改性木质素磺酸钠水凝胶的制备和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质素磺酸盐是造纸工业最主要的副产物之一,仅我国每年就有数百万吨木质素磺酸盐产生,目前只有很少的一部分得到利用,因此,积极开发木质素磺酸盐产品,不断拓宽其应用范围,既有利于环保,也有利于资源的利用。高分子水凝胶是一类能在水中溶胀,但又不溶于水,具有三维网状分子结构的功能材料,高分子水凝胶在农业、建筑业、医药行业、生物技术等方面都有重要的应用。高分子水凝胶按来源分为合成高分子水凝胶和天然高分子水凝胶,制造合成高分子水凝胶的原料主要来源于石油工业,是不可再生资源,且这类水凝胶的生物可降解性大多较差,在资源匮乏,环境保护迫在眉睫的今天,天然高分子水凝胶的研发工作具有长远战略意义。木质素磺酸盐具有三维网状结构,分子中富含羟基、羧基、磺酸基等亲水基团,理论上是一种较好的制备水凝胶的原材料。本论文着眼于木质素磺酸盐的开发利用,从制造木质素磺酸盐水凝胶入手,对木质素磺酸盐中还原糖的去除,以及木质素磺酸盐水凝胶的制备进行了研究,开发出一种能有效降低木质素磺酸盐中还原糖的方法,并成功制备出一种无需外加交联剂的、溶胀性好的改性木质素磺酸钠水凝胶并利用所制备的改性木质素磺酸钠水凝胶制备了银/改性木质素磺酸钠水凝胶纳米复合材料,此外,还将改性木质素磺酸钠水凝胶应用于药物缓释,研究了改性木质素磺酸钠水凝胶对阿魏酸哌嗪的缓释作用。
     研究表明通过酸水解-盐析法能有效降低市售的木质素磺酸盐中的还原糖。这种方法的最优操作条件为:所用木质素磺酸钠的质量为溶液质量的2%,所加硫酸的质量为总质量的11.78%,80oC下水解4小时,盐析时加入质量为总质量20%的氯化钠。以经过降糖处理的木质素磺酸钠为原料,通过氧化、磺化改性后制得改性木质素磺酸钠。改性木质素磺酸钠分子中的酚羟基、羧基、磺酸基的含量分别提高了29%、3.4%、9.7%。改性木质素磺酸钠经过酸性条件下的热处理后,再用氢氧化钠溶液处理,抽滤后收集固体,并用去离子水洗涤至中性即制得改性木质素磺酸钠水凝胶。通过对影响改性木质素磺酸钠水凝胶水溶胀性和得率的主要因素进行单因素实验,确定了制备改性木质素磺酸钠水凝胶的优化制备路线即:8克经过酸水解-盐析纯化的木质素磺酸钠,溶于200mL去离子水,加入6毫升浓度为30%的H2O2,氧化温度50℃,氧化时间为40分钟,加入2.5克亚硫酸钠,磺化时间80分钟,烘干温度135℃,烘干时间90分钟,NaOH溶液浓度0.3M,碱处理时间40分钟,碱处理温度为室温25度。通过这种方法制备的改性木质素磺酸钠水凝胶的水溶胀性为30.2克/克干水凝胶,得率为10%左右。通过对制得的的湿水凝胶进行超声分散、扫描电镜观测、超声分散液干燥物的水溶性实验,以及超声分散液的动态光散射实验,证实了所制备的改性木质素磺酸钠水凝胶是由其微凝胶通过物理交联而成。微凝胶是微观尺寸的水凝胶,是一种制备无机纳米材料的优良模板或微反应器,作者将改性木质素磺酸钠水凝胶经过超声分散后制得了改性木质素磺酸钠微凝胶,然后利用微凝胶分子网络的限域作用,通过原位还原法制备了平均粒径为9.6nm的纳米银粒子,将这种纳米银-微凝胶分散液干燥后制得了含纳米银的改性木质素磺酸钠干凝胶。这种复合材料有望在医药和催化等领域得到应用。木质素磺酸钠无毒,具有生物相容性,由其制备的改性木质素磺酸钠水凝胶具有较好的水溶胀性,因此具有成为药物缓释材料的潜力,实验证实了改性木质素磺酸钠水凝胶对阿魏酸哌嗪具有一定的缓释能力,并且这种水凝胶在酸性条件下的溶胀性急剧下降,因此可用来作为一些对胃有刺激药物的缓释载体。总之,作者制备的改性木质素磺酸钠水凝胶是一种新型的,没有外加交联剂的天然高分子水凝胶,它是由其微凝胶物理交联而成,通过超声分散可转变为微凝胶,这种水凝胶因其独特的性质有望在纳米材料制备、药物缓释、重金属离子吸附、生化分离等领域得到应用。
Lignosulfonate is one of by-products in paper manufacturing, just in china, thereare millions tons of lignosulfonate are produced each year, but only a very smallamount of them are utilized. Therefore, efforts to develop the lignosulfonate productsand broaden its use are beneficial not only to environmental protection but also toeffective application of resources. Polymeric hydrogel is a type of three-dimensionalnetwork like functional material which is swollen in water but insoluble in water,polymeric hydrogels have important applications in agriculture, construction,pharmaceutical industry, biotechnology, etc. the origin of polymeric hydrogel can beclassified into synthetic polymeric hydrogel and natural polymeric hydrogel, the rawmaterial for the manufacture of synthetic polymer hydrogel mainly come from the oilindustry, is a non-renewable resource with low biodegradability. On the context of thelack of resource and strong sense of environmental protection, the researches on thedevelopment of natural polymeric hydrogel have a long-term strategic significance.Lignosulfonate have a tri-dimensional network like structure containing hydroxyl,carboxyl and sulphonyl groups in their molecules, these structural featurestherotically ensured them to be a good raw material for preparing the hydrogel. Thispaper focuses on the development and utilization of lignosulfonate. Firstly, we studiedthe preparation of lignosulfonate hydrogel, made an investigation into the removal ofreducing sugar in lignosulfonate and preparation of modified lignosulfonatehydrogel.Through this study, we found an effective method to reduce the reducingsugar in lignosulfonate and successfully prepared a type of modified lignosulfonatehydrogel with good water swollen capacity under conditions of no addition ofcross-linking agent. Furthermore, the corresponding studies on the application of thismodified lignosulfonate hydrogel in preparation of nano-material and drug deliverywere also conducted.
     The research results indicate that the reducing sugar in commercially availablelignosulfonate can be effectively reduced through acid-aided hydrolysis-salting outmethod. The optimal operating conditions are addition of2wt%of sodiumlignosulphate and11.78wt%of sulphonic acid chloride of total solution weight,4hof hydrolysis time at80oC and addition of20wt%of sodium of total weight duringsalting out process. The modified sodium lignosulfonate is prepared by using sodium lignosulfonate after removal of reducing sugar as starting material through oxidationand sulphuration modification procedures. The content of phenol group, carboxylgroup and sulphonyl group in modified sodium lignosulphate is promoted by29%,3.4%and9.7%, respectively. The modified sodium lignosulfonate was thermallytreated under acidic conditions followed by treatment in sodium hydroxide solution;the collected solid by filtration under reduced pressure is modified lignosulfonatehydrogel. The single factor experiment was conducted by varying the level of themajor impact fators that affecting the water swollen capacity and yield of modifiedsodium lignosulfonate, and the optimal preparation route was determined, that is:8gof purified sodium lignosulphate by hydrolysis-salting out method,200mL ofdeionized water and6mL of30%H2O2was mixed, the mixture was heated to50oC,then2.5g of sodium sulfite was added to the mixture and the solution wassulphonated for80min. The solution after sulphonation was dried at135oC for90min, and then the solid was hydrolyzed in0.3M sodium hydroxide for40min at roomtemperature, the yield is about10%based on sodium lignosulfonate. The obtainedmodified sodium lignosulfonate has a water swollen capacity of30.2g/g xerogel.
     A serial of experiments around the obtained wet hydrogel includes ultrasonicdispersion, scan electron microscope observation; water solubility of dried solid afterultrasonic dispersion and dynamic light scattering, the experiment resultsdemonstrated that the obtained modified sodium lignosulfonate hydrogel is formed byphysical cross-linking. Microgel comprises of particles of micrometer size, it is anexcellent template or micro-reactor for the synthesis of inorganic nano-materials. Weprepared modified sodium lignosulfonate microgel by ultrasonic dispersion, and thenprepared nano silver particles with avarage particle size of9.6nm by reduction in-situbased on the confinement effect of microgel network structure. The dryness of themicrogel-nano silver dispersion leads to nano silver/modified sodium lignosulfonatecomposite microgel. This composite material is expected to be applied in the fields ofmedicine and catalysis. Sodium lignosulfonate is non-toxic and biocompatible, andthe modified sodium lignosulfonate prepared from it has better water swollen capacity,this feature endowed it potential as drug delivery material. The experiment confirmedthat modified sodium lignosulfonate has sustained release property to piperazineferulate. Since the water swollen capacity of this hydrogel can undergo a sharpdeclining under acidic environment, it can be used as sustained release carrier ofdrugs that has stimulation on stomach. In general, modified sodium lignosulfonatehydrogel is a novel type of natural polymeric hydrogel without any addition of cross –linking agent and formed by physical cross-linking of microgel particles. It can bedispersed into microgel by ultrasonic dispersion. Because of its unique properties, thishydrogel is expected to be applied in the fields of nano-material preparation, drugdelivery, and heavy metal ion adsorption and biochemical separation.
引文
[1]卢国冬,燕青芝,宿新泰等.多孔水凝胶研究进展.化学进展,2007,19(4):485-493.
    [2]杨振,杨连利.水凝胶的研究进展及发展新动向.化工中间体,2007,1:5-10.
    [3] Narjary B, Aggarwal, Singh A, et al. Water availability in different soils inrelation to hydrogel application. Geoderma,2012(187):94-101.
    [4] Spalding BP, Brooks SC, Watson DB, et al. Hydrogel-Encapsulated Soil: A Toolto Measure Contaminant Attenuation In Situ. Environment Science&Technology,2010(44)8:3047-3051.
    [5] Szewski, MW, Goldsmith, RS, Guthrie, EK,et a1. Use of sieved compost plushydrogel for solidmatrix priming of carrot seeds. Compost Science Utiliztion,2012,20(1):5-10.
    [6] Blumenstein I, Borger, D, Loitsch S, et al. A glycerin hydrogel-based wounddressing prevents peristomal infections after percutaneous endoscopicgastrostomy (PEG): A prospective, randomized study. Nutrition in ClinicalPractice,2012,27(3):422-425.
    [7] Khodaverdi E, Tekie FSM, Mohajeri SA, et al. Preparation and investigation ofsustained drug delivery systems using an injectable, thermosensitive, in situforming hydrogel composed of PLGA-PEG-PLGA. AAps Pharmscitech.2012,13(2):590-600.
    [8] Chung C, Anderson E, Pera R R. Hydrogel crosslinking density regulatestemporal contractility of human embryonic stem cell-derived cardiomyocytes in3D cultures. Soft matter,2012,8(39):10141-10148.
    [9] Lim H J, Cho E C, Lee J A, et al. A novel approach for the use of hyaluronicacid-based hydrogel nanoparticles as effective carriers for transdermal deliverysystems. Colloids and Surfaces A,2012,402(6):80-87.
    [10] Kou J H, Ami don G L, Lee P I. pH-dependent swelling and solute diffusi-oncharacteristics of poly (hydroxyl ethyl methacrylate-co-methacrylic, acid)hydrogel. Pharmaceutical Research,1988,5(9):592-597.
    [11] Bernstein R, Anton E, Ulbricht M, UV-Photo Graft functionalization ofpolyethersulfone membrane with strong polyelectrolyte hydrogel and ItsApplication for Nanofiltration. ACS Applied Materials&Interfaces,2012,4(7):3438-3446.
    [12] EI-Zawawy W K, Ibrahim M M. Preparation and characterization of novelpolymer hydrogel from industrial waste and copolymerization of poly (vinylalcohol) and polyacrylamide. Journal of Applied Polymer Science,2012,124(5),4362-4370.
    [13] Zaldivar M P, Fernandez N G, Pena C G, et al. Synthesis and characterization ofa new semi-interpenetrating polymer network hydrogel obtained by gammaradiations. Journal of Thermal Analysis and Calorimetry,2011,106(3):726-730.
    [14] Soler D M, Rodriguez Y, Correa H, et al. Pilot scale-up and shelf stability ofhydrogel wound dressings obtained by gamma radiation. Radiation Physics andChemistry,2012,81(8):1249-1253.
    [15] Gabrielii I,Gatenholm P,Glasser W G,et al. Separation,characterizationand hydrogel-formation of hemicelluloses from aspen wood. CarbohydratePolymers,2000,43(4):367-374.
    [16] Lin H H, Cheng Y L, In-situ thermo reversible gelation of block and starcopolymers of poly (ethylene glycol) and poly (N-isopropyl-acrylamide) ofvarying architectures. Macromolecules,2001,34(1):3710-3716.
    [17] Stauffer S R, Peppas N A. Poly (vinyl alcohol) hydrogels prepared by freezing-thaw ing cyclic processing. Polymer,1992,33(18):3932-3936.
    [18] Xiao C M, Yang M L. Controlled preparation of physical cross-linkedstarch-PVA hydrogel. Carbohydrate Polymer,2006,64(4):37~40.
    [19]刘捷,杨旭阳,汤克勇等.物理交联聚乙烯醇/明胶复合水凝胶透明性的溶剂敏感性.高分子材料科学与工程,2012,28(9):69-72.
    [20]吴季怀,林建明,魏月林等.高吸水保水材料.第一版.北京:化学工业出版社,2005,78-79.
    [21] Chen Chen, Wang Lei,Deng Lian dong et al. Performance optimization ofinjectable chitosan hydrogel by combining physical and chemical triplecross-linking structure. Journal of Biomedical Materials Research Part A,2012,101(3):684-693.
    [22] Tanodekaew S,Channasanon S,Uppanan P. Xylan/polyvinyl alcohol blendand its performance as hydrogel. Journal of Applied Polymer Science,2006,100(3):1914-200.
    [23] Hua S B, Ma H Z, Li X, et al. pH-sensitive sodium alginate/poly(vinyl alcohol)hydrogel beads prepared by combined Ca2+crosslinking and freeze-thawingcycles for controlled release of diclofenac sodium. International Journal ofBiological Macromolecules,2010,46(5):517-523.
    [24] Salmawi, K M. Application of polyvinyl alcohol (PVA)/carboxymethylcellulose (CMC) hydrogel produced by conventional crosslinking or by freezingand thawing. Journal of Macromolecular Science, Part A Pure and AppliedChemistry,2007,(44)6:619-624.
    [25] Kim J K, Lee J S, Jung H J, et al. Preparation and properties ofCollagen/Modified hyaluronic acid hydrogel for biomedical application. Journalof Nanoscience and Nanotechnology,2007,7(11):3852-3856.
    [26]徐善军,高永康,萧聪明.羧化淀粉/PVA复合水凝胶的制备与性质研究.化工科技,2010,18(4):9-12.
    [27] Zhukova O V, Medvedeva V V, Semchikov Yu D. Gelation in SodiumLignosulfonate Solutions in the Presence of a Hexavalent Chromium Salt.Russian Journal of Applied Chemistry,2008,81(12):2162-2165.
    [28] Fei R C, George J T, Park J, et al. Thermo responsive nanocomposite doublenetwork hydrogels. Soft Matter,2012,8:481-487.
    [29] Daisuke Matsukuma, Kazuya Yamamoto, et al. Stimuli-responsive properties ofN-isopropylacrylamide-based ultrathin hydrogel films prepared byphoto-cross-linking. Langmuir,2006,22(13):5911-5915.
    [30]高青雨,张玉娟,俞贤达.温度及pH敏感性N-乙烯基吡咯烷酮与丙烯酸羟基丙酯共聚物/聚(丙烯酸)互穿网络水凝胶的合成及其性能研究.高分子学报,2001,3:329-332.
    [31] Naficy S, Razal J M, Whitten P G, et al. A pH-sensitive, strong double-networkhydrogel: Poly (ethylene glycol) methyl ether methacrylates-Poly(acrylic acid).Journal of Polymer Science Part b-Polymer Physics,2011,10:1002-1009.
    [32] E I Sherif H, E I Masry M, Taleb M F A. pH-sensitive hydrogels based onbovine serum albumin for anticancer drug delivery. Journal of Applied PolymerScience,2010,115(4):2050-2059.
    [33] Yang M, Liu B, Gao G, et a1. Poly(maleic anhydride-co-acrylicacid)/poly(ethylene glyco1)hydrogels with pH and ionic-strength-responses.Chinese Journal of Polymer Science.2010,28(6):951-959.
    [34] Barba A A, Dalmoro A, De Santis F, et a1. Synthesis and characterization ofP(MM A-AA) copolymers for targeted oral drug delivery. Polymer Bulletin,2009,62(5):679-688.
    [35] Kadlubowski S, Henke A, Ulanski P, et a1. Hydrogels of polyvinylpyrrolidone(PVP) and poly (acrylic acid)(PAA) synthesized by radiation-inducedcrosslinking of homopolymers Radiation Physics and Chemistry,2010,79(3):261-266.
    [36] Manavi Tehrani I, Rabiee M, Parviz M, et a1. Preparation characterization andcontrolled release investigation of biocompatible pH sensitive PVA/PAAhydrogels. Macromolecular Symposia,2010,296(1):457-465.
    [37] Zhang Y, Wei W, Lu P, et a1. Preparation and evaluation of alginate-chitosanmicrospheres for oral deliverv of insulin.European Journal of Pharmaceuticsand Biopharmaceutics,2011,77(1):9-11.
    [38] Liu Z, Jiao Y, Zhang Z. Calcium-carboxymethyl chitosan hydrogel beads forprotein drug delivery system.Journal of Applied Polymer Science,2007,103:3164-3168.
    [39] Yang X, Kim J C. Novel pH sensitive microgels prepared using saltbridge.International Journal of Pharmaceutics,2010,388(1-2):58-63.
    [40] Dawy M, Shabaka A A, Nada A M A. Molecular structure and dielectricproperties of some treated lignins, Polymer Degradation and Stability,1998,62(3):455–462.
    [41] Alvarez Lorenzo C,Bromberg L,Concheiro A.Light-sensitive intelligent drugdelivery systems.Photochemistry and Photobiology,2009,85(4):848-860.
    [42] Timko B P, Dvir T, Kohane D S. Remotely triggerable drug delivery systems.Advanced Materials,2010,22(44):4925-4943.
    [43] Kim S J, Park S J, Kim I Y, et a1. Electric stimuli responses to poly(vinylalcoho1)/chitosan interpenetrating polymer network hydrogel in NaClsolutions.Journal of Applied Polymer Science,2002,86(9):2285-2289.
    [44] Sutani K, Kaetsu I, Uchida K. The synthesis and the electric-responsiveness ofhydrogels entrapping natural polyelectrolyte. Radiation Physics and Chemistry,2001,61(1):49-54.
    [45] Kim H I, Park S J, Kim S I et al. Electroactive polymer hydrogels composed ofpolyacrylic acid and poly (vinyl sulfonic acid) copolymer for application ofbiomaterial. Synthetic Metals,2005,155(3):674-676.
    [46] Bysell H,Schmidtchen A,Malmsten M. Binding and release of consensuspeptides by poly(acrylic acid) microgels. Biomacromolecules,2009,10(8):2162-2168.
    [47] Hoare T, Pelton R. Engineering glucose swelling responses in poly(N-isopropylacrylamide)-based microgels. Macromolecules,2007,40(3):670-678.
    [48] Kublickas R, Werner C, Jarien G, et a1. Polyacrylamide gels containing ionizedfunctional groups for the molecular imprinting of human growth hormone.Polymer Bulletin,2007,58(3):611-617.
    [49]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用.北京:化学工业出版社,1997,452-461.
    [50]张青松,查刘生,马敬红等. pH/温度双重敏感性微凝胶的合成与应用.高分子通报,2007,1:12-17.
    [51] Neta R, James K L, Lindsey K F et al. Microgels with an interpenetratingNetwork structure as a model system for cell studies. Macromolecules,2010,43(17):7277-7281.
    [52] Ma J H, Fan B, Liang B R, et al. Synthesis and characterization ofPoly(N-isopropylacrylamide)/poly(acrylic acid) semi-IPN nanocompositemicrogels. Journal of Colloid and Interface Science,2010,341(1):88-93.
    [53] Jia X, Yeo Y, Clifton R J, et al. Hyaluronic acid-based microgels and microgelnetworks for vocal fold regeneration. Biomacromolecules,2006,7:3336-3344.
    [54] Bodnar M, Hartmann JF, Borbely J. Synthesis and study of cross-linkedchitosan-N-poly(ethylene glycol) nanoparticles. Biomacromolecules,2006,7:3030–3036.
    [55] Berndt I, Pedersen J S, Lindner P, et al. Influence of shell thickness andcross-link density on the structure of temperature sensitivepoly-N-isopropylacrylamide-poly-N-isopropylmethacrylamide core shellmicrogels investigated by small-angle neutron scattering. Langmuir,2006,22:459–468.
    [56] Tominey A, Andrew D, Oliphant L, Rosair G M, et al. Supramolecular bindingof protonated amines to a receptor microgel in aqueous medium. ChemicalCommunication,2006:2492-2494.
    [57] Hu Z B, Cai T, Chi C L. Thermo responsive oligo (ethyleneglycol)-methacrylate-based polymers and microgels. Soft Matter.2010,6:2115-2123.
    [58] Yun Y H, Goetz D J, Yellen P, et al. Hyaluronan microspheres for sustainedgene delivery and site-specific targeting. Biomaterials,2004,25:147-157.
    [59] Yeh J, Ling Y, Karp J M, et al. Micromolding of shape-controlled, harvestablecell-laden hydrogels. Biomaterials,2006,27:5391–5398.
    [60] Franzesi GT, Ni B, Ling Y, et al. A controlled-release strategy for thegeneration of crosslinked hydrogel microstructures. Journal of AmericanChemical Society,2006,128:15064-15065.
    [61] Shen X, Zhang L, Jiang X, et al. Reversible surface switching of nanogeltriggered by external stimuli. Angewandte Chemie Internation Editon,2007,46:7104-7107.
    [62] Zhou X, Liu B, Yu X, et al. Controlled release of PEI/DNA complexes frommannosebearing chitosan microspheres as a potent delivery system to enhanceimmune response to HBV DNA vaccine. Journal of Controlled Release,2007,121:200–207.
    [63] Zhang H, Mardyani S, Chan W C W, et al. Design of biocompatible chitosanmicrogels for targeted pHmediated intracellular release of cancer therapeutics.Biomacromolecules2006,7:1568–1572.
    [64] Lu X H, Hu Z B, Gao J. Synthesis and Light Scattering Study ofHydroxypropyl Cellulose Microgels. Macromolecules,2000,33(23):8698-8720.
    [65] Ethirajan A, Schoeller K, Musyanovych A,et al. Synthesis and optimization ofgelatin nanoparticles using the miniemulsion process. Biomacromolecules,2008,9(9):2383-2389.
    [66] Zhang H, Tumarkin, Sullan R M A, etal. Exploring microfluidic routes tomicrogels of biological polymers. Macromolecular Rapid Communications,2007,28(5):527-538.
    [67] Boddohi S, Moore N, Johnson P A, etal. Polysaccharide-basedpolyelectrolyte complex nanoparticles from chitosan, heparin, and hyaluronan.Biomacromolecules,2009,10(6):1402-1409.
    [68] Sorrell C D, Carter M C D, et al. A "Paint-On" Protocol for the facile assemblyof uniform microgel coatings for color tunable etalon fabrication. ACS AppliedMaterials&Interfaces,2011,3(4):1140-1147.
    [69] Liu P, Luo Q, Guan Y, et al. Drug release kinetics from monolayer films ofglucose-sensitive microgel Polymer,2010,51(12):2668-2675.
    [70] Lua Y, Ballauff M. Thermosensitive core–shell microgels: From colloidalmodel systems to nanoreactors. Progress in Polymer Science,2011,36(6):767-792.
    [71] Liu T, Hu J, Yin J, et al. Enhancing Detection Sensitivity of ResponsiveMicrogel-Based Cu (II) Chemosensors via Thermo-Induced Volume PhaseTransitions. Chemistry of Materials,2009,21(14):3439-3446.
    [72] Courtney D S, Matthew C D C, Michael J S. A “Paint-On” Protocol for theFacile Assembly of Uniform Microgel Coatings for Color Tunable EtalonFabrication ACS Applied Materials&Interfaces,2011,3(4):1140-1147.
    [73] Contreras-Caceres R, Abalde-Cela S, Guardia-Giros P, et al. MultifunctionalMicrogel Magnetic/Optical Traps for SERS Ultradetection. Langmuir,2011,27(8):4520-4525.
    [74]叶银珠,王正波.新型可动微凝胶体系的渗流行为研究新疆石油地质,2011,32(1):68-70.
    [75]易国斌,崔英德,杨少华等.NVP接枝壳聚糖水凝胶的合成与溶胀性能,化工学报,2005,56(9:1783-1789.
    [76] Zhao L, Mitomo H, Zhai M L et al. Synthesis of antibacterial PVA/CM-chitosanblends hydrogels with electron beam irradiation. Carbohydrate Polymers,2003,53:439-446.
    [77] MFujita,M Ishihara,Y Morimoto S, et al. Efficacy of PhotocrosslinkableChitosan Hydrogel Containing Fibroblast Growth Factor-2in a Rabbit Model ofChronic Myocardial Infarction Journal of Surgical Research,2005,126:27-33.
    [78] Dergunova S A, Namb I K, AMun G, et al. Radiation Physics and Chemistry,Radiation synthesis and characterization of stimuli-sensitive chitosan–polyvinylpyrrolidone hydrogels. Radiation Physics and Chemistry,2005,72:619-623.
    [79]林友文,庄小慧,李光文等.壳聚糖-羧甲基壳聚糖水凝胶的温敏性及体外药物缓释试验,中国现代应用药学,2010,27(7):626-630.
    [80] Nakayama A, Kakugo A, Gong J P, et al. High mechanical strengthdouble-network hydrogel with bacterial cellulose. Advanced FunctionalMaterials,2004,14:1124–1128
    [81] Gabrielii I, Gatenholm P, Glasser W G, et al. Separation, characterization andhydrogel-formation of hemicelluloses from aspen wood. CarbohydratePolymers,2000,43(4):367-374.
    [82] Tanodekaew S, Channasanon S, Uppanan P. Xylan/polyvinyl alcohol blend andits performance as hydrogel. Journal of Applied Polymer Science,2006,100(3):1914-1918.
    [83] Silva E C, Habibi Y, Colodette J L, et al. The influence of the chemical andstructural features of xylan on the physical properties of its derived hydrogels.Soft Matter,2011,7(3):1090-1099.
    [84] Cesteros L C, González-Teresa R, Katime I. Hydrogels of β-cyclodextrincrosslinked by acylated poly (ethylene glycol): Synthesis and properties.European Polymer Journal,2009,45(3):674-679.
    [85] Xu J K, Li X S, Sun F Q. Cyclodextrin-containing hydrogels for contact lensesas a platform for drug incorporation andrelease. Acta Biomaterialia,2010,6(2):486-493、
    [86] Haroun A A, El-Halawany N R. Encapsulation of bovine serum albuminwithinβ-cyclodextrin/gelatin-based polymeric hydrogel for controlled proteindrug release. IRBM,2010,31(4):234-241.
    [87] Frank V D M, Martin V D P, Tina V, et al. Self-assembling hydrogels basedonβ-cyclodextrin/cholesterol inclusion complexes Macromolecules,2008,41(5):1766-1773.
    [88] Kondo T,Shinozaki,T,Oku H etal. Glucomannan-based hydrogel withhyaluronic acid as a candidate for a novel scaffold for chondrocyte culture.Journal of Tissue Engineering and Regenerative Medicine,2009,3(5):361-367.
    [89] Huang RL, Qi W, Feng LB, etal. Self-assembling peptide-polysaccharide hybridhydrogel as a potential carrier for drug delivery. Soft Matter,2011,7:6222-6230.
    [90] McMillan R A, ConticelloV P. Synthesis and characterization ofelastin-mimetic protein gels derived from a well-defined polypeptideprecursor.Macromolecules,2000,33:4809-4821.
    [91] Wei S, Rob G H, Lammertink JK,et al. Assembly of an artificial proteinhydrogel through leucine zipper aggregation and disulfide bond formation.Macromolecules,2005,38:3909-3916.
    [92] Yang JY, Xu C Y, Kopeckova P,et al. Hybrid hydrogels self-as-sembled fromHPMA copolymers containing peptide grafts. Macromolecular Bioscience,2006,6:201-209.
    [93]将挺大.木质素.北京:化学工业出版社,2008,1
    [94] Ouyang X, Ke L, Qiu X,etal. Sulfonation of alkali lignin and its potential use indispersant for cement. Journal of Dispersion Science and Technology,2009,30(1):1-6.
    [95] Mancera A, Fierro V, Pizzi A, et al. Physicochemical characterisation of sugarcane bagasse lignin oxidized by hydrogen peroxide. Polymer Degradation andStability,2010,95(4):470-479.
    [96] Jaafar S N S, Zakaria S, Rasid R, et al. Effect of Catalysts on BiopolymerPhenolic Resin by Liquefaction Process of Soda Lignin. Sains Malaysiana.2010,39(1):73-76.
    [97] Kim YS, Kadla JF. Preparation of a Thermoresponsive Lignin-BasedBiomaterial through Atom Transfer Radical Polymerization. Biomacrolecules,2010,11(4):981-988.
    [98] Neale G, Homof V, Chiwetelu C. Synergistic surfactant mixtures low containinglignosulfonates. Canadian Journal of Chemistry,1981,59(13):554-556.
    [99] Chakrabarty K, Krishna K V, Saha P, et al. Extraction and recovery oflignosulfonate from its aqueous solution using bulk liquid membrane. Journal ofMembrane Science,2009,330(1-2):135-144.
    [100]严明芳,邱学青.木质素磺酸盐的分离提纯.高等学校化学学报,2008(11):2312-1216.
    [101] Alonso M V, Oliet M, Rodriguez F, et al.Modification of ammoniumlignosulfonate by phenolation for use in phenolic resins.J.BioresourceTechnology,2005,96(9):1013-1018.
    [102] Li C, Pan Q W, Zhang J, et al. The modification of calcium lignosulfonate andits applications in cementitious materials. Journal of DispersionScience and Technology,2007,28:1205-120.
    [103] Ksenofontova M M, Mitrofanova A N, Pryakhin A N, et al.Ozone reactions withsodium lignosulfonate in the presence of iron ions. Russian Journal of PhysicalChemistry,2005,79(7):1033-1036
    [104] Ksenofontova M M, Mitrofanova A N, MamLeeva N A, et al.The ozonization ofsodium lignosulfonate in the presence of hydrogen peroxide. Russian Journal ofPhysical Chemistry,2007,81(5):706-710
    [105] Pei MS, Li C, Wang Z F, et al.The synthesis of carboxyl calcium lignosulfonateand its applications as water reducer. Journal of Dispersion Science andTechnology.2008,29(4):530-534
    [106] Pang Y X, Qiu X Q, Yang D J, et al.Influence of oxidation, hydroxymethylationand sulfomethylation on the physicochemical properties of calciumlignosulfonate. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2008,312(2-3):154-159
    [107] Vainio U, Lauten R A, Serimaa R. Small-angle X-ray scattering andrheological characterization of aqueous lignosulfonate solutions.Langmuir,2008,24(15):7735-7743.
    [108] Yang D J, Qiu X Q, Pang Y X, et al. Physicochemical Properties of CalciumLignosulfonate with Different Molecular Weights as Dispersant in AqueousSuspension. Dispersion Science and Technology,2008,29(9):1296-1303.
    [109] Ouyang X, Qiu X Q, Chen P, et al. Physicochemical characterization ofcalcium lignosulfonate-A potentially useful water reducer. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2006(282–283):489–497.
    [110] Yang D, Qiu X Q, Zhou M S, et al. Properties of sodium lignosulfonate asdispersant of coal water slurry. Energy Conversion and Management,2007,48(9):2433-2438.
    [111] Qiu X, Yan M, Yang D, Pang Y, et al. Effect of straight chain alcohols on thephysicochemical properties ofcalcium lignosulfonate, Journal of Colloid andInterface Science,2009,338(1):151-155.
    [112] Mansouri N E, Salvado J. Structural characterization of technical lignins for theproduction of adhesives: Application to lignosulfonate, kraft,soda-anthraquinone, organosolv and ethanol process lignins. Industrial Cropsand Products.2006,24(1):8-16.
    [113]王哲,李忠正,高鸿海.改性木质素磺酸钠的混凝土减水性能及其结构特性.中华纸业,2007,11:63-65.
    [114]刘青,楼宏铭,杨东杰.接枝磺化木质素高效减水剂的配伍性能研究.精细化工,2008,25(10):1017-1021.
    [115]王安安,邱学青,欧阳新平等.复配改性磺化碱木质素减水剂的性能研究.精细化工,2009,26(9):857-862.
    [116]李雪峰.油田化学,以木质素为原料合成油田化学品的研究进展2006,23(2):180-184.
    [117] Bai B, Wu Y, Grigg R. Adsorption and Desorption Kinetics and Equilibrium ofCalcium Lignosulfonate on Dolomite Porous Media. The Journal of PhysicalChemistry C,2009,113(31):13772–13779.
    [118] Asrul M, Kawahara S, Amir-Hashim MY. Modified natural rubber latex via insitu polymerization of lignin related compound in the presence of lignosulfonatesalt. Journal of Rubber Research.2007,10(2):89-96.
    [119] Cui G, Xia WB, Chen GJ, et al.Enhanced mechanical performances ofwaterborne polyurethane loaded with lignosulfonate and its supramolecularcomplexes.Journal of Applied Polymer Science,2007,106:4257-4263.
    [120] Xiao Zhang, Juana Benavente, Ricard Garcia-Valls. Lignin-based membranesfor electrolyte transference. Journal of Power Sources,2005,145:292–297.
    [121] Torras C, Zhang X, Garcia-Valls R, et al.Morphological, chemical surface andelectrical characterizations of lignosulfonate-modified membranes. Journal ofMembrane Science,2007,297(1-2):130-140.
    [122] Chao Yang, Peng Liu.Water-Dispersed Conductive Polypyrroles Doped withLignosulfonate and the Weak Temperature Dependence of ElectricalConductivity. Industrial&engineering chemistry research,2009,48(21):9498–9503.
    [123] Mikhail Mikhail Yu Vagin, Stanislav A, Trashin Arkady A, etal. Corrosionprotection of steel by electropolymerized lignins. ElectrochemistryCommunications,2006,8:60–64
    [124] Milczarek G. Lignosulfonate-modified electrode for electrocatalytic reductionof acidic ni-trite. Electroanlysis,2008,20(2):211-214.
    [125] Liu Y Q, Gao L, Sun J. Noncovalent functionalization of carbon nanotubes withsodium lignosulfonate and subsequent quantum dot decoration. PhysicalChemistry C,2007,111(3):1223-1229.
    [126] Ouyang X P, Qiu XQ, Lou HM, et al.Corrosion and scale inhibition propertiesof sodium lignosulfonate and its potential application in recirculating coolingwater system. industrial&engineering chemistry research,2006,45(16):5716-5721
    [127]李爱阳,彭晖冰,唐有根.改性木质素磺酸盐絮凝处理含镍废水的研究.环境科学与技术,2008,31(11):106-108.
    [128] Parajuli D, Inoue K, Ohto K, et al. Adsorption of heavy metals on crosslinkedlignocatechol: A modified lignin gel. Reactive and Functional Polymers,2005,62(2):129-139.
    [129] Mitsukuni Nishida,Yasumitsu Uraki,Yoshihiro Sano. lignin gel withunique swelling property.Bioresource Technology,2003,88:81-83.
    [130] Nishida M, Uraki Y, Sano Y. Lignin gel with unique swelling property.Bioresource Technology,2003,88(1):81-83.
    [131] Lindstr m T, Westmen L. The colloidal behaviour of kraft lignin. Ⅳ. Syneresisand hysteresis in swelling of kraft lignin gels. Colloid and Polymer Science,1982,260(6):594-598.
    [132] El-Zawawy W K. Preparation of hydrogel from green polymer. PolymerAdvanced Technology,2005,16(11):48-54.
    [133] Feng Q H, Chen F G, Wu H R. Preparation and Characterization of aTemperature-Sensitive Lignin-Based Hydrogel, Bioresources,2011,6(4):4942-4952.
    [134]彭志远,谌凡更.木质素-聚氨酯水凝胶的合成及其性能.功能高分子学报,2010,23(4):405-408.
    [135] Pe aranda A J E, Sabino M A. Effect of the presence of lignin or peat in IPNhydrogels on the sorption of heavy metals. Polymer Bulletin,2010,65(5):495-508.
    [136] Uraki Y, Imura T, Kishimoto T, et al. Body temperature-responsive gels derivedfrom hydroxypropylcellulose bearing lignin. Carbohydrate Polymer,2004,58(2):123-130.
    [137] Passauer L, Fischer K, Liebner F Preparation and physical characterization ofstrongly swellable oligo (oxyethylene) lignin hydrogels. Holzforschung,2011,65:309-317.
    [138]曾少娟,汪云燕,沈青.复合聚电解质水凝胶的制备与性能研究Ⅱ.聚丙烯酰胺/木质素磺酸钙水凝胶的溶胀行为.纤维素科学与技术,2007,15(2):45-49.
    [139]曾少娟,汪云燕,周洪峰等.复合聚电解质水凝胶的制备与性能研究Ⅰ.表面性能对水凝胶的影响.纤维素科学与技术,2007,15(1):40-44.
    [140] Raschip I E, Vasile C, Ciolacu D, et al. Semi-interpenetrating polymer networkscontaining polysaccharides. Ⅰ. Xanthan/lignin networks. High PerformancePolymers,2007,19(5-6):603-620.
    [141] Wu Y X, Zhou J H, Ye C C, et al. Optimized Synthesis of lignosulfonate-g-poly(acrylic acid-co-acrylamide) superabsorbent hydrogel based on the taguchimethod. Iranian Polymer Journal,2010,19:511-520.
    [142] Ouyang X P, Lin Z X, Deng Y H, et al. Oxidative Degradation of Soda LigninAssisted by Microwave Irradiation. Chinese Journal of Chemical Engineering,2010,18(4):695-702.
    [143] Passauer L, Fischer K, Liebner F. Activation of pine kraft lignin by Fenton-typeoxidation for cross-linking with oligo (oxyethylene) diglycidyl ether.Holzforschung,2011,65(3):319-326.
    [144]陈小蓉,陈嘉翔,吴国雄.氧化木素磺酸盐的热缩合机理.中国造纸,1990,3:30-34.
    [145]陈嘉川,谢益民,李彦春等.天然高分子科学.第一版.北京:科学出版社,2008,53.
    [146]齐香君,苟金霞,韩戌珺.3,5-二硝基水杨酸比色法测定溶液中还原糖的研究.纤维素科学与技术,2004,12(3):17-20.
    [147] Ouyang XP, Qiu XQ, Chen, P. Physicochemical characterization of calciumlignosulfonate—a potentially useful water reducer. Colloid. Surface A2006;282:489-497.
    [148] Pelton R. Temperaturve-sensitive aqueous microgels. Advances in Colloid andInterface Science,2000,85(1):1-33.
    [149] Ibrahim M, Sherbiny E, Mamdouh AM, et al. Biodegradable pH-responsivealginate-poly (lactic-co-glycolic acid) nano/micro hydrogel matrices for oraldelivery of silymarin. Carbohydrate Polymers,2011,83(3):1345-1354.
    [150] Terashima T, Ouchi M, Ando T, et al. Thermo regulated phase-transfer catalysisvia PEG-armed Ru (II)-bearing microgel core star polymers: Efficient andreusable Ru (II) catalysts for aqueous transfer hydrogenation of ketones. Journalof Polymer Science Part A: Polymer Chemistry,2010,48(2):373-379.
    [151] Li Z F, Wei X L, Ngai T. Controlled production of polymer microspheres frommicrogel-stabilized high internal phase emulsions. Chemical Communications,2011,47(1):331-333.
    [152] Wang G Z, Zhang Y, FangY, et al. Flower-like SiO2-coated polymer/Fe3O4composite microspheres of super-paramagnetic properties: preparation via apolymeric microgel templatemethod. Journal of the American Ceramic Society.2007,90(7):2067-2072.
    [153]赵玉波.蔗渣木质素磺酸盐结构与性能的研究:[南京林业大学硕士学位论文].南京:南京林业大学,2005,19.
    [154]王雪莲,毛林格,黄勇.木质素磺酸盐在UV/H202下的降解.林产化学与工业,2007,27(3):98-102.
    [155]金永灿,全金英,王悦球等.麦草碱木质素的过氧化氢氧化氨解Ⅲ.过渡金属对氧化氨解反应的影响.纤维素科学与技2001,9(4):27-32.
    [156]尉小明,刘庆旺,殷国强.木质素磺酸盐(LSS)氧化改性研究.钻采工艺,2000,23(6):63-65.
    [157]郗伟,李新平.过氧化氢与β-O-4型木质素醌型发色基团反应特性的研究.中华纸业,2008,16:32-35.
    [158]金永灿,全金英,王悦球等.麦草碱木质素的过氧化氢氧化氨解Ⅱ.氧化氨解对木质素主要官能团的影响.纤维素科学与技术,2001,9(4):20-27.
    [159]金永灿,全金英,王悦球等.麦草碱木质素的过氧化氢氧化氨解Ⅰ.影响过氧化氢氧化氨解反应的主要因素.纤维素科学与技,2001,9(3):30-36.
    [160]赖玉,张曾,黄干强.木素在过氧化氢漂白条件下的反应.2005,20(2):203-206.
    [161] Gundersen S A, Sjoblom J. High and low-molecular-weight lignosulfonates andKraft lignins as oil/water-emulsion stabilizers studied by means of electricalconductivity. Colloid and Polymer Science,1999,277:462-468.
    [162]刘春华,李春丽.纳米银粒子的制备方法进展.化学研究与应用,2010,22(6):670-673.
    [163] Zeljka Jovanovic, A Krkljes, J Stojkovska, et al. Synthesis and characterizationof silver/poly(N-vinyl-2-pyrrolidone) hydrogel nanocomposite obtained by insitu radiolytic method. Radition Physics and Chemistry,2011,80(11):1208-1215.
    [164] K Varaprasad, Y M Mohan, K Vimala, etal. Synthesis and characterization ofhydrogel-silver nanoparticle-curcumin composites for wound dressing andantibacterial application. Journal of Applied Polymer Science.2011,121(2):784-796.
    [165] Bajpai S K, Bajpai M, Sharma L. In situ formation of silver nanoparticles inpoly (N-Isopropyl acrylamide) hydrogel for antibacterial applications. DesignedMonomers and Polymers,2011,14(4):383-394.
    [166] Adhikari B, Banerjee A. Short-peptide-based hydrogel: a template for the in situsynthesis of fluorescent silver nanoclusters by using sunlight. Chemistry-AEuropean Journal,2010,16(46):13698-13705.
    [167] Gils P S, Ray D, Sahoo P K. Designing of silver nanoparticles in gum arabicbased semi-IPN hydrogel. International Journal of Biological Macromolecules,2010,46(2):237-244.
    [168] Mohan Y M, Vimala K, Thomas V, et al. Controlling of silver nanoparticlesstructure by hydrogel networks. Journal of Colloid and Interface Science,2010,342(1):73-82.
    [169] Varaprasad K, Mohan Y M, Ravindra S, et al. Hydrogel-silver nanoparticlecomposites: a new generation of antimicrobials. Journal of Applied PolymerScience,2010,115(2):1199-1207.
    [170] Murthy P S K, Mohan Y M, Varaprasa K, et al. First successful design ofsemi-IPN hydrogel-silver nanocomposites: A facile approach for antibacterialapplication. Journal of Colloid and Interface Science,2008,318(2):217-224.
    [171] Park J S, Murthy P S K, Park S, et al. Characterization of silver nanoparticle inthe carboxymethyl cellulose hydrogel prepared by a gamma ray irradiation.Journal of Nanoscience and Nanotechnology,2012,12(1):743-747.
    [172] Saravanan P, Raju MP, Alam S. A study on synthesis and properties of Agnanoparticles immobilized polyacrylamide hydrogel composites. MaterialsChemistry and Physics,2007,103(2-3):278-282.
    [173] Rattanaruengsrikul V, Pimpha N, Supaphol P. In vitro efficacy and toxicologyevaluation of silver nanoparticle-loaded gelatin hydrogel pads as antibacterialwound dressings. Journal of Applied Polymer Science,2012,124(4),1668-1682.
    [174] Juby KA, wivedi C D, Kumar M, etal. Silver nanoparticle-loaded PVA/gumacacia hydrogel: Synthesis, characterization and antibacterial study.Carbohydrate Polymers,2012,89(3):906-913.
    [175] Jovanovic Z, Stojkovska J, bradovic B O, et al. Materials Chemistry and Physics,2012,133(1),182-189.
    [176] Yook JY, Choi G H, Suh D H. A novel method for preparing silvernanoparticle-hydrogel nanocomposites via pH-induced self-assembly. ChemicalCommunications,2012,48(41):5001-5003.
    [177] Ma D, Xie X, Zhang L M. A Novel Route to In-Situ Incorporation of SilverNanoparticles into Supramolecular Hydrogel Networks. Journal of PolymerScience Part B: Polymer Physics,2009,.47(7):740-749.
    [178] Wong J E, Gaharwar A K, Muller Schulte D, et al. Dual-stimuli responsivePNIPAM microgel achieved via layer-by-layer assembly: Magnetic and thermoresponsive. Journal of Colloid and Interface Science,2008,324:47-54.
    [179] Rubio Retama J, Zafeiropoulos N E, Serafinelli C, et al. Synthesis andCharacterization of Thermosensitive PNIPAM Microgels Covered with Superparamagnetic γ-Fe2O3Nanoparticles. Langmuir,2007,23(20):10280-10285.
    [180] Mei Y, Lu Y, Ballauff M, et al. Catalytic Activity of Palladium NanoparticlesEncapsulated in Spherical Polyelectrolyte Brushes and Core Shell Microgels.Chemistry of Materials,2007,19(5):1062-1069.
    [181] Suzuki D, Kawaguchi H. Hybrid Microgels with Reversibly ChangeableMultiple Brilliant Color. Langmuir,2006,22(8):3818-3822.
    [182] Kumar V R R, Samal A K, Pradeep T, et al. Gold nanorods grown on microgelsleading to hexagonal nanostructures. Langmuir,2007,23(17):8667-8669.
    [183] Mitra R N, Das P K. In situ preparation of gold nanoparticles of varying shapein molecular hydrogel of peptide amphiphiles. The Journal of PhysicalChemistry C,2008,112(22):8159-8166.
    [184] Kuang M, Wang D, Gao M, et al. A bio-inspired route to fabricatesubmicrometer-sized particles with unusual shapes mineralization of calciumcarbonate within hydrogel spheres. Chemistry of Materials,2005,17(3):656-660.
    [185] Ford J, Yang S. Directed Synthesis of Silica Nanoparticles on MicropatternedHydrogel Templates Tethered with Poly (ethyleneimine). Chemistry ofMaterials,2007,19(23):5570-5575.
    [186] Kim J H, Lee T R. Hydrogel-Templated growth of large gold nanoparticles:synthesis of thermally responsive hydrogel-nanoparticle composites. Langmuir,2007,23(12):6504-6509.
    [187] Suzuki D, McGrat h J G, Kawaguchi H, et al. Colloidal crystals ofthermosensitive, core/shell hybrid microgels. The Journal of Physical ChemistryC,2007,111(15):5667-5672.
    [188] Li J, Liu B, Li J H. Controllable self-Assembly of CdTe/Poly(N-isopropylacrylamide acrylic acid) microgels in response to pH stimuli.Langmuir,2006,22(2):528-531.
    [189] Kuang M, Wang D Y, Bao H, et al. Fabrication of multicolor-encodedmicrospheres by tagging semiconductor nanocrystals tohydrogel spheres.Advanced Materials,2005,17(3):267-270.
    [190] Gong Y J, Gao M Y, Wang D Y, et al. Incorporating fluorescent CdTenanocrystals into a hydrogel via hydrogen bonding: toward fluorescentmicrospheres with temperature-Responsive properties. Chemistry of Materials,2005,17(10):2648-2653.
    [191] Bradley M, Bruno N, Vincent B. Distribution of CdSe Quantum Dots withinSwollen Polystyrene Microgel Particles Using Confocal Microscopy. Langmuir,2005,21(7):2750-2753.
    [192] Li J, Hong X, Liu Y, et al. Highly photoluminescent CdTe/poly(N-isopropylacrylamide) temperature-sensitive gels. Advanced Materials,2005,17(2):163-166.
    [193] Xu H, Cui L L, Tong NH, et al. Development of High MagnetizationFe3O4/Polystyrene/Silica Nanospheres via Combined Miniemulsion/EmulsionPolymerization. Journal of the American Chemical Society,2006,128(49):15582-1558.
    [194] Dong Y, Ma Y, Zhai T Y, etal. Silver nanoparticles stabilized bythermoresponsive microgel particles: synthesis and evidence of an electrondonor-acceptor effect. Macromolecular Rapid Communications,2007,28(24),2339-2345.
    [195] Khan A M, El-Toni S, Alrokayan M, et al. Microwave-assisted synthesis ofsilver nanoparticles using poly-N-isopropylacrylamide/acrylic acid microgelparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2011,377(1-6):356-360.
    [196] Nakamura S, Nambu M, Ishizuka T, etal. Effect of controlled release offibroblast growth factor from chitosan/fucoidan micro complex-hydrogel on invitro and in vivo vascularization. Journal of Biomedical Materials Research PartA,2008,85(3):619-627.
    [197] Li Z f, Wei X L, Ngai T, Controlled production of polymer microspheres frommicrogel-stabilized high internal phase emulsions. Chemical Communications,2011,47(1):331-333.
    [198] Dagallier C, Dietsch H, Schurtenberger P, et al. Thermoresponsive hybridmicrogel particles with intrinsic optical and magnetic anisotropy. Soft Matter,2010,6(10):2174-2177.
    [199]黄华,吴世法.纳米银胶的光化学制备及其特性研究.光子学报.2005,34(11):1643-1646.
    [200] Westcott S L, Oldenburg S J, Lee T R, et al. Formation and adsorption ofclusters of gold nanoparticles onto functionalized silica nanoparticle. Langmuir,1998,14:5396-5401.
    [201]徐惠芬,唐建国,刘继宪等.聚乙二醇修饰纳米银的制备研究.化学工程师,2010,176(5):7-10.
    [202]雷忠利,范友华.聚合物存在下纳米银复合材料的制备与表征.物理化学学报,2006,22(8):1021-1024.
    [203] Lin C X, Zhang S,,Cheng Q, et al. Periodic mesoporous silica and organosilicawith controlled morphologies as carrier for drug release, Microporous andMesoporous Materials,2009,117:213-219.
    [204] Zhao L Z, Yan X F, Zhou X F, et al, Mesoporous bioactive glasses for controlleddrug release,Microporous and Mesoporous Materials,2008,109:210-215.
    [205] Alexandra F, Tessy M, L, Laura M I. wet sol-gel matrices as delivery devicesfor phenytoin, Journal of Sol-Gel Science Technology,2009,49:320-328.
    [206] Kevadiya, Bhavesh D. Joshi, Ghanshyam V. Mody, Haresh M. Bajaj, Hari C.Biopolymer-clay hydrogel composites as drug carrier: Host-guest intercalationand in vitro release study of lidocaine hydrochloride Applied Clay Science,2011,52(4):364-367.
    [207] Zhu S H, Huang B Y, Zhou K C,et al. Hydroxyapatite nanoparticles as a novelgene carrier. Journal of NanoparticleResearch,2004,6(2):307-311.
    [208]王德平,黄文显,陈天丹.多孔微晶玻璃作为药物载体材料的制备及其体外释药研究.无机材料学报,2001,16(6):1195-1198
    [209] Gao Y, Ren F Z. A thermosensitive PLGA-PEG-PLGA hydrogel for sustainedrelease of docetaxel Ding, Baoyue. Journal of Drug Targeting,2011,19(7):516-527
    [210] Zhang Y,Zhu W,Wang B,et al. Postfabrication encapsulation of modelprotein drugs in a negatively thermosensitive hydrogel. Journal ofPharmaceutical Sciences,2005,94(8):1676-1684.
    [211] Ankareddi I, Brazel C S. Synthesis and characterization of graftedthermosensitive hydrogels for heating activated controlled release. InternationalJournal of Pharmaceutics,2007,336(2):241-247.
    [212] Kim S Y,Shin H S,Lee Y M,et a1.Properties of electro—responsivepoly(vinyl alcoho1)/poly(acrylic acid)IPN hydrogels under an electricstimulus[J].Journal of Applied Polymer Science,1999,73(9):1675-1683.
    [213]熊月琴,何小维.胶原基医用复合水凝胶的制备及性质研究.现代食品科技,2009,25(12):1454-1457.
    [214]徐向东,卢向红,施勇叶等,中华医学杂志,纤维蛋白胶顺铂水凝胶化疗的缓释特性,2011,91(18):1246-1249.
    [215] Epstein B, Hila S, Cristina F, et al. An in situ cross-linking hybrid hydrogel forcontrolled release of proteins. Acta Biomaterial,2012,8(5):1703-1709.
    [216] Ascenso A, Vultos F, Ferrinho D, Effect of tretinoin inclusion indimethyl-beta-cyclodextrins on release rate from a hydrogel formulation.Journal of Inclusion Phenomena and Macrocyclic Chemistry,2012,73(1-4):459-465.
    [217] Rebecca R. Torelli-Souza, Cavalcante Bastos, Sustained release of anantitumoral drug from alginate-chitosan hydrogel beads and its potential use ascolonic drug delivery. Journal of Applied Polymer Science,2012,126:408-417.
    [218] Khodaverdi Elham, Tafaghodi Mohsen, Ganji Fariba. In Vitro Insulin Releasefrom Thermosensitive Chitosan Hydrogel. AAPS PHARMSCITECH,2012,13(2):460-466.
    [219] Narasimha S. Managoli, Raghavendra V. Kulkarni, etal. Crosslinged chitosanhydrogel matrix tablets for controlled release of gabapentin. Farmaciaf,2012,60(2):272-286.Peng L H.Chen X.Chen L. Topical Astragaloside IV-ReleasingHydrogel Improves Healing of Skin Wounds in Vivo. Biological&Pharmaceutical Bulletin,2012,(35)6:881-888.
    [220]李斌,汪超,孙寒潮.魔芋葡甘露聚糖/硼复合水凝胶对水杨酸的缓释性研究,西南农业大学学报,2003,25(6):487-491.
    [221] Alvarez-Mance ido F, Landin M, Lacik I,et al. Konjac glucomannan andkonjac glucomannan/xanthan gum mixtures as excipients for controlled drugdelivery systems. Diffusion of small drugs. International Journal ofpharmaceutics,2008,349(1-2):11-8.
    [222]中野准三.木质素的化学-基础与应用.第一版.北京:轻工业出版社,1988:464.