侵彻关键参量的计算反求与影响规律分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
侵彻问题研究对武器装备的研制和改进具有重要意义,其研究成果还可应用于相关民用领域。侵彻问题是一个十分复杂的力学问题,复杂的材料动态响应和弹靶结构响应在极短的时间内完成,诸多不确定性因素和复杂的弹目交会条件同时影响着侵彻过程。对侵彻问题的研究,传统试验方法往往停留在观测侵彻后的毁伤效果为主,理论分析方法则需要大量假设来简化侵彻问题,这便使得这两类方法在适用性上受到限制,对侵彻的中间细节认识不够。随着计算技术的发展,数值模拟方法已经发展成为侵彻防护设计分析领域又一重要研究手段,与试验研究和理论分析方法并重,数值模拟可以获取侵彻过程各种数据,但是数值模拟需要比较准确的材料动态本构模型和边界条件,侵彻过程三维数值模拟的效率较低。基于数值模拟研究侵彻问题还处于起步阶段,在侵彻相关的材料动态本构和弹体侵彻载荷边界条件等关键参量的获取,以及关键参量在侵彻中作用规律等方面还有许多需要改进和解决的问题,还存在一些瓶颈性的技术问题和难点。
     本文针对侵彻问题中的关键参量开展了系统的研究,力求在侵彻关键参量的获取及其侵彻影响规律方面做出一些卓有成效的尝试和探索。侵彻关键参量获取方面的工作是构建了两类计算反求技术,基于动态响应实现了快速获取材料动态特性参量的计算反求,基于结构选择技术实现了侵彻载荷参量的计算反求,这部分工作是整篇论文的基础;在侵彻关键参量影响规律分析方面,基于反求获取的关键参量建立高精度、高效率的数值计算模型,分析了材料特性参量和不确定性弹目交会条件下的影响规律。基于此思路,本文开展和完成了以下研究工作:
     (1)针对侵彻条件下材料动态特性参量难以获取的问题,给出了基于动态响应反求材料动态特性参量的方法,并结合传统方法难以测量的典型材料一陶瓷脆性材料,给出了两种加载条件下的反求方法,为确定传统实验难以直接获取的材料参数提供了一种解决途径。基于SHPB一维应力模型,提出了一种利用反射波和透射波响应确定陶瓷脆性材料动态本构参数的计算反求方法。该方法采用哑铃形试件消除了应力集中,同时避免了哑铃形试件变截面不满足一维应力波分析的问题,以及应力波效应与应变率效应不能解耦的问题,该计算反求方法能利用少数几次物理实验,快速获取脆性材料的动态本构参数。提出了一种利用平板撞击的瞬态速度剖面响应来获取陶瓷脆性材料动态本构损伤参数的计算反求方法。基于平板撞击中应力波在飞片、样品和窗口材料中传播的数值模拟,建立了样品/窗口界面瞬态速度剖面响应与材料参数之间的映射关系,利用测量的速度剖面响应实现了脆性材料本构损伤参数的反求。这种方法为快速获得高应变率下本构参数提供了一种解决途径。
     (2)构建了一种基于结构选择技术的侵彻载荷参量反求技术。通过实验侵彻深度数据验证了数值模拟模型,利用高速刚性弹侵彻半无限靶数值模拟的结果,获取弹体头部侵彻压力数据,通过结构选择技术反求了侵彻载荷函数,辨识侵彻载荷特性的决定性因素。利用该方法反求的侵彻载荷函数形式简洁,并以此推导的侵彻深度公式能很好地对侵彻深度和弹体加速度进行预测。最后经过三个系列的实验数据和模型验证了该反求技术能方便准确地确定侵彻载荷函数。
     (3)利用反求的侵彻载荷函数代替弹靶接触力,构建了一种侵彻数值模拟的快速计算算法。将侵彻载荷函数作为载荷边界条件嵌入到弹体有限元模型中,避免了靶体网格的划分和复杂的弹靶接触计算,极大地简化了计算模型,减少了内存需求和求解时间。该算法能实现侵彻深度和弹体加速度的快速求解,同时该模型还能考虑弹体屈服强度,预测弹体塑性变形的最小侵彻速度,并与实验结果吻合很好。
     (4)通过一系列数值模拟,研究了陶瓷复合装甲中陶瓷材料参数、弹体材料和侵彻条件对侵彻特性的影响。得到了侵彻过程中陶瓷材料参数对侵深影响的重要性排序规律,其中完全损伤材料强度对侵深影响显著,碎胀系数和损伤参数因素可忽略;得到了弹体强度在复合装甲侵彻过程的作用机理:弹体强度一方面能为保持弹体形态和弹体动能提供有利条件,另一方将导致弹体头部墩粗,侵彻载荷增大,不利于弹体侵彻;得到了侵彻速度和攻角对侵彻复合装甲前置偏转板的作用机理,带攻角斜侵彻过程的能量损耗机理,以及侵彻过程中弹体的加速度大小、速度方向以及整体弯曲的变化规律。
     (5)基于侵彻载荷函数代替弹靶接触力的快速数值计算算法,分析了五种定深控制技术在不确定侵彻条件下深度控制波动区间,给出了其控制精度的排序规律,并分析了影响控制精度的主要因素。分析了五种定深控制技术在攻角不确定条件下的侵彻可行区间,得出了在攻角不确定条件下定轴垂直位移方式和定轴向位移方式均有很高控制精度的结论,定轴向位移定深控制技术是一种相对易实现的高精度定深控制技术。
The study of penetration problems is important for the development and improvement of weapons, and is useful for some relevant civil industries. Penetration is a very complex mechanical process, where material responses and structure responses of the projectile and target complete in a very short time. Also, it involves many uncertain factors and complicated projectile-target meeting conditions. For the penetration study, conventional experimental method mainly focuses on the observation of damage effects, and analytical method requires a number of simplifications. Both two methods can't give enough details of the penetration process, so they are limited in actual applications. With the development of computational technology, numerical simulation has become an alternative approach for penetration study, which is as important as the experimental and analytical methods. Numerical simulation can obtain many kinds of data, but it requires accurate material constitutive model and boundary conditions. Furthermore, numerical simulation of penetration, especially3D simulation, is still very computationally expensive. Using numerical simulation for penetration study has just begun. There are still many problems required to solve, such as the obtainment of parameters in material constitutive models and load boundary conditions, the effect rules of some key parameters in penetration and so on.
     In this paper, we systematically studied the key parameters in penetration problems and tried to develop some effective methods for obtaining key parameters and the effect rules of them in penetration process. In the aspect of obtaining key parameters, two kinds of inverse technology are constructed. In these two inverse technologies, material dynamic properties and penetration load parameters are inversely obtained based on dynamic responses and structure-selection technique, respectively. This part of work forms the basis of the whole paper. In the aspect of effect rules of key parameters, numerical models of high accuracy and efficiency are established by using some key parameters inversely obtained, and effect rules of material properties and uncertain projectile-target meeting conditions are analyzed. The main work of the paper is given as follows:
     (1) Inverse technologies based on dynamic responses are proposed to overcome the difficulties in obtaining parameters of dynamic material properties. Two inverse technologies using different loading conditions are presented for identifying parameters of ceramic material, which are difficult to get by traditional methods. The methods provide a new approach to determine material parameters which are difficult for conventional experiments. With the one-dimensional stress model of SHPB, an inverse technology using reflecting and transmission wave is presented to identify the parameters in constitutive model of ceramic. This technology eliminates stress concentration since dumbbell-shaped specimens are used. It also avoids the problem of the dissatisfaction of1D stress wave theory induced by the variational sections of dumbbell-shaped specimen and the problem of the coupling of stress wave effect and strain rate effect. The technology can determine the constitutive model parameters of brittle materials rapidly by using a few experimental data. With the one-dimensional strain model of plate impact, an inverse technology using velocity histories at the sample-window interface in plate impact experiments is presented to identify the damage parameters. In this technology, the mapping between the transient velocity profile at the sample-window interface and material parameters are firstly established based on the simulation of the stress propagation in flyer, sample and window materials, and the damage parameters are then identified by using the velocity profile responses. The technology provides an alternative approach to quickly determine parameters of constitutive model under high strain rate.
     (2) An inverse technology based on the structure-selection technique is proposed to identify penetration force. In this technology, numerical simulation model is firstly established and validated by experimental data of penetration depth. Pressure data on the projectile nose are then sampled from numerical simulation results of a high-velocity projectile penetrating into a semi-infinite target. Then, using structure-selection technique, the penetration force function is inversely obtained, and crucial factors affecting characteristics of the penetration force are identified. The obtained penetration force function is very simple in form. Based on the penetration force function, a penetration depth formula, which can predict penetration depths and decelerations of the projectile accurately, is deduced. Finally, three series of experiments and models are used to validate the presented inverse technology, which shows it can determine penetration force function conveniently and accurately.
     (3) Using the penetration force function to replace the contact forces between the projectile and target, a rapid computational method for penetration simulation is presented. In the method, the penetration force function is embedded in the finite element model of the projectile as loading conditions. This avoids the meshing of the target and complicated contact calculation, so the computation model simplifies significantly and computational memories and time are reduced. The method can predict penetration depths and decelerations of the projectile quickly. Also, it can include the effects of the yield strength of the projectile and predict the critical impact velocity resulting in plastic deformations of the projectile. The results by the presented method show good agreement with experimental results.
     (4) The effects of material parameters of ceramic and projectile as well as conllision conditions on penetration characteristics of ceramic/metal composite armor are studied through a series of numerical simulation. The importance of effects of material parameters of ceramic on penetration depths is analyzed. It is found the damaged material strength shows very important effect, while the bulking factor and damage parameter are negligible. The mechanism for effects of projectile strength on the penetration of composite armor is also analyzed. On the one hand, the projectile strength helps to maintain the projectile shape and kinetic energy. On the other hand, it may result in the upset of the projectile nose and increase of penetration resistance. Additionally, we obtained the mechanism of action of the impact velocity and the angle of obliquity to the fore deflection plate, the energy dissipation mechanism of the penetration with attack angle and the variation rules of the acceleration magnitude, the change of velocity direction and the global bending in the penetration process.
     (5) With the rapid computational method which uses the penetration force function to replace the contact forces between the projectile and target, the depth ranges of five constant-depth control technologies under uncertain collision conditions are analyzed, and the accuracy order of them is given. The main factors affecting the control accuracy are also analyzed. The feasible intervals of penetration with uncertain attack angles for the five control technologies are obtained. It is found the constant-vertical-displacement method and the constant-axial-displacement method show very high accuracies. Among the five control technologies, the constant-axial-displacement method is preferable since it is simple in implementation and accurate.
引文
[1]Backman M E, Goldsmith W. The mechanics of penetration of projectiles into targets. International Journal of Science,1978,16:1-99
    [2]Goldsmith W, Mayseless M, Virostek S P, et al. Impact on ceramic targets. Journal of Applied Mechanics,1987,54:373-378
    [3]Goldsmith W. Non-ideal projectile impact on targets. International Journal of Impact Engineering,1999,22(2/3):95-395
    [4]Gabi Ben-Dor, Anatoly Dubinsky, Tov Elperin. Ballistic impact recent advances in analytical modeling of plate penetration dynamics-a review. Applied Mechanics Reviews,2005,58:355-371
    [5]钱伟长.穿甲力学.北京:国防工业出版社,1984
    [6]何涛.动能弹在不同材料靶体中的侵彻行为研究:[中国科学技术大学博士学位论文].合肥:中国科学技术大学,2007
    [7]兰彬.长杆弹侵彻半无限靶的数值模拟和理论研究:[中国科学技术大学博士学位论文].合肥:中国科学技术大学,2008
    [8]Orphal D L. Explosions and impacts. International Journal of Impact Engineering,2006,33:496-545
    [9]Salehi H, Ziaei-Rad S, Vaziri-Zanjani MA. Bird impact effects on different types of aircraft bubble windows using numerical and experimental methods. International Journal of Crashworthiness.2010,15(1):93-106
    [10]卜令涛,朱顺官.爆炸成形技术在零件加工中的应用.爆破器材,1999,28(5):22-24
    [11]王英琳.高速磁浮列车碰撞过程仿真:[中南大学硕士学位论文].长沙:中南大学,2009
    [12]刘永远,姜正平,张进.钻地弹及其发展趋势.飞航导弹,2006,3:34-37
    [13]李英雷.装甲陶瓷的本构关系和抗弹机理研究:[中国科学技术大学博士学位论文].合肥:中国科学技术大学,2003
    [14]张振英,戴芳.复合材料在坦克装甲车辆上的应用.塑料,2000,3(29):38-46
    [15]赵国志.穿甲工程力学.北京:兵器工业出版社,1992
    [16]马晓青,黄风雷.高速碰撞动力学.北京:国防科技图书出版社.1996
    [17]张庆明,黄风雷.超高速碰撞动力学引论.北京:科学出版社.2000
    [18](美)陆军装备部编著,王维和,李忠昌译.终点弹道学原理.北京国防工业出 版社.1988
    [19]杨桂通.塑性动力学.北京:高等教育出版社.2000
    [20]陈小伟.穿甲/侵彻问题的若干工程研究进展.力学进展.2009,39(3):316-351
    [21]Warren T L, Tabbara M R. Simulations of the penetration of 6061-T6511 aluminum targets by spherical-nosed VAR 4340 steel projectiles. International Journal Solids Structures,2000,37:4419-4435
    [22]王礼立.爆炸与冲击载荷下结构和材料动态响应研究的新进展.爆炸与冲击,2001,21(2):81-88
    [23]王礼立.爆炸力学数值模拟中本构建模问题的讨论.爆炸与冲击,2003,23(2):97-104
    [24]Rosenberg Z, Dekel E. A computational study of the relations between material properties of long-rod penetrators and their ballistic performance. International Journal of Impact Engineering,1998,21(4):283-296
    [25]Marin E B, Chiesa M L, Booker P M. Parametric studies of penetration events:a design and analysis of experiments approach. SAND2005-0951
    [26]Martinez-Canales M L, Swiler L P, Hough P D, et al. Penetrator reliability investigation and design exploration:from conventional design processes to innovative uncertainty-capturing algorithms. SAND2006-7669
    [27]Taylor G I. The use of flat ended projectiles for determining yield stress Ⅰ: theoretical considerations. Pceedings of Royal Society London. London, Series A,194,1948,289-299
    [28]Nemat-Nasser S, Issacs J B, Starrett J E. Hopkinson techniques for dynamic recovery experiments. Proc. R. Soc. London Ser. A,1991,453:371-391
    [29]Subhash G, Ravichandran G. Split-Hopkinson pressure bar testing of caramics, ASM Handbook, Vol 8, Mechanical Testing and Evaluation, ASM Int, Materials Park OH,2000:488-496
    [30]Gama B A, Lopatnikov S L, Gillespie Jr. Hopkinson bar experimental technique: a critical review. Appl Mech Rev,2004,57:223-249
    [31]陈荣,卢芳云,林玉亮.分离式Hopkinson压杆实验技术研究进展.力学进展,2009,39(5):576-587
    [32]Field J E, Walley S M, Proud W G, et al. Review of experimental techniques for high rate deformation and shock studies. International Journal of Impact Engineering,2004,30:725-775
    [33]Grady D E, Moody R L. Shock compression profiles in ceramics. SAND96-0551
    [34]Johnson G R, Cook W H, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In Proc.7th International Symposium on Ballistics,1983:541-547
    [35]吕剑,何颖波,田常津.泰勒杆实验对材料动态本构参数的确认和优化确定.爆炸与冲击,2006,26(4):339-344
    [36]陶俊林.SHPB实验技术若干问题研究:[中国工程物理研究院博士学位论文].绵阳:中国工程物理研究院,2005
    [37]刘剑飞,胡时胜,王道荣.用于脆性材料的Hopkinson压杆动态实验新方法.实验力学,2001,16(3):283-290
    [38]王礼立,王永刚.应力波在用SHPB研究材料动态本构特性中的重要作用.爆炸与冲击,2005,25(1):17-25
    [39]俞宇颖,陈大年,谭华.三角形波致LY12铝层裂的平板冲击实验研究.固体力学学报,2006,27(3):261-267
    [40]唐志平.压剪复合平板冲击加载技术进展及其应用.力学进展,2007,37(3):398-408
    [41]谭华.实验冲击波物理导引.北京:国防工业出版社,2007
    [42]经福谦,陈俊祥.动高压原理与技术.北京:国防工业出版社,2006
    [43]王志华,马宏伟,赵隆茂等.反分析法在泡沫金属材料动态性能实验中的应用.爆炸与冲击,2006,26(5):410-415
    [44]Zhao H, Gary G. On the use of SHPB technique to determine the dynamic behavior of the materials in the range of small strains. Int. J. Solids Structures, 1996,33(23):3363-3375
    [45]朱珏.混凝土类材料冲击本构特性的SHPB技术及Lagrange反解法的研究:[中国科学技术大学博士学位论文].合肥:中国科学技术大学,2006
    [46]李守巨,刘迎曦,刘玉静.基于遗传算法的爆炸冲击荷载参数识别方法.爆炸与冲击,2002,22(4):295-240
    [47]王富生,李立州,王新军等.鸟体材料参数的反演方法.航空学报,2007,28(2):344-347
    [48]卢静涵,沈建虎,赵隆茂.反分析法在结构冲击动力响应实验中的应用.爆炸与冲击,2004,2:140-144
    [49]Han X, Liu G R. Computational inverse technique for material characterization of functionally graded materials. American Institute of Aeronautics and Astronautics,2003,41(2):288-295
    [50]Liu G R, Han X. Computational inverse techniques in nondestructive evaluation. Boca Raton, CRC Press,2003
    [51]伍乾坤,韩旭,胡德安.一种陶瓷脆性材料动态本构参数的计算反求方法.固体力学学报,2009,30(3):280-285
    [52]魏培君,章梓茂,韩华.双相介质参数反演的遗传算法.固体力学学报,2002,23(4):459-4
    [53]Holmquist T J, Rajendran A M, Templeton D W, et al. A ceramic armor material database. U. S. Army Tank Automotive Research,1999,13754
    [54]张晓晴,姚小虎,宁建国等.A1203陶瓷材料应变率相关的动态本构关系研究.爆炸与冲击,2004,24(3):226-232
    [55]石志勇,汤文辉.A1203陶瓷的损伤型本构关系研究.环境与强度,2007,34(3):53-57
    [56]李夕兵,周子龙,王卫华.应用有限元和神经网络为SHPB装置构造理想冲头.岩石力学与工程学报,2005,24(23):4215-4218
    [57]Tracy C A. A compression test for high strength ceramics. Journal of Testing and Evaluation.1987,15(1):14-19
    [58]Chen Weinong. Dynamic failure behavior of ceramics under multiaxial compression:[California Institute of Technology, Doctor]. Pasadena, California: California Institute of Technology,1995,66-69
    [59]Riou P, Denoual C, Cottenot C E. Visualization of the damage evolution in impacted silicon carbide ceramics. International Jouranl of Impact Engineering, 1998,21:225-235
    [60]Rajendran A M. Critical measurements for validation of constitutive equations under shock and impact loading conditions. Optics and Lasers in Engineering. 2003,40:249-262
    [61]李平.陶瓷材料的动态力学响应及其抗长杆弹侵彻机理:[北京理工大学博士学位论文].北京:北京理工大学,2002
    [62]任会兰,树学锋,李平.强冲击载荷下氧化铝陶瓷破坏特性的数值模拟及实验研究.中国科学G辑:物理学力学天文学,2009,39(9):1221-1230
    [63]刘占芳,常敬臻,耀国文,张凯,李建鹏.冲击压缩下氧化铝陶瓷中破坏阵面的传播.力学学报,2006,38(5):626-632
    [64]Bishop R F, Hill R. The theory of indentation and hardness tests. The Proceedings of the Physical Society.1945,57(3):147-159
    [65]Hill R. General features of plastic-elastic problems as exemplified by some particular solution. Journal of Applied Mechnics,1949:295-300
    [66]Hill R. The mathematical theory of plasticity. London:Oxford University Press, 1950
    [67]Goodier J N. On the mechanics of indentation and cratering in solid targets of strain hardening metal by impact of hard and soft sphere. Proceedings of the 7th Symposium on Hypervelocity Impact,1965
    [68]Bernard R S. A projectile penetration theory for layered targets. US Army Waterways Experiment Station, AD-A025976,1976
    [69]Forrestal M J, Luk V K. Dynamic spherical cavity expansion in a compressible elastic-plastic solid. J. Appl. Phys,1988,55:275-279
    [70]Forrestal M J, Okajima K, Luk V K. Penetration of 6061-T651 aluminum targets with rigid long rods. Journal of Applied Mechanics,1988,55:755-760
    [71]Forrestal M J, Luk V K, Rosenberg Z, et al. Penetration of 7075-T651 aluminum targets with ogival-nose rods. International Journal of Solids Structures,1992, 29:1729-1736
    [72]Forrestal M J, Tzou D Y, Askari E, et al. Penetration into ductile metal tagets with rigd spherical-nose rods. International Journal of Impact Engineering,1995, 16:699-710
    [73]Forrestal M J, Warren T L. Penetration equations for ogive-nose rods into aluminum targets. International Journal of Impact Engineering,2008,35: 727-730
    [74]Forrestal M J, Warren T L. Perforation equations for conical and ogival nose rigid projectiles into aluminum target plates. International Journal of Impact Engineering,2009,36:220-225
    [75]Li Q M, Chen X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile. International Journal of Impact Engineering,2003,28:93-116
    [76]Chen X W, Li X L, Huang F L, et al. Damping function in the penetration/ perforation struck by rigid projectiles. International Journal of Impact Engineering,2008,35:1314-1325
    [77]Chen X W, Fan S C, Li Q M. Oblique and normal perforation of concrete targets by a rigid projectile. International Journal of Impact Engineering,2004,30: 617-637
    [78]Warren T L, Hanchak S J, Poormon K L. Penetration of limestone targets by ogive-nosed VAR 4340 steel projectiles at oblique angles:experiments and simulations. International Journal of Impact Engineering,2004,30:1307-1331
    [79]Warren T L, Poormon K L. Penetration of 6061-T6511 aluminum targets by ogive-nosed VAR 4340 steel projectiles at oblique angles:experiments and simulations. International Journal of Impact Engineering,2001,25:993-1022
    [80]Warren T L, Tabbara M R. Spherical cavity-expansion forcing function in PRONTO 3D for application to penetration problems. SAND97-1174
    [81]Warren T L, Fossum A F, Frew D J. Penetration into low-strength (23 MPa) concrete:target characterization and simulations. International Journal of Impact Engineering,2004,30:477-503
    [82]何涛,文鹤鸣.可变形弹丸贯穿铝合金靶的数值模拟.高压物理学报,2008,22(2):153-159
    [83]Yarin A L, Rubin M B, Roisman I V. Penetration of a rigid projectile into an elastic-plastic target of finite thickness. International Journal of Impact Engineering,1995,16:801-831
    [84]王政,倪玉山,曹菊珍等.基于速度势侵彻模型的应用研究.高压物理学报,2005,19(1):10-16
    [85]王政.弹靶侵彻动态响应的理论与数值分析:[复旦大学博士学位论文].上海:复旦大学,2005
    [86]Gabi Ben-dor, Anatoly Dubinsky, Tov Elperin. Applied high-speed plate penetration dynamics. Springer, Netherlands,2005
    [87]Forrestal M J, Frew D J, Hickerson J P, et al. Penetration of concrete targets with deceleration-time measurements. International Journal of Impact Engineering, 2003,28:479-497
    [88]Anderson C E, Morris B L, Littlefield D L. A penetration mechanics database. Report No. AD-A246 351, Southwest Research, January,1992
    [89]Gupta N K, Madhu V. An experimental study of normal and oblique impact of hard-core projectile on single and layered plates. International Journal of Impact Engineering,1997,19:395-414
    [90]Wilkins M, Honodel C, Sawle D. An approach to the study of light weight. UCRL-50284, Lawrence Radiation Laboratory, Livermore, CA.1967
    [91]Wilkins M, Cline C F, Honodel C. Fourth report of light armor program. UCRL-50694, Lawrence Radiation Laboratory, Livermore, CA.1969
    [92]Wilkins M, Landingham R L, Honodel C. Fifth progress report of light armor program. UCRL-50980, Lawrence Radiation Laboratory, Livermore, CA.1971
    [93]Franzen R R. Orphal D L. Anderson C E. The influence of experimental design on depth-of-penetration (DOP) test results and derived ballistic efficiencies. International Journal of Impact Engineering,1997,19(8):727-737
    [94]Reaugh J E, Holt A C, Wilkins M L, et al. Impact studies of five ceramic materials and pyrex. International Journal of Impact Engineering, 1999,23:771-782
    [95]Johnson W E, Anderson C E. History and application of hydrocodes in hypervelocity impact. International Journal of Impact Engineering,1987, 5:423-439
    [96]Zukas J A. Survey of computer codes for impact simulation, In:Zukas J A High Velocity Impact Dynamics. New York:John Wiley & Sons Inc,1990:593-708
    [97]Zukas J A, Scheffler D R. Practical aspects of numerical simulations of dynamic events:effects of meshing. International Journal of Impact Engineering 2000,24:925-945
    [98]Scheffler D R, Zukas J A. Practical aspects of numerical simulation of dynamic events:material interfaces. International Journal of Impact Engineering,2000, 24:821-842
    [99]Johnson G R, Stryk R A, Holmquist T J, et al. Numerical algorithms in a lagrangian hydrocode. Report No. WL-TR-1997-7039, Wright Laboratory, June, 1997
    [100]Johnson G R, Stryk R A. Conversion of 3D distorted elements into meshless particles during dynamic deformation. International Journal of Impact Engineering,2003,28:947-966
    [101]Scheffler D R. Modeling non-eroding perforation of an oblique aluminum target using the eulerian CTH hydrocode. International Journal of Impact Engineering,2005,32:461-472
    [102]王峰,王肖钧,胡秀章等.卵形杆弹对铝靶的斜侵彻.爆炸与冲击,2005,25(3):265-270
    [103]Anderson C E, J.D. Walker, Bless S J, et al. On the L-D effect for long-rod penetrators. International Journal of Impact Engineering,1996,18:247-264
    [104]Anderson C E, Orphal D L, Franzen R R, et al. On the hydrodynamic approximation for long-rod penetration. International Journal of Impact Engineering,1999,22:23-43
    [105]Borvik T, Langseth M, Hopperstad OS, et al. Perforation of 12mm thick steel plates by 20mm diameter projectiles with flat, hemispherical and conical noses, part Ⅰ:experimental study. International Journal of Impact Engineering,2002,27: 19-35
    [106]Borvik T, Hopperstad OS, Berstad T, et al. Perforation of 12mm thick steel plates by 20mm diameter projectiles with flat, hemispherical and conical noses, part Ⅱ:numerical simulations. International Journal of Impact Engineering, 2002,27:37-64
    [107]Johnson G R, Cook W H. Lagrangian EPIC code computations for oblique, yawed-rod impact onto thin-plate and spaced-plate targets at various velocities. International Journal of Impact Engineering,1993,14:373-383
    [108]Lee W, Lee H, Shin H. Ricochet of a tungsten heavy alloy long-rod projectile from deformable steel plates. J. Phys. D:Appl. Phys,2002,35:2676-2686
    [109]Rosenberg Z, Ashuach Y, Dekel E. More on the ricochet of eroding long rods--validating the analytical model with 3D simulations. International Journal of Impact Engineering,2007,34:942-957
    [110]Daneshjou K, Shahravi M. Penetrator strength effect in long-rod critical ricochet angle. Journal of Mechanical Science and Technology,2008,22: 2076-2089
    [111]刘瑞朝,何满潮,任辉启等.射弹侵彻中的攻角效应.北京理工大学学报,2003,23(1):26-29
    [112]李长顺,刘天生,王凤英等.伸出式侵彻体攻角侵彻靶板的数值模拟研究.高压物理学报,2009,23(2):155-160
    [113]Partom Y. Projectile-flow effect for long rod penetration. Report No. DAAA21-93-C-0101. U.S. Army Research Laboratory.1994
    [114]Partom Y. The optimal velocity of constant kinetic energy constant L/D long rod projectiles. International Journal of Impact Engineering,1995,17:605-614
    [115]Yadav S, Repetto E A, Ravichandran G, et al. A computational study of the influence of thermal softening on ballistic penetration in metals. International Journal of Impact Engineering,2001,25:787-803
    [116]Rosenberg Z, Dekel E. A computational study of the influence of projectile strength on the performance of long-rod penetrators. International Journal of Impact Engineering,1996,18(6):671-677.
    [117]Rosenberg Z, Dekel E. Further examination of long rod penetration:the role of penetrator strength at hypervelocity impacts. International Journal of Impact Engineering,2000,24:85-102
    [118]Rosenberg Z, Dekel E. On the role of material properties in the terminal ballistics of long rods. International Journal of Impact Engineering,2004, 30:835-851
    [119]兰彬,文鹤鸣.钨合金长杆弹侵彻半无限钢靶的数值模拟及分析.高压物理学报,2008,22(3):245-252
    [120]楼建锋,何长江,朱建士,王政.长杆侵彻中材料参数对侵彻性能的影响.计算物理,2009,26(4):559-563
    [121]许瑞淮,胡秀章,胡时胜.预扭钨弹侵彻厚钢靶的三维数值模拟.弹道学报,2002,14(1):22-36
    [122]Sacks J, Welch W J, Mitchell T J, et al. Design and analysis of computer experiments. Statistical Science,1989,4:409-435
    [123]Santner T J, Williams B J, Notz W I. The design and analysis of computer experiments. Springer, New York,2003
    [124]Fang, K T, Li, R, Sudjianto A. Design and modeling for computer experiments. CRC Press, New York,2006
    [125]Levy, S, Steinberg D M. Computer experiments:a review. AstA Adv Stat Anal 2010,94:311-324
    [126]Johnson G R, Holmquist T J. A computational constitutive model for brittle materials subjected to large strains, high strain rates, and high pressures. Shock-Wave and High-Strain-Rate Phenomena in Materials,1992,1075-1081
    [127]Johnson G R, Holmquist T J. An improved computational constitutive model for brittle materials. American Institute of Physics,1994,981-984
    [128]Johnson G R, Holmquist T J. Response of boron carbide subjected to large strains, high strain rates, and high pressures. Journal of applied physics,1999, 85(12):8060-8073
    [129]Holmquist T J, Templeton D W, Bishnoi K D. Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications. International Journal of Impact Engineering,2001,25:211-231
    [130]Holmquist T J, Johnson G R. Response of silicon carbide to high velocity impact. Journal of applied physics,2002,91(9):5858-5866
    [131]Johnson G R, Holmquist T J, Beissel S R. Response of aluminum nitride including a phase change to large strains, high strain rates, and high pressures. Journal of applied physics,2003,94(3):1639-1646
    [132]Holmquist T J, Johnson G R. Characterization and evaluation of silicon carbide for high-velocity impact. Journal of Applied Physics,2005,97: 093502-12
    [133]Holmquist T J, Johnson G R. Characterization and evaluation of boron carbide for plate-impact conditions. Journal of Applied Physics,2006,100:093525-13
    [134]Rajendran A M. Modeling the impact behavior of AD85 ceramic under multi-axial loading. Army Research Laboratory,1993, AD-A265877
    [135]Rajendran A M. Modeling the shock response of AD995 alumina. High-pressure Science and Technology,1994,309:725-728
    [136]Steinberg D J. Computer studies of the dynamic strength of ceramics. Jouranl de Physique Ⅳ,1991:837-844
    [137]Steinberg D J. Computer studies of the dynamic strength of ceramics (II). Jouranl de Physique IV,1994:183-188
    [138]Willlam H C. A ceramic fracture model for high velocity impact. Wright Laboratory,1993, W1-TR-93-7023
    [139]Holland J H. Genetic algorithm. Sci. Am. (Int. Ed.),1992,267,66-71
    [140]Krishnakumar K. Micro-Genetic algorithms for stationary and non-stationary function optimization. SPIE:Intelligent Control and Adaptive Systems, Society of Photo-Optical Instrumentation Engineers, Philadelphia,1989,1196
    [141]Cronin D S, Bui K, Kaufmann C, Mclntosh G, Berstad T. Implementation and validation of the Johnson-Holmquist ceramic material model in LS-DYNA. Germany:4th European LS-DYNA Users Conference,2003,47-60
    [142]彭建祥,周显明,宋萍等.无氧铜动态卸载行为的数值模拟[J].高压物理学报,2005,19(4):361-364
    [143]王礼立.应力波基础.北京:国防工业出版社,2005
    [144]Lu F F, Xu D L, Wen G L. Tracing initial condition historical evolutionary path and parameters of chaotic process from a short segment of scalar time series. Chaos, Solitons and Fractals,2005,24:265-271
    [145]Xu D L, Lu F F. Modeling global vector fields of chaotic systems from noisy time series with aid of structure-selection techniques. Chaos,2006,16: 043109-043116
    [146]Chon K H, Yip K P. Camino BM, et al. Modeling nonlinear determinism in short time series from noise driven discrete and continuous systems. International Journal of Bifurcation and Chaos in Applied Science and Engineering.2000,10:2745-2766,2000
    [147]Rosenberg Z, Dekel E. The penetration of rigid long rods-revisited. International Journal of Impact Engineering,2009,36:551-564
    [148]Warren T L, Forrestal M J. Effects of strain hardening and strain-rate sensitivity on the penetration of aluminum targets with spherical-nosed rods. International Journal Solids Structures,1998,35:3737-3753
    [149]Forrestal M J, Piekutowski A J. Penetration experiments with 6061-T6511 aluminum targets and spherical-nose steel projectiles at striking velocities between 0.5 and 3.0 km/s. International Journal of Impact Engineering,2000,24: 57-67
    [150]Piekutowski A J, Forrestal M J, Poormon K L, et al. Penetration of 6061-T651 aluminum targets by ogive-nose steel projectiles with striking velocities between 0.5 and 3.0 km/s. International Journal of Impact Engineering,1999,26: 756-734
    [151]Piekutowski A J, Forrestal M J, Poormon K L, et al. Perforation of aluminum plates with ogive-nose steel rods at normal and oblique impacts. International Journal of Impact Engineering,1996,18(7/8):877-887
    [152]Silling S A, Forrestal M J. Mass loss from abrasion on ogive-nose steel projectiles that penetrate concrete targets. International Journal of Impact Engineering,2007,34:1814-1820
    [153]Rosenberg Z, Dekel E. On the deep penetration of deforming long rods. International Journal Solids Structures,2010,47:238-250
    [154]Rosenberg Z, Yeshurun Y. The relation between ballistic efficiency and compressive strength of ceramic titles. International Journal of Impact Engineering,1988,7:357-362
    [155]Sternberg J. Material properties determining the resistance of ceramics to high velocity penetration. Journal of applied physics,1989,65(9):3417-3424
    [156]Rosenberg Z, Dekel E. A numerical study of the cavity expansion process and its application to long-rod penetration mechanics. International Journal of Impact Engineering,2008,35:147-154
    [157]Rosenberg Z, Dekel E, Hohler V, et al. Hypervelocity penetration of tungsten alloy rods into ceramic tiles:experiments and 2-D simulations. International Journal of Impact Engineering,1997,20:675-683
    [158]Roisman I V, Weber K, Yarin A L, et al. Oblique penetration of a rigid projectile into a thick elastic-plastic target:theory and experiment. International Journal of Impact Engineering,1999,22:707-726
    [159]Heider N, Weber K, Weidemaier P. Experimental and numerial simulation analysis of the impact process of structured KE penetrators onto semi-infinite and oblique plate targets. Norbert Burman, Jeremy Anderson, George K.,21th International Symposium on Ballistics, IBC Press,2005
    [160]Rusinek A, Rodriguez-Martinez J A, Zaera R, et al. Experimental and numerical study on the perforation process of mild steel sheets subjected to perpendicular impact by hemispherical projectiles. International Journal of Impact Engineering,2009,36:565-587
    [161]马宝华.战争、技术与引信——关于引信及引信技术的发展.探测与控制学报,2001,23(1):1-6
    [162]刘宁.适于不同介质的侵彻炸点深度控制技术的应用研究:[中北大学硕士学位论文].太原:中北大学,2006
    [163]顾文彬,陆鸣,刘建青等.钻地弹引信定深爆炸控制算法.解放军理工大学学报,2007.8(1):72-76
    [164]刘容,康兴国.打击深层硬目标的引信计行程起爆控制技术.探测与控制学报,2006.28(6):33-36
    [165]朱松俭,苏伟,商顺昌等.硬目标侵彻引信引爆决策方法.含能材料增刊,2004.12(z2):473-475
    [166]屈新芬,商顺昌,杨晴.影响弹丸侵彻性能的因素分析及引信方案探讨.信息与电子工程,2003.1(3):51-55
    [167]党瑞荣,张瑞萍.高速战斗部侵彻混凝土过程中的炸点控制.弹箭与制导学报,2000,(2):54-56
    [168]姜潮.基于区间的不确定性优化理论与算法:[湖南大学博士学位论文].长沙:湖南大学,2008
    [169]刘桂萍,韩旭,官凤娇.基于信赖域近似模型管理的多目标优化方法及其应用.中国机械工程,2008,19(10):1140-1143