 2006, 124(3): 034708.
    [17] Pecchia, A.; Carlo, A. D.; Gagliardi, A.; Sanna, S.; Frauenheim, T.; Gutierrez, R. Incoherent Electron-Phonon Scattering in Octanethiols [J]. Nano Lett. , 2004, 4(11): 2109-2114.
    [18] Chen, Y. C.; Zwolak, M.; Ventra, M. Di. Inelastic Effects on the Transport Properties of Alkanethiols [J]. Nano Lett., 2005, 5(4): 621-624.
    [19] Sergueev, N.; Demkov, A. A.; Guo, H. Inelastic resonant tunneling in C-60 molecular junctions [J]. Phys. Rev. B., 2007, 75(23): 233418.
    [20] Troisi, A.; Ratner, M. A. Modeling the inelastic electron tunneling spectra of molecular wire junctions [J]. Phys. Rev. B, 2005, 72(3): 033408.
    [21] Paulsson, M.; Frederiksen, T.; Brandbyge, M. Inelastic Transport through Molecules: Comparing First-Principles Calculations to Experiments [J]. Nano Lett., 2006, 6(2): 258-262.
    [22] Troisi, A.; Ratner, M. A. Inelastic insights for molecular tunneling pathways: Bypassing the terminal groups [J]. Phys. Chem. Chem. Phys., 2007, 9(19): 2421-2427.
    [23] Poirier, G.. E. Characterization of organosulfur molecular monolayers on Au(111) using scanning tunneling microscopy [J]. Chem. Rev. 1997, 97(4): 1117-1127. and references therein.
    [24] Wang, W. Y.; Lee, T.; Reed, M. A. Mechanism of electron conduction in self-assembled alkanethiol monolayer devices [J]. Phys. Rev. B , 1997, 68(3): 035416.
    [25] Hallb?ck, A. S.; Oncel, N.; Huskens, J.; Zandvliet, H. J. W., and Poelsema B. Inelastic electron tunneling spectroscopy on decanethiol at elevated temoeratures [J]. Nano Lett. 2004, 4(12): 2393-2395 .
    [26] Becke, A. D. Density-Functional the rmochemistry .3. The role of exact exchange [J]. J. Chem. Phys. ,1997, 98(7): 5648-5652.
    [27] Hay, P. J.; Wadt, W. R. Abinitio effective core potentials for molecular calculations - potentials for the Transition-Metal atoms SC to HG [J]. J. Chem. Phys., 1985, 82: 270.
    [28] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai,H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.;Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al- Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.;
    Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03 [M]. Revision C.02; Gaussian, Inc., Wallingford CT, 2004.
    [29] Jiang, J.; Wang, C. -K.; Luo, Y. QCME1.1:Quantum Chemistry for Molecular Electronics [M]. Royal Institute of Technology: Stockholm, Sweden , 2006.
    [30] Wang, C. -K.; Fu, Y.; Luo, Y. A quantum chemistry approach for current-voltage characterization of molecular junctions [J]. Phys. Chem. Chem. Phys., 2001, 3(22): 5017-5023.
    [31] Kula, M.; Luo, Y. Effects of intermolecular interaction on inelastic electron tunneling spectra [J]. J. Chem. Phys. , 2008, 128(6): 064705.
    [32] Osorio, E. A.; O’Neill, K.; Sthur-Hansen, N.; Nielsen, O. F.; Bj?rnholm, T.; van der Zant, H. S. J. Addition energies and vibrational fine structure measured in electromigrated single-molecule junctions based on an oligophenylenevinylene derivative [J]. Adv. Mater., 2007, 19(2): 281.
    [33] Kiguchi, M.; Stadler, R.; Kristensen, I. S.; Djukic, D.; van Ruitenbeek, J. M. Evidence for a single hydrogen molecule connected by an atomic chain [J]. Phys. Rev. Lett., 2007, 98(14): 146802.
    [34] Hihath, J.; Arroyo, C. R.; Rubio-Bollinger, G.; Tao, N. J.; Agra?t, N. Study of electron-phonon interactions in a single molecule covalently connected to two electrodes [J]. Nano Lett., 2008, 19(26): 265204.
    [1] Aviram A and Ratner M A . Single-electron transfer in metallic nanostructures [J]. Chem. Phys. Lett. , 1974, 29: 277.
    [2] Nitzan A and Ratner M A. Electron transport in molecular wire junctions [J]. Science, 2003, 300(5624): 1384-1389.
    [3] R. C. Jaklevic and J. Lambe. Molecular Vibration Spectra by Electron Tunneling [J]. Phys. Rev. Lett., 1966, 17(22): 1139–1140.
    [4] Stipe B C, Rezaei M A, Ho, W. Single-molecule vibrational spectroscopy and microscopy [J]. Science, 1998, 280(5370): 1732–1735.
    [5] W. Ho. Single-molecule chemistry [J]. J. Chem. Phys. ,2002, 117(24): 11033-11061.
    [6] J. G. Kushmerick, J. Lazorcik, C. H. Patterson, R. Shashidhar, D. S. Seferos, and G. C. Bazan. Vibronic Contributions to Charge Transport Across Molecular Junctions [J]. NanoLett. ,2004, 4(4): 639-642.
    [7] J. Jiang, M. Kula, W. Lu, and Y. Luo. First-Principles Simulations of Inelastic Electron Tunneling Spectroscopy of Molecular Electronic Devices [J]. Nano Lett., 2005, 5(8): 1551-1555.
    [8] Kula M, Jiang J, Luo Y. Molecular modeling of inelastic electron transport in molecular junctions [J]. Nano Lett., 2006, 6(8): 1693-1698.
    [9] Troisi A, Ratner M A. Molecular transport junctions: propensity rules for inelastic electron tunneling spectra [J]. Nano Lett., 2006, 6(8): 1784-1788.
    [10] Galperin M, Ratner M A, Nitzan A. On the line widths of vibrational features in inelastic electron tunneling spectroscopy [J]. Nano Lett., 2004, 4(9): 1605-1611.
    [11] M. Paulsson, T. Frederiksen, and M. Brandbyge. Inelastic Transport through Molecules: Comparing First-Principles Calculations to Experiments [J]. Nano Lett. ,2006, 6(2): 258-262 .
    [12] L. Yan. Inelastic Electron Tunneling Spectroscopy and Vibrational Coupling [J]. J. Phys. Chem., 2006, A 110 (49): 13249-13252.
    [13] H. Song, H. Lee, and T. Lee. Intermolecular Chain-to-Chain Tunneling in Metal-Alkanethiol-Metal Junctions [J]. J. Am. Chem. Soc. , 2007, 129(13): 3806-3807.
    [14] L. M Ghiringhelli, R. Caputo, and L. D. Site Alkanethiol headgroup on metal (111)-surfaces: general features of the adsorption onto group 10 and 11 transition metals [J]. J. Phys.: Condens. Matter, 2007, 19(17): 176004.
    [15] T.-W. Kim, G. Wang, H. Lee, and T. Lee. Statistical analysis of electronic properties of alkanethiols in metal–molecule–metal junctions [J]. Nanotechnology, 2007, 18(31): 315204.
    [16] N. A. Bruque, R. R. Pandey, and R. K. Lake. Electron transport through a conjugated molecule with carbon nanotube leads [J]. Phys. Rev. B, 2007, 76(20): 205322.
    [17] X. Shi, Z. Dai, and Z. Zeng. Electron transport in self-assembled monolayers of thiolalkane: Symmetric I-V curves and Fano resonance [J]. Phys. Rev. B, 2007, 76(23): 235412.
    [18] K. Luo, D.-H. Chae, and Z. Yao. Room-temperature single-electron transistors using alkanedithiols [J]. Nanotechnology, 2007, 18(46): 465203.
    [19] H. B. Akkerman and B. de Boer. Electrical conduction through single molecules and self-assembled monolayers [J]. J. Phys.: Condens. Matter, 2008, 20(1): 013001.
    [20] H. B. Akkerman, P. W. M. Blom, D. M. de Leeuw, and B. de Boer. Towards molecular electronics with large-area molecular junctions [J]. Nature(London), 2006, 441(7089): 69-72.
    [21] C. Li, I. Pobelov, T. Wandlowski, A. Bagrets, A. Arnold, and F. Evers. Charge Transport in Single Au Alkanedithiol Au Junctions: Coordination Geometries and Conformational Degrees of Freedom [J]. J. Am. Chem. Soc., 2008, 130(1): 318-326.
    [22] G. Wang, T.-W. Kim, H. Lee, and T. Lee. Influence of metal-molecule contacts on decay coefficients and specific contact resistances in molecular junctions [J]. Phys. Rev. B, 2007, 76(20): 205320.
    [23] C. Chu, J.-S. Na, and G. N. Parsons. Conductivity in Alkylamine/Gold and Alkanethiol/Gold Molecular Junctions Measured in Molecule/Nanoparticle/MoleculeBridges and Conducting Probe Structures [J]. J. Am. Chem. Soc., 2007, 129(8): 2287-2296.
    [24] R. Desikan, S. Armel, H. M. Meyer III, and T. Thundat. Effect of chain length on nanomechanics of alkanethiol self-assembly [J]. Nanotechnology, 2007, 18(42): 424028.
    [25] F. Chen, X. Li, J. Hihath, Z. Huang, and N. Tao. Effect of Anchoring Groups on Single-Molecule Conductance: Comparative Study of Thiol-, Amine-, and Carboxylic-Acid-Terminated Molecules [J]. J. Am. Chem. Soc., 2006, 128(49): 15874-15881.
    [26] K.-H. Müller. Effect of the atomic configuration of gold electrodes on the electrical conduction of alkanedithiol molecules [J]. Phys. Rev. B , 2006, 73(4): 045403.
    [27] V. B. Engelkes, J. M. Beebe, and C. D. Frisbie. Length-Dependent Transport in Molecular Junctions Based on SAMs of Alkanethiols and Alkanedithiols: Effect of Metal Work Function and Applied Bias on Tunneling Efficiency and Contact Resistance [J]. J. Am. Chem. Soc., 2004, 126(43): 14287-14296.
    [28] S. Wang, W. Lu, Q. Zhao, and J. Bernholc. Resonant coupling and negative differential resistance in metal/ferrocenyl alkanethiolate/STM structures [J]. Phys. Rev. B, 2006, 74(19): 195430.
    [29] R. C. Hoft, M. J. Ford, V. M. García-Suárez, C. J. Lambert, and M. B. Cortie. The effect of stretching thiyl- and ethynyl-Au molecular junctions [J]. J. Phys.: Condens. Matter, 2008, 20(2): 025207.
    [30] K Stokbro. First-principles modeling of electron transport [J]. J. Phys.: Condens. Matter, 2008, 20(6): 064216.
    [31] A. Bannani, C. Bobisch, and R. M?ller. Ballistic Electron Microscopy of Individual Molecules [J]. Science, 2007, 315(5820): 1824-1828.
    [32] J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu, Y. S. Shin, H.-R. Tseng, J. F. Stoddart, and J. R. Heath. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimeter [J]. Nature(London), 2007, 445(7126): 414-417.
    [33] C. W. Bauschlicher, Jr. and J. W. Lawson. Current-voltage curves for molecular junctions: Effect of substitutients [J]. Phys. Rev. B, 2007, 75(11): 115406.
    [34] K. Gao, X. Liu, D. Liu, and S. Xie. Charge carrier generation through reexcitations of an exciton in poly(p-phenylene vinylene) molecules [J]. Phys. Rev. B, 2007, 75(20): 205412 .
    [35] L. A. Agapito, E. J. Bautista, and J. M. Seminario. Conductance model of gold-molecule-silicon and carbon nanotube-molecule-silicon junctions [J]. Phys. Rev. B, 2007, 76(11): 115316.
    [36] C. Morari, G.-M. Rignanese, and S. Melinte. Electronic properties of 1-4, dicyanobenzene and 1-4, phenylene diisocyanide molecules contacted between Pt and Pd electrodes: First-principles study [J]. Phys. Rev. B, 2007, 76(11): 115428.
    [37] A. Danilov, S. Kubatkin, S. Kafanov, P. Hedeg?rd, N. Stuhr-Hansen, K. Moth-Poulsen, and T. Bjrnholm. Electronic Transport in Single Molecule Junctions: Control of the Molecule-Electrode Coupling through Intramolecular Tunneling Barriers [J]. Nano Lett., 2008 ,8(1): 1-5.
    [38] N. Jlidatb, M. Hliwaa, and C. Joachima. A semi-classical XOR logic gate integratedin a single molecule [J]. Chem. Phys. Lett., 2008, 451(4-6): 270-275.
    [39] M. del Valle, R. Gutiérrez, C. Tejedor, and G. Cuniberti, Tuning the conductance of a molecular switch [J]. Nature Nanotechnology, 2007, 2(3): 176-179 .
    [40] A. C. Whalley, M. L. Steigerwald, X. Guo, and C. Nuckolls. Reversible Switching in Molecular Electronic Devices [J]. J. Am. Chem. Soc. ,2007, 129(42): 12590-12591.
    [41] S. Yeganeh, M. Galperin, and M. A. Ratner, Switching in Molecular Transport Junctions: Polarization Response [J]. J. Am. Chem. Soc., 2007, 129(43): 13313-13320 .
    [42] Z. Wang, C. Kim, A. Facchetti, and T. J. Marks. Anthracenedicarboximides as Air-Stable N-Channel Semiconductors for Thin-Film Transistors with Remarkable Current On-Off Ratios [J]. J. Am. Chem. Soc., 2007, 129(44): 13362-13363.
    [43] R. B. Pontes, F. D. Novaes, A. Fazzio, and A. J. R. da Silva. Adsorption of Benzene-1,4-dithiol on the Au(111) Surface and Its Possible Role in Molecular Conductance [J]. J. Am. Chem. Soc., 2006, 128(28): 8996-8997.
    [44] D. S. Seferos, A. S. Blum, J. G. Kushmerick, and G. C. Bazan. Single-Molecule Charge-Transport Measurements that Reveal Technique-Dependent Perturbations [J]. J. Am. Chem. Soc., 2006, 128(34): 11260-11267.
    [45] J. He, Q. Fu, S. Lindsay, J. W. Ciszek, and J. M. Tour. Electrochemical Origin of Voltage-Controlled Molecular Conductance Switching [J]. J. Am. Chem. Soc., 2006, 128(46): 14828-14835.
    [46] E. L?rtscher, H. B. Weber, and H. Riel. Statistical Approach to Investigating Transport through Single Molecules [J]. Phys. Rev. Lett., 2007, 98(17): 176807.
    [47] R. C. Hoft, N. Armstrong, M. J. Ford and M. B. Cortie. Ab initio and empirical studies on the asymmetry of molecular current–voltage characteristics [J]. J. Phys.: Condens. Matter , 2007, 19(21): 215206.
    [48] G. Romano, A. Pecchia and A. Di Carlo. Coupling of molecular vibrons with contact phonon reservoirs [J]. J. Phys.: Condens. Matter, 2007, 19(21): 215207.
    [49] L. Venkataraman, J. E. Klare, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald. Dependence of single-molecule junction conductance on molecular conformation [J]. Nature(London), 2006, 442(7105): 904-907.
    [50] N. J. Tao. Electron transport in molecular junctions [J]. Nature Nanotechnology, 2006, 1(3): 173-181.
    [51] W. Chen, L. Wang, C. Huang, T. T. Lin, X. Y. Gao, K. P. Loh, Z. K. Chen, and A. T. S. Wee. Effect of Functional Group (Fluorine) of Aromatic Thiols on Electron Transfer at the Molecule-Metal Interface [J]. J. Am. Chem. Soc., 2006, 128(3): 935-939.
    [52] B. S. Kim, J. M. Beebe, Y. Jun, X.-Y. Zhu, and C. D. Frisbie. Correlation between HOMO Alignment and Contact Resistance in Molecular Junctions: Aromatic Thiols versus Aromatic Isocyanides [J]. J. Am. Chem. Soc., 2006, 128(15): 4970-4971.
    [53] M. Taniguchi, Y. Nojima, K. Yokota, J. Terao, K. Sato, N. Kambe, and T. Kawai. Self-Organized Interconnect Method for Molecular Devices [J]. J. Am. Chem. Soc., 2006, 128(47): 15062-15063.
    [54] G. Heimel, L. Romaner, J.-L. Brédas, and E. Zojer. Interface Energetics and Level Alignment at Covalent Metal-Molecule Junctions:π-Conjugated Thiols on Gold [J]. Phys. Rev. Lett., 2006, 96(19): 196806.
    [55] J. M. Beebe, B. S. Kim, J. W. Gadzuk, C. D. Frisbie, and J. G. Kushmerick.Transition from Direct Tunneling to Field Emission in Metal-Molecule-Metal Junctions [J]. Phys. Rev. Lett., 2006, 97(2): 026801.
    [56] W. Ji, Z.-Y. Lu, and H. Gao. Electron Core-Hole Interaction and Its Induced Ionic Structural Relaxation in Molecular Systems under X-Ray Irradiation [J]. Phys. Rev. Lett., 2006, 97(24): 246101.
    [57] J. Kr?ger, N. Néel, H. Jensen, R. Berndt, R. Rurali, and N. Lorente, Molecules on vicinal Au surfaces studied by scanning tunnelling microscopy [J]. J. Phys.: Condens. Matter, 2006, 18(13): S51-S66.
    [58] P. G. Piva, G. A. DiLabio, J. L. Pitters, J. Zikovsky, M. Rezeq, S. Dogel, W. A. Hofer, and R. A. Wolkow. Field regulation of single-molecule conductivity by a charged surface atom [J]. Nature (London), 2005, 435(7042): 658-661.
    [59] A. V. Malyshev. DNA Double Helices for Single Molecule Electronics [J]. Phys. Rev. Lett., 2007, 98(9): 096801.
    [60] B. B. Schmidt, M. H. Hettler, and G. Sch?n. Influence of vibrational modes on the electronic properties of DNA [J]. Phys. Rev. B , 2007, 75(11): 115125.
    [61] X. Yang, Q. Wang, K. Wang, W. Tan, J. Yao, and H. Li. Electrical Switching of DNA Monolayers Investigated by Surface Plasmon Resonance [J]. Langmuir, 2006, 22(13): 5654-5659.
    [62] S. H. Park, R. Barish, H.-Y. Li, J. H. Reif, G. Finkelstein, H. Yan, and T. H. LaBean. Three-Helix Bundle DNA Tiles Self-Assemble into 2D Lattice or 1D Templates for Silver Nanowires [J]. Nano Lett. 2005, 5(4): 693-696.
    [63] E. S. Kryachko and F. Remacle. Complexes of DNA Bases and Gold Clusters Au3 and Au4 Involving Nonconventional N-H···Au Hydrogen Bonding [J]. Nano Lett., 2005, 5(4): 735-739.
    [64] U. Rant, K. Arinaga, S. Fujita, N. Yokoyama, G. Abstreiter, and M. Tornow. Dynamic Electrical Switching of DNA Layers on a Metal Surface [J]. Nano Lett., 2004, 4(12): 2441-2445.
    [65] M. Zheng, A. Jagota, M. S. Strano, A. P. Santos, P. Barone, S. G. Chou, B. A. Diner, M. S. Dresselhaus, R. S. Mclean, G. B. Onoa, G. G. Samsonidze, E. D. Semke, M. Usrey, and D. J. Walls. Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly [J]. Science, 2003, 302(5650): 1545-1548.
    [66] M. Bixon and J. Jortner. Long-range and very long-range charge transport in DNA [J]. Chem. Phys., 2002, 281(2-3): 393-408.
    [67] C. R. Treadway, M. G. Hill, and J. K. Barton. Charge transport through a molecularπ-stack: double helical DNA [J]. Chem. Phys., 2002, 281(2-3): 409-428.
    [68] M. J. Biercuk, N. Mason, J. Martin, A. Yacoby, and C. M. Marcus. Anomalous Conductance Quantization in Carbon Nanotubes [J]. Phys. Rev. Lett., 2005, 94(2): 026801.
    [69] H. J. Li, W. G. Lu, J. J. Li, X. D. Bai, and C. Z. Gu. Multichannel Ballistic Transport in Multiwall Carbon Nanotubes [J]. Phys. Rev. Lett., 2005, 95(8): 086601.
    [70] T. Miyake and S. Saito. Band-gap formation in (n,0) single-walled carbon nanotubes (n=9,12,15,18): A first-principles study [J]. Phys. Rev. B, 2005, 72(7): 073404.
    [71] F. Tournus, S. Latil, M. I. Heggie, and J.-C. Charlier.π-stacking interaction between carbon nanotubes and organic molecules [J]. Phys. Rev. B, 2005, 72(7): 075431.
    [72] M. J. Biercuk, S. Garaj, N. Mason, J. M. Chow, and C. M. Marcus. Gate-Defined Quantum Dots on Carbon Nanotubes [J]. Nano Lett., 2005, 5(7): 1267-1271.
    [73] F. Liu, M.-Q. Bao, K. L. Wang, X. L. Liu, C. Li, and C.-W. Zhou. Determination of the Small Band Gap of Carbon Nanotubes Using the Ambipolar Random Telegraph Signal [J]. Nano Lett., 2005, 5(7): 1333-1336.
    [74] Z. Yu and P. J. Burk. Microwave Transport in Metallic Single-Walled Carbon Nanotubes [J]. Nano Lett., 2005, 5(7): 1403-1406.
    [75] A. Vijayaraghavan, K. Kanzaki, S. Suzuki, Y. Kobayashi, H. Inokawa, Y. Ono, S. Kar, and P. M. Ajayan. Metal-Semiconductor Transition in Single-Walled Carbon Nanotubes Induced by Low-Energy Electron Irradiation [J]. Nano Lett., 2005, 5(8): 1575-1579.
    [76] V. Barone, J. E. Peralta, M.Wert, J. Heyd, and G. E. Scuseria. Density Functional Theory Study of Optical Transitions in Semiconducting Single-Walled Carbon Nanotubes [J]. Nano Lett., 2005, 5(8): 1621-1624.
    [77] Y. Takagi, T. Uda, and T. Ohno. A theoretical study for mechanical contact between carbon nanotubes [J]. J. Chem. Phys., 2005, 122(12): 124709.
    [78] J. B. Cui, C. P. Daghlian, and U. J. Gibson. Solubility and electrical transport properties of thiolated single-walled carbon nanotubes [J]. J. Appl. Phys., 2005, 98(4): 044320.
    [79] K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima. Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes [J]. Science, 2004,306(5700): 1362-1364.
    [80] T. B?hler, A. Edtbauer, and E. Scheer. Conductance of individual C60 molecules measured with controllable gold electrodes [J]. Phys. Rev. B, 2007, 76(12): 125432.
    [81] L.-L. Wang and H.-P. Cheng. Density functional study of the adsorption of a C60 monolayer on Ag(111) and Au(111) surfaces [J]. Phys. Rev. B, 2004, 69(16), 165417. Phys. Rev. B 2007 75(11): 119901(E).
    [82] A. N. Pasupathy, R. C. Bialczak, J. Martinek, J. E. Grose, L. A. K. Donev, P. L. McEuen, and D. C. Ralph. The Kondo Effect in the Presence of Ferromagnetism [J]. Science, 2004, 306(5693): 86-89.
    [83] Kula M, Luo Y, Effects of intermolecular interaction on inelastic electron tunneling spectra [J]. J. Chem. Phys., 2008, 128(6): 064705.
    [84] Okabayashi N, Konda Y, Komeda T. Inelastic electron tunneling spectroscopy of an alkanethiol self-assembled monolayer using scanning tunneling microscopy [J]. Science, 2008,306(5693): Phys. Rev. Lett., 2008, 100(21): 217801.
    [85] Frisch M J, Trucks G W, Schlegel H B, etal. Gaussian 03[M]. Pittsburgh,PA: Gaussian Inc., 2004.
    [86] Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys. Rev. A, 1988, 38 (6): 3098-3100.
    [87] Jiang J, Wang C K, Luo Y. QCME-1.1 [M]. Sweden: Royal Institute of Technology, 2006.
    [88] Wang W, Lee T, Kretzschmar I, etal. Inelastic electron tunneling spectroscopy of an alkanedithiol self-assembled monolayer [J]. Nano Lett., 2004, 4 (4): 643-646.
    [89]胡海龙,张琨,王振兴,王晓平.自组装硫醇分子膜电输运特性的导电原子力显微镜研究[J].物理学报, 2005, 55 (3): 1430-1434.
    [1] M. Ratner. Molecular electronics - Charged with manipulation [J]. Nature, 2005, 435(7042), 575-577.
    [2] B. C. Stipe, M. A. Rezaei, and W. Ho. Single-molecule vibrational spectroscopy and microscopy [J]. Science, 1998, 280(5370), 1732-1735 .
    [3] N. Agrait, C. Untiedt, G. Rubio-Bollinger, and S. Vieira. Onset of energy dissipation in ballistic atomic wires [J]. Phys. Rev. Lett., 2002, 88(21),216803 .
    [4] Smit, R. H. M.; Noat, Y.; Untiedt, C.; Lang, N. D.; Hemert, M. C.; Ruitenbeek, J. M. Measurement of the conductance of a hydrogen molecule [J]. Nature, 2002, 419(6910), 906-909.
    [5] Jiang, J.; Kula, M.; Lu, W.; Luo, Y. First-Principles Simulations of Inelastic Electron Tunneling Spectroscopy of Molecular Electronic Devices [J]. Nano Lett. ,2005, 5(8), 1551-1555.
    [6] Jiang, J.; Kula, M.; Luo, Y. A generalized quantum chemical approach for elastic and inelastic electron transports in molecular electronics devices [J]. J. Chem. Phys., 2006, 124(3), 034708.
    [7] Kula, M.;Jiang, J.; Luo, Y. Probing Molecule-Metal Bonding in Molecular Junctions by Inelastic Electron Tunneling Spectroscopy [J]. Nano Lett., 2006, 6(8), 1693-1698.
    [8] Pecchia, A.; Carlo, A. D.; Gagliardi, A.; Sanna, S.; Frauenheim, T.; Gutierrez, R. Incoherent Electron-Phonon Scattering in Octanethiols [J]. Nano Lett., 2004, 4(11), 2109-2114.
    [9] Chen, Y. C.; Zwolak, M.; Ventra, M. Di. Inelastic Effects on the Transport Properties of Alkanethiols [J]. Nano Lett., 2005, 5(4), 621-624.
    [10] Sergueev, N.; Demkov, A. A.; Guo, H. Inelastic resonant tunneling in C-60 molecular junctions [J]. Phys. Rev. B., 2007, 75(23), 233418.
    [11] Troisi, A.; Ratner, M. A. Modeling the inelastic electron tunneling spectra of molecular wire junctions [J]. Phys. Rev. B, 2005, 72(3), 033408.
    [12] Paulsson, M.; Frederiksen, T.; Brandbyge, M. Inelastic Transport through Molecules: Comparing First-Principles Calculations to Experiments [J]. Nano Lett., 2006, 6(2), 258-262.
    [13] H. Song, H. Lee, and T. Lee. Intermolecular Chain-to-Chain Tunneling in Metal-Alkanethiol-Metal Junctions [J]. J. Am. Chem. Soc., 2007, 129(13), 3806-3807 .
    [14] L. M Ghiringhelli, R. Caputo, and L. D. Site Alkanethiol headgroup on metal (111)-surfaces: general features of the adsorption onto group 10 and 11 transition metals [J]. J. Phys.: Condens. Matter, 2007, 19(17), 176004.
    [15] T.-W. Kim, G. Wang, H. Lee, and T. Lee. Statistical analysis of electronic properties of alkanethiols in metal–molecule–metal junctions [J]. Nanotechnology, 2007, 18(31), 315204.
    [16] N. A. Bruque, R. R. Pandey, and R. K. Lake. Electron transport through a conjugated molecule with carbon nanotube leads [J]. Phys. Rev. B, 2007, 76(20), 205322.
    [17] X. Shi, Z. Dai, and Z. Zeng. Electron transport in self-assembled monolayers ofthiolalkane: Symmetric I-V curves and Fano resonance [J]. Phys. Rev. B, 2007, 76(23), 235412.
    [18] K. Luo, D.-H. Chae, and Z. Yao. Room-temperature single-electron transistors using alkanedithiols [J]. Nanotechnology, 2007, 18(46), 465203.
    [19] H. B. Akkerman and B. de Boer. Electrical conduction through single molecules and self-assembled monolayers [J]. J. Phys.: Condens. Matter, 2008,20(1), 013001.
    [20] H. B. Akkerman, P. W. M. Blom, D. M. de Leeuw, and B. de Boer. Towards molecular electronics with large-area molecular junctions [J]. Nature(London), 2006, 441(7089), 69-72 .
    [21] C. Li, I. Pobelov, T. Wandlowski, A. Bagrets, A. Arnold, and F. Evers. Charge Transport in Single Au Alkanedithiol Au Junctions: Coordination Geometries and Conformational Degrees of Freedom [J]. J. Am. Chem. Soc., 2008, 130(1), 318-326 .
    [22] G. Wang, T.-W. Kim, H. Lee, and T. Lee. Influence of metal-molecule contacts on decay coefficients and specific contact resistances in molecular junctions [J]. Phys. Rev. B, 2007, 76(20), 205320.
    [23] C. Chu, J.-S. Na, and G. N. Parsons. Conductivity in Alkylamine/Gold and Alkanethiol/Gold Molecular Junctions Measured in Molecule/Nanoparticle/Molecule Bridges and Conducting Probe Structures [J]. J. Am. Chem. Soc., 2007, 129(8), 2287-2296 .
    [24] R. Desikan, S. Armel, H. M. Meyer III, and T. Thundat. Effect of chain length on nanomechanics of alkanethiol self-assembly [J]. Nanotechnology, 2007, 18(42), 424028.
    [25] F. Chen, X. Li, J. Hihath, Z. Huang, and N. Tao. Effect of Anchoring Groups on Single-Molecule Conductance: Comparative Study of Thiol-, Amine-, and Carboxylic-Acid-Terminated Molecules [J]. J. Am. Chem. Soc., 2006, 128(49), 15874-15881.
    [26] K.-H. Müller. Effect of the atomic configuration of gold electrodes on the electrical conduction of alkanedithiol molecules [J]. Phys. Rev. B , 2006, 73(4), 045403.
    [27] V. B. Engelkes, J. M. Beebe, and C. D. Frisbie. Length-Dependent Transport in Molecular Junctions Based on SAMs of Alkanethiols and Alkanedithiols: Effect of Metal Work Function and Applied Bias on Tunneling Efficiency and Contact Resistance [J]. J. Am. Chem. Soc., 2004, 126(43), 14287-14296 .
    [28] S. Wang, W. Lu, Q. Zhao, and J. Bernholc. Resonant coupling and negative differential resistance in metal/ferrocenyl alkanethiolate/STM structures [J]. Phys. Rev. B, 2006, 74(19), 195430.
    [29] R. C. Hoft, M. J. Ford, V. M. García-Suárez, C. J. Lambert, and M. B. Cortie. The effect of stretching thiyl- and ethynyl-Au molecular junctions [J]. J. Phys.: Condens. Matter, 2008, 20(2), 025207.
    [30] K Stokbro. First-principles modeling of electron transport [J]. J. Phys.: Condens. Matter, 2008, 20(6), 064216.
    [31] A. Bannani, C. Bobisch, and R. M?ller. Ballistic Electron Microscopy of Individual Molecules [J]. Science, 2007, 315(5820), 1824-1828.
    [32] J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu, Y. S. Shin, H.-R. Tseng, J. F. Stoddart, and J. R. Heath. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimeter [J].Nature(London), 2007, 445(7126), 414-417.
    [33] C. W. Bauschlicher, Jr. and J. W. Lawson. Current-voltage curves for molecular junctions: Effect of substitutients [J]. Phys. Rev. B, 2007, 75(11): 115406.
    [34] K. Gao, X. Liu, D. Liu, and S. Xie. Charge carrier generation through reexcitations of an exciton in poly(p-phenylene vinylene) molecules [J]. Phys. Rev. B, 2007, 75(20): 205412.
    [35] L. A. Agapito, E. J. Bautista, and J. M. Seminario. Conductance model of gold-molecule-silicon and carbon nanotube-molecule-silicon junctions [J]. Phys. Rev. B, 2007, 76(11): 115316.
    [36] C. Morari, G.-M. Rignanese, and S. Melinte. Electronic properties of 1-4, dicyanobenzene and 1-4, phenylene diisocyanide molecules contacted between Pt and Pd electrodes: First-principles study [J]. Phys. Rev. B, 2007, 76(11): 115428.
    [37] A. Danilov, S. Kubatkin, S. Kafanov, P. Hedeg?rd, N. Stuhr-Hansen, K. Moth-Poulsen, and T. Bjrnholm. Electronic Transport in Single Molecule Junctions: Control of the Molecule-Electrode Coupling through Intramolecular Tunneling Barriers [J]. Nano Lett., 2008, 8(1): 1-5.
    [38] N. Jlidatb, M. Hliwaa, and C. Joachima. A semi-classical XOR logic gate integrated in a single molecule [J]. Chem. Phys. Lett., 2008, 451(4-6): 270-275.
    [39] M. del Valle, R. Gutiérrez, C. Tejedor, and G. Cuniberti. Tuning the conductance of a molecular switch [J]. Nature Nanotechnology, 2007, 2(3): 176-179.
    [40] A. C. Whalley, M. L. Steigerwald, X. Guo, and C. Nuckolls. Reversible Switching in Molecular Electronic Devices [J]. J. Am. Chem. Soc., 2007, 129(42): 12590-12591.
    [41] S. Yeganeh, M. Galperin, and M. A. Ratner. Switching in Molecular Transport Junctions: Polarization Response [J]. J. Am. Chem. Soc., 2007, 129(43): 13313-13320.
    [42] Z. Wang, C. Kim, A. Facchetti, and T. J. Marks. Anthracenedicarboximides as Air-Stable N-Channel Semiconductors for Thin-Film Transistors with Remarkable Current On-Off Ratios [J]. J. Am. Chem. Soc., 2007, 129(44): 13362-13363.
    [43] R. B. Pontes, F. D. Novaes, A. Fazzio, and A. J. R. da Silva. Adsorption of Benzene-1,4-dithiol on the Au(111) Surface and Its Possible Role in Molecular Conductance [J]. J. Am. Chem. Soc., 2006, 128(28): 8996-8997.
    [44] D. S. Seferos, A. S. Blum, J. G. Kushmerick, and G. C. Bazan. Single-Molecule Charge-Transport Measurements that Reveal Technique-Dependent Perturbations [J]. J. Am. Chem. Soc., 2006, 128(34): 11260-11267.
    [45] J. He, Q. Fu, S. Lindsay, J. W. Ciszek, and J. M. Tour. Electrochemical Origin of Voltage-Controlled Molecular Conductance Switching [J]. J. Am. Chem. Soc., 2006, 128(46): 14828-14835.
    [46] E. L?rtscher, H. B. Weber, and H. Riel. Statistical Approach to Investigating Transport through Single Molecules [J]. Phys. Rev. Lett., 2007, 98(17): 176807.
    [47] R. C. Hoft, N. Armstrong, M. J. Ford and M. B. Cortie. Ab initio and empirical studies on the asymmetry of molecular current–voltage characteristics [J]. J. Phys.: Condens. Matter, 2007, 19(21): 215206.
    [48] G. Romano, A. Pecchia and A. Di Carlo. Coupling of molecular vibrons with contact phonon reservoirs [J].J. Phys.: Condens. Matter , 2007, 19(21): 215207.
    [49] L. Venkataraman, J. E. Klare, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald.Dependence of single-molecule junction conductance on molecular conformation [J]. Nature(London), 2006, 442(7105): 904-907.
    [50] N. J. Tao. Electron transport in molecular junctions [J]. Nature Nanotechnology, 2006, 1(3): 173-181.
    [51] W. Chen, L. Wang, C. Huang, T. T. Lin, X. Y. Gao, K. P. Loh, Z. K. Chen, and A. T. S. Wee. Effect of Functional Group (Fluorine) of Aromatic Thiols on Electron Transfer at the Molecule-Metal Interface [J]. J. Am. Chem. Soc., 2006, 128(3): 935-939.
    [52] B. S. Kim, J. M. Beebe, Y. Jun, X.-Y. Zhu, and C. D. Frisbie. Correlation between HOMO Alignment and Contact Resistance in Molecular Junctions: Aromatic Thiols versus Aromatic Isocyanides [J]. J. Am. Chem. Soc., 2006, 128(15): 4970-4971.
    [53] M. Taniguchi, Y. Nojima, K. Yokota, J. Terao, K. Sato, N. Kambe, and T. Kawai. Self-Organized Interconnect Method for Molecular Devices [J].J. Am. Chem. Soc., 2006, 128(47): 15062-15063.
    [54] G. Heimel, L. Romaner, J.-L. Brédas, and E. Zojer. Interface Energetics and Level Alignment at Covalent Metal-Molecule Junctions:π-Conjugated Thiols on Gold [J]. Phys. Rev. Lett., 2006, 96(19): 196806.
    [55] J. M. Beebe, B. S. Kim, J. W. Gadzuk, C. D. Frisbie, and J. G. Kushmerick. Transition from Direct Tunneling to Field Emission in Metal-Molecule-Metal Junctions [J]. Phys. Rev. Lett., 2006, 97(2): 026801.
    [56] W. Ji, Z.-Y. Lu, and H. Gao. Electron Core-Hole Interaction and Its Induced Ionic Structural Relaxation in Molecular Systems under X-Ray Irradiation [J]. Phys. Rev. Lett., 2006, 97(24): 246101.
    [57] J. Kr?ger, N. Néel, H. Jensen, R. Berndt, R. Rurali, and N. Lorente. Molecules on vicinal Au surfaces studied by scanning tunnelling microscopy [J]. J. Phys.: Condens. Matter, 2006, 18(13): S51-S66.
    [58] P. G. Piva, G. A. DiLabio, J. L. Pitters, J. Zikovsky, M. Rezeq, S. Dogel, W. A. Hofer, and R. A. Wolkow. Field regulation of single-molecule conductivity by a charged surface atom [J]. Nature (London), 2005, 435: 658-661.
    [59] W. Wang, T. Lee, I. Kretzschmar, and M. A. Reed. Inelastic Electron Tunneling Spectroscopy of an Alkanedithiol Self-Assembled Monolayer [J]. Nano Lett., 2004, 4(4): 643-646.
    [60] A.-S. Hallb?ck, N. Oncel, J. Huskens, H. J. W. Zandvliet, and B. Poelsema. Inelastic Electron Tunneling Spectroscopy on Decanethiol at Elevated Temperatures [J]. Nano Lett., 2004, 4(12): 2393-2395.
    [61] G. C. Solomon, A. Gagliardi, A.Pecchia, T. Frauenheim, A. D. Carlo, J. R. Reimers, and N. S. Hush. Understanding the inelastic electron-tunneling spectra of alkanedithiols on gold [J]. J. Chem. Phys. 2006, 124(9): 094704.
    [62] L. Yan. Inelastic Electron Tunneling Spectroscopy and Vibrational Coupling [J]. J. Phys. Chem. A , 2006, 110 (49): 13249-13252.
    [63] L. H. Yu, C. D. Zangmeister, and J. G. Kushmerick. Structural Contributions to Charge Transport across Ni-Octanedithiol Multilayer Junctions [J]. Nano Lett., 2006, 6(11): 2515-2519.
    [64] L. H. Yu, C. D. Zangmeister, and J. G. Kushmerick. Origin of Discrepancies in Inelastic Electron Tunneling Spectra of Molecular Junctions [J]. Phys. Rev. Lett., 2007,98(20): 206803.
    [65] A. Troisi and M. A. Ratner. Inelastic insights for molecular tunneling pathways: Bypassing the terminal groups [J]. Phys. Chem. Chem. Phys., 2007, 9(19): 2421-2427.
    [66] D. P. Long, J. L. Lazorcik, B. A. Mantooth, M. H. Moore, M. A. Ratner, A. Troisi, Y. Yao, J. W. Ciszek, James M. Tour, and R. Shashidhar. Effects of hydration on molecular junction transport [J]. Nature Mater., 2006, 5(11): 901-908.
    [67] A. Troisi and M. A. Ratner. Molecular Transport Junctions: Propensity Rules for Inelastic Electron Tunneling Spectra [J]. Nano Lett., 2006, 6(8): 1784-1788.
    [68] A. Troisi and M. A. Ratner. Propensity rules for inelastic electron tunneling spectroscopy of single-molecule transport junctions [J]. J. Chem. Phys., 2006, 125(21): 214709.
    [69] J. R. Reimers, G. C. Solomon, A. Gagliardi, A. Bili, N. S. Hush, T. Frauenheim, A. Di Carlo, and A. Pecchia. The Green's Function Density Functional Tight-Binding (gDFTB) Method for Molecular Electronic Conduction [J]. J. Phys. Chem. A , 2007, 111(26): 5692-5702.
    [70] J. M. Beebe, H. J. Moore, T. R. Lee, and J. G. Kushmerick. Vibronic Coupling in Semifluorinated Alkanethiol Junctions: Implications for Selection Rules in Inelastic Electron Tunneling Spectroscopy [J]. Nano Lett., 2007, 7(5): 1364-1368.
    [71] J. G. Kushmerick, J. Lazorcik, C. H. Patterson, R. Shashidhar, D. S. Seferos, and G. C. Bazan. Vibronic Contributions to Charge Transport Across Molecular Junctions [J]. Nano Lett., 2004, 4(4): 639-642.
    [72] L. Cai, M. A. Cabassi, H. Yoon, O. M. Cabarcos, C. L. McGuiness, A. K. Flatt, D. L. Allara, J. M. Tour, and T. S. Mayer. Reversible Bistable Switching in Nanoscale Thiol-Substituted Oligoaniline Molecular Junctions [J]. Nano Lett., 2005, 5(12): 2365-2372.
    [73] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai,H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.;Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al- Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03 [M]. Revision C.02; Gaussian, Inc., Wallingford CT, 2004.
    [74] Hay, P. J.; Wadt, W. R. Abinitio effective core potentials for molecular calculations - potentials for the Transition-Metal atoms SCto HG [J]. J. Chem. Phys., 1985, 82: 270.
    [75] Becke, A. D. Density-Functional the rmochemistry .3. The role of exact exchange [J]. J. Chem. Phys., 1997, 98(7): 5648-5652.
    [76] Jiang, J.; Wang, C. -K.; Luo, Y. QCME-1.1:Quantum Chemistry for MolecularElectronics [M]. Royal Institute of Technology: Stockholm, Sweden , 2006.
    [1] M. A. Reed. Inelastic Electron Tunneling Spectroscopy [J]. Materials Today, 2008, 11(11): 46-50.
    [2] M. Galperin, M. A. Ratner, A. Nitzan, and A. Troisi. Nuclear Coupling and Polarization in Molecular Transport Junctions: Beyond Tunneling to Function [J]. Science, 2008, 319(5866): 1056-1060.
    [3] P. Reddy, S.-Y. Jang, R. A. Segalman, and A. Majumdar. Thermoelectricity in Molecular Junctions [J]. Science, 2007, 315(5818): 1568-1571.
    [4] A. Nitzan. CHEMISTRY: Molecules Take the Heat [J]. Science, 2007, 317(5839): 759-760.
    [5] Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N.-H. Seong, D. G. Cahill, and D. D. Dlott. Ultrafast Flash Thermal Conductance of Molecular Chains [J]. Science, 2007, 317(5839): 787-790.
    [6] A. Pecchia, G. Romano, and A. Di Carlo. Theory of heat dissipation in molecular electronics [J]. Phys. Rev. B, 2007, 75(3): 035401.
    [7] M. Galperin, A. Nitzan, and M. A. Ratner. Heat conduction in molecular transport junctions [J]. Phys. Rev. B, 2007, 75(15): 155312.
    [8] N. Mingo and D. A. Broido. Length Dependence of Carbon Nanotube Thermal Conductivity and the "Problem of Long Waves" [J]. Nano Lett., 2005, 5(7), 1221-1225.
    [9] C. F. Hirjibehedin, C. P. Lutz, A. J. Heinrich. Spin coupling in engineered atomic structures [J]. Science, 2006, 312(5776): 1021-1024.
    [10] C. F. Hirjibehedin, C.-Y. Lin, A. F. Otte, M. Ternes, C. P. Lutz, B. A. Jones, A. J. Heinrich. Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network [J]. Science, 2007, 317(5842): 1199-1203.
    [11] J. Fransson. Spin Inelastic Electron Tunneling Spectroscopy on Local Spin Adsorbed on Surface [J]. Nano Lett., 2009, 9(6): 2414-2417.
    [12] M. Persson. Theory of Inelastic Electron Tunneling from a Localized Spin in the Impulsive Approximation [J]. Phys. Rev. Lett., 2009, 103(5): 050801.
    [13] J. Fernández-Rossier. Theory of single-spin inelastic tunneling spectroscopy [J]. Phys. Rev. Lett., 2009, 102(25): 256802-256805.
    [14] N. Lorente and J.-P. Gauyacq. Efficient Spin Transitions in Inelastic Electron Tunneling Spectroscopy [J]. Phys. Rev. Lett., 2009, 103(17): 176601-176604.
    [15] X. Chen, Y.-S. Fu, S.-H. Ji, T. Zhang, P. Cheng, X.-C. Ma, X.-L. Zou, W.-H. Duan, J.-F. Jia, and Q.-K. Xue. Probing Superexchange Interaction in Molecular Magnets by Spin-Flip Spectroscopy and Microscopy [J]. Phys. Rev. Lett., 2008, 101(19): 197208-197211.
    [16] W. Wang and C. A. Richter. Spin-polarized inelastic electron tunneling spectroscopy of a molecular magnetic tunnel junction [J]. Appl. Phys. Lett., 2006, 89(15): 153105-153108.
    [17] D. P. Long, J. L. Lazorcik, B. A. Mantooth, M. H. Moore, M. A. Ratner, A. Troisi, Y. Yao, J. W. Ciszek, James M. Tour, and R. Shashidhar. Effects of hydration on molecularjunction transport [J]. Nature Mater., 2006, 5(11): 901-908.
    [18] M. Galperin, M. A. Ratner. A Nitzan, A Troisi, Nuclear Coupling and Polarization in Molecular Transport Junctions: Beyond Tunneling to Function [J]. Science., 2008, 319(5856): 1056-1060.