有机笼状化合物的分子设计与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
笼状化合物如六硝基六氮杂异伍兹烷CL-20和八硝基立方烷ONC因其卓越的性能吸引了大量关注,也引起了研究者探求新型笼状化合物的兴趣。本论文运用当代理论和计算化学方法,主要是量子化学和分子力学方法,对系列新型高氮笼状化合物的结构和性能,从气相分子到晶体,从几何构型到电子结构,从热力学性质到爆轰性能,进行了较为系统的计算和模拟。以寻求高能量密度化合物(HEDC)和高能量密度材料(HEDM),为实验合成提供参考。论文主要包括如下内容:
     1.通过设计CL-20衍生物、硝基立方烷与TATB杂合物、N12笼碳取代衍生物以及2,4,6,8,10,12,13-七氮杂四环[5.5.1.03,11.05,9]十三烷衍生物,采用密度泛函理论方法和分子力学方法对其结构进行优化,分析了气态和固态的各种结构信息,总结了结构参数与性能的关系。
     发现随着化合物中硝基数增多,前线轨道能级差和零点能逐渐减小,C-N02和C-C键变长,C-H键变短。固态笼状化合物属于分子型晶体,均具有较大的带隙,对态密度的分析表明N-NO2键可能是笼状化合物的热解引发键。
     2.进行了主要特征区的振动分析,对计算频率采用校正因子0.96进行校正,得到了各化合物的IR光谱,并对其主要特征振动带进行了归属分析。
     3.根据统计热力学原理和校正后的频率,用自编程序计算了化合物在200-800K温度范围的热力学函数,包括气体和晶体的标准恒压摩尔热容、标准摩尔熵和标准摩尔焓以及晶体的标准摩尔吉布斯自由能。所有化合物的热力学函数均随温度升高和硝基数的增加而增大。
     4.设计反应预测了系列笼状化合物的生成热,探讨了分子结构与生成热的内在联系,总结了不同取代基对生成热的影响规律。硝基对生成热的影响是排斥和超共轭协同作用的结果。当分子中取代基数目较少时,硝基的超共轭作用可以稳定分子结构;当取代基数目较多时,笼状骨架上拥挤的硝基基团之间的排斥作用占主导地位,此时化合物的总能量增加,对应的生成热也增加。
     5.设计反应计算了系列笼状化合物的张力能,研究了不同取代基对笼状化合物张力的影响。对于笼结构相同取代基不同的化合物,环上氮原子上连接吸电子基团会增大分子张力,而供电子基团则减小分子张力。
     6.采用Kamlet-Jacobs和Stine方法预测了笼状化合物的爆速、爆压和爆热等爆轰性能。结果表明前者的计算结果更接近实验值,而且氮杂环笼状化合物均具有较好的爆轰性能。密度、爆速和爆压值均随着硝基数目的增多而增大。
     7.计算了笼状化合物中各可能断裂键的键离解能。发现除C(N)-NO2键外,笼状骨架上的C-C或C-N键也有可能是热解引发键;所有键的键离解能均大于150kJ·mol-1,有的甚至接近200或300kJ·mol-1,因此所有笼状化合物均具有较高的热稳定性。
Cage compounds such as hexanitrohexaazaisowurtzitane (CL-20) and octanitrocubane (ONC) have drawn a great deal of attention due to their excellent properties and attracted many research interests for new cage compounds.
     In this thesis, computational methods, especially density functional theory (DFT) of quantum chemistry and molecular mechanics (MM) have been employed to study a series of new designed cage compounds systematically from gas phase to crystalline. Contents include:
     1. A series of cage structures were designed including the derivatives of CL-20, N12, and2,4,6,8,10,12,13-heptaazatetracyclo [5.5.1.03,11.05,9] tridecane, and the hybrid derivatives of TATB and nitrocubane. Investigations on the structures and properties were carried out.
     The effects of substituents (nitro groups) on the total energy(Eo), zero point energy(ZPE), and bond length were studied. With the increasing number of nitro groups, E0and ZPE decrease, C-NO2and C-C bonds were lengthened, and C-H bond was shortened. A large gap usually found for nonmetallic compounds exists between the conduction (unoccupied crystal orbitals) and valence (occupied crystal orbitals) bands. This indicates that the compounds were stable. Analysis of density of state (DOS) and partial density of state (PDOS) showed that the N-NO2bond acts as an active center and may be the initial breaking bond in the thermal pyrolysis steps.
     2. The simulated IR spectra were obtained based on the scaled harmonic vibrational frequencies by0.96. The characteristic bands were analyzed and discussed.
     3. On the basis of the statistical thermodynamics principle, thermodynamic properties of the cage compounds in gas and solid state including standard molar heat capacity, standard molar entropy, and standard molar thermal enthalpy were evaluated. All of them increase with the increasing of temperature and the number of nitro groups.
     4. The heats of formation (HOFs) of the cage compounds were evaluated via designed reactions and the relationships between the structure and HOFs were discussed. The effect of nitro groups on the HOF is the results of both repulsion and superconjugation from nitro groups. When the number of nitro groups is small, the superconjugation effect of nitro groups can stabilize the cage skeleton. However, when there are more than three nitro groups on the skeleton, the repulsion energy strengthens and leads to the increase in the total energy and HOF.
     5. Strain energies (SEs) were estimated via the designed isodesmic reactions and the effects of substituents on the cage were discussed. Results indicate that the compounds linked with the electron-donating group have larger SEs than that with electron-withdrawing group.
     6. The detonation parameters were calculated using Kamlet-Jacobs equations and Stine equation. Results indicate that the data obtained from the former are more reliable and the cage compounds have good detonation performance. It is noticed that density p, detonation velocity D, and detonation pressure P increase with the increasing number of nitro groups.
     7. Bond dissociation energies (BDEs) were calculated. Results indicate that beside the N-NO2bond C-C and C-N bonds in the cage may also be the trigger bonds due to the cage strain. BDEs of all cage compounds are larger than150kJ·mol-1, with most of them being larger than200or even300kJ·mol-1, indicating that all the compounds designed in this thesis have good thermal stabilities.
引文
[1]欧育湘,陈进全.高能量密度化合物.北京:国防工业出版社,2005
    [2]Nielsen A T, Chafin A P, Christian S L, Moore D W, Nadler M P, Nissan R A, Vanderah D J, Gilardi R D, George C F, Flippen-Anderson J L. Synthesis of polyazapolycyclic caged polynitramines. Tetrahedron,1998,54:11793-11812
    [3]Jalovy Z, Zeman S, Sucesks M.1,3,3-trinitroazetidine (TNAZ) Part I:Synthesis and properties. J. Energ. Mater.,2001,19:219-239
    [4]鲁鸣久.一种新颖的高能炸药:六硝基六氮杂三环十二烷二酮.火炸药学报,2000,1:23~24
    [5]Christe KO, Wilson W W, Sheehy J A, Boatz J A. N5+:A novel HOMO. N5+:A novel homoleptic polynitrogen ion as a high energy density material. Angew. Chem. Int. Ed., 1999,38:2004-2009
    [6]Zhang M X, Eaton P E, Gilardi R L. Hepta-and octanitrocubanes. Angew. Chem. Int. Ed.,2000,39:401-404
    [7]Wu Y K, Ou Y X, Liu J Q, Liu L H,Chen B, Liu Z G. Synthesis, crystal structure, and theoretical study of tetranitrodiazidoacetylhexaazaisowurtzitane (TNDAIW). Prop. Explos., Pyrotech.,2004,29:155-159
    [8]Eaton P E, Gilardi R L, Zhang M X. Polynitrocubanes:Advanced high-density, high-energy materials. Adv. Mater.,2000,12:1143-1148
    [9]Dudek K, Mareeek P, Jalovy Z. Synthesis and some properties of 1,3,3-trinitroazet-idine(TNAZ). New trends in research of energetic materials proceedings of the Ⅳ. Seminar.Pardubice, Czech Republic,2001,75-80
    [10]Li J S. An evaluation of nitro derivatives of cubane using ab initio and density functional theories. Theor. Chem. Acc.,2009,12:101-106
    [11]T.乌尔班斯基.火炸药的化学与工艺学.第Ⅱ卷.北京:国防工业出版社,1976
    [12]孙荣康,任特生,高怀琳.猛炸药的化学与工艺学.北京:国防工业出版社,1983
    [13]宋华杰,董海山,郝莹.TATB、HMX与氟聚合物的表面能研究.含能材料,2000,8:104-107
    [14]Zhang J, Xiao H M. Computational studies on the infrared vibrational spectra, thermodynamic properties, detonation properties and pyrolysis mechanism of octanitrocubane. J. Chem. Phys.,2002,116:10674-10683
    [15]Zhang J, Xiao H M, Gong X D. Theoretical studies on heats of formation for polynitrocubanes using the density functional theory B3LYP methods and semiempirical MO methods. J. Phys. Org. Chem.,2001,14:583-588
    [16]Xiao H M, Zhang J. Theoretical prediction on heats of formation for polyisocyanocubanes-Looking for typical high energetic density material (HEDM). Sci. China, Ser. B,2002,45:21-29
    [17]Zhang J, Xiao J J, Xiao H M. Theoretical studies on heats of formation for cubylnitrates using density functional theory B3LYP method and semiempirical MO methods. Int. J. Quantum Chem,2002,86:305-312
    [18]Xu X J, Xiao H M, Gong X D, Ju X H, Chen Z X. Theoretical studies on the vibrational spectra, thermodynamic properties, detonation properties and pyrolysis mechanisms for polynitroadamantanes. J. Phys. Chem. A,2005,109:11268-11274
    [19]Xu X J, Xiao H M, Ju X H, Gong X D, Zhu W H. Computational studies on polynitrohexaazaadmantanes as potential high energy density materials (HEDMs). J. Phys. Chem. A,2006,110:5929-5933
    [20]Xu X J, Xiao H M, Ma X F, Ju X H. Looking for high energy density compounds among hexaazaadamantane derivatives with-CN,-NC, and-ONO2 groups. Int. J. Quantum. Chem,2006,106:1561-1568
    [21]Xu X J, Xiao J J, Zhu W, Xiao H M, Huang H, Li J S. Molecular dynamics simulations for pure s-CL-20 and ε-CL-20-Based PBXs. J. Phys. Chem. B,2006,110: 7203-7207
    [22]郑剑.美国高能量密度物质研究综述.固体火箭技术,1991,4:55-67
    [24]Sikder A K, Sikder N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J. Hazard. Mater.,2004,112:1-15
    [25]Millar R W, Philbin S P, Claridge R P, Hamid J. Studies of novel heterocyclic insensitive high explosive compounds:pyridines, pyrimidines, pyrazines and their bicyclic analogues. Prop. Explos., Pyrotech.,2004,29:81-92
    [26]Chapman R D, Wilson W S, Fronabarger J W, Merwin L H, Ostrom G S. Prospects of fused polycyclic nitroazines as thermally insensitive energetic materials. Thermochim. Acta.,2002,384:229-243
    [27]Rajendra P S, Rajendar D V, Dayal T M, Jean'ne M S. Energetic nitrogen-rich salts and ionic liquids. Angew. Chem. Int. Ed.,2006,45:3584-3601
    [28]Nielsen A T, Nissan R A, Vanderah D J, Coon C L, Gilardi R D, George C F, Anderson J F. Polyazapolycyclics by condensation of aldehydes with amines.2. Formation of 2,4,6,8,10,12-hexabenzyl-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.05,9.03,11] dodecanes from glyoxal and benzylamines. J. Org. Chem.,1990,55:1459-1466
    [29]Zhang M X, Eaton P E, Gilardi R, Gelber N, Iyer S, Surapaneni R. Prop. Explos. Pyrotech.,2002,27:1-6
    [30]Zhang M X, Eaton P E, Gilardi R. Polynitrocubanes:Advanced high-density, high energy materials. Adv. Mater.,2000,12:1143-1148
    [31]Badgujar D M, Talawar M B, Asthana S N, Mahulikar P P. Advances in science and technology of modern energetic materials:An overview. J. Hazard. Mater.,2008,151: 289-305
    [32]Ju X H, Xiao H M, Xia Q Y. A periodic DFT approach to octanitrocubane crystal. Chem. Phhys. Lett.,2003,382:12-18
    [33]Zhang J Y, Du H C, Wang F, Gong X D, Huang Y S. DFT studies on a high energy density cage compound 4-trinitroethyl-2,6,8,10,12-pentanitrohezaazaisowurtzitane. J. Phys. Chem. A,2011,115:6617-6621
    [34]Zhang J Y, Du H C, Wang F, Gong X D, Ying S J. Theoretical investigations on a high density cage compound 4-(1-nitro-1,2,3,4-tetraazol-5-yl)) methyl-2,4,6,8,10,12-hexanitrohexaazaisowurtzitane. J. Mol. Model.,2012,18: 165-170
    [35]Ghule V D, Jadhav P M, Patil R S, Radhakrishnan S, Soman T. Quantum-chemical studies on hexaazaisowurtzitanes. J. Phys. Chem. A,2010,114:498-503
    [36]Li Y J, Song J, Li C Y, Yang J M, Lv J, Wang W L. Theoretical studies on Hexanitrohexaazaisowurtzitane and its derivatives. Acta Chim. Sinica,2009,67: 1437-1446
    [37]Sun C H, Zhao X Q, Li Y C, Pang S P. Synthesis of two new cage molecules containing trinitromethyl group. Chin. Chem. Lett.,2010,21:572-575
    [38]关祟就,雷安华.国外高能量密度材料与目标化合物的进展.固体火箭技术,1994,17:50~58
    [39]许晓娟,肖鹤鸣.多硝基四面体烷结构和性能的理论研究.化学学报,2008,20:2219~2226
    [40]许晓娟,肖鹤鸣,王桂香,居学海.多硝基六氮杂金刚烷结构和稳定性的理论研究.化学物理学报,2006,19:395~400
    [41]王振宇.国外高能量密度化合物研究新进展.推进技术,2003,2:34-37
    [42](1) Marchand A P. Synthesis and chemistry of novel polynitropolycyclic cage compounds. Tetrahedron,1988,44:2377-2395 (2) Schleyer P R, Olah G A. Cage hydrocarbons, New York:John Wiley Press:1990
    [43]Jaidann M, Roy S, Abou-Rachid H, Lussier L-S. A DFT theoretical study of heats of formation and detonation properties of nitrogen-rich explosives. J. Hazard. Mater., 2010,176:165-173
    [44](1) Marchand A P, Suri S C. Synthesis of 3,5,5-trinitropentacyclo [5.3.0.02,6.03,10.04,8] decane. J. Org. Chem.,1984,49:2041-2043 (2) Sollot G. P, Gilbert E E. A facile route to 1,3,5,7-tetranitroadamantane (TNA), synthesis of tetranitrodamantane. J. Org. Chem.,1980,45:5405-5408
    [45]杨辉琼,李宾.笼状烃金刚烷的现状和合成技术进展.湖南工程学院学报,2005,15:92~94
    [46]张骥,肖鹤鸣,肖继军.多氰基立方烷生成热的DFT-B3LYP和半经验MO研究.化学学报,2001,59:1230~1235
    [47]肖继军,张骥,肖鹤鸣.共轭和笼状体系精确生成热的计算.含能材料,2002,20:136~138
    [48]徐容,周小清,曾贵玉,刘春.TEX的合成研究.火炸药学报,2006,29:26-28
    [49]雷永鹏,徐松林,阳世清,张彤.高能炸药TEX的研究进展.含能材料,2006,14:467~470
    [50]Ramakrishnan V T, Vedachalam M, Boyer J H.4,10-dinitro-2,6,8,12-tetraoxa-4, 10-diazatracyclo [5.5.0.05,903,11] dodecane. J. Heterocycl.Chem.,1989,31:479-481
    [51]Kortus J, Pederson M R, Richardson S L. Density functional-based prediction of the electronic, structural, and vibrational properties of the energetic molecule: Octanitrocubane. Chem. Phys. Lett.,2000,322:224-230
    [52]Eaton P E, Gilardi R L, Zhang M X. Polynitrocubanes:Advanced high-density, high-energy materials. Adv. Mater.,2000,12:1143-1148
    [53]David A H, Weston T B, Eaton P E, Bart K. A computational study of the interactions among the nitro groups in octanitrocubane. J. Am. Chem. Soc.,2001,123:1289-1293
    [54]郑剑.硝基立方烷及其氮杂衍生物的能量特性的性质研究,固体火箭技术,1995,18:45~52
    [55]邱玲,许晓娟,肖鹤鸣.多硝基立方烷的合成、结构和性能研究进展.含能材料,2005,13:262~268
    [56]Zhang M X, Eaton P E, Gilardi R. Hepta-and octanitrocubanes. Angew. Chem. Int. Ed.,2000,39:401-404
    [57]Kybett B D, Carroll S, Natalis P, Bonnell D W, Margrave J L, Franklin J L. Thermodynamic properties of cubane. J. Phys. Chem. A,1966,88:626-626
    [58]Golfier M, Graindorge H, Longevialle Y, Mace H. New energetic molecules and their applications in the energetic materials. The proceeding of the 29th International Annual Conference of ICT, Karlsruhe, June 30-July 3,1998,3/1-3/17
    [59]Yan G, Brinkmann N R, Schaefer H F III. Energetics and structures of adamantane and the 1-and 2-adamantyl radicals, cations, and anions. J. Phys. Chem. A,2003,107: 9479-9485
    [60]Xu X J, Xiao H M, Ju X H, Gong X D, Zhu W H. Computational studies on polynitrohexaazaadmantanes as potential high energy density materials. J. Phys. Chem. A,2006,110:5929-5933
    [61]刘卅,郭建维.金刚烷的结构、溶解性及热力学性.含能材料,2006,14:485~490
    [62]谭镜明,郭建维,刘卅,金刚烷最新研究.精细石油化工进展,2003,4:46~50
    [63]Simpson R L, Urtiev P A, Ornellas D L, Moody G L, Scribner K J, Hoffman D M. CL-20 performance exceeds that of HMX and its sensitivity is moderate. Prop. Explos. Pyrotech.,1997,22:249-255
    [64]Russel T P, Miller P J, Piermarini G J, Black S. High pressure phase transition in γ-hexanitrohexaazaisowurtzitane. J. Phys. Chem.,1992,96:5509-5512
    [65]Foltz M F, Coon C L, Garcia F, Nichols A L. Ⅲ, The thermal stability of the polymorphs of hexanitrohexaazaisowurtzitane, Part II. Prop. Explos. Pyrotech.,1994, 19:133-144
    [66]Thome V, Kempa P B, Herrman M. Solvent effects on the morphology of ε-CL-20 crystals. The proceeding of the 32nd International Annual Conference of ICT, Karlsruhe 2001,157/1-157/7
    [67]Johnston E H, Eugene R W. Use of chlorine-free non-solvents in solvent crystallization of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo [5.5.0.05,9. 03.11] dodecane (CL-20) explosive, US 5874574A, February 23,1999
    [68]Russel T P, Miller P J, Piermarini G J, Black S. Pressure/temperature phase diagram of hexanitrohexaazaisowurtzitane. J. Phys. Chem.,1993,97:1993-1997
    [69]Jin S, Yu Z, Song Q, Ou Y. The role of properties of solvents in the properties of HNIW. The proceeding of the 34th International Annual Conference of ICT, Karlsruhe 2003,57/1-57/4
    [70]Wardle R B, Hinshaw J C, Braithwaite P. Synthesis of the caged nitramine HNIW(CL-20). The proceeding of the 27th International Annual Conference of ICT, Karlsruhe, June 25-28,1996,27/1-27/10
    [71]Marioth E, Lobbecke S, Krause H. Screening units for particle formations of explosives using super-critical fluids. The proceeding of the 31st International Annual Conference of ICT, Karlsruhe, June 27-30,2000,119/1-119/3
    [72]Kim J, Yim Y. Effect of particlesize on the thermal decomposition of ε-hexanitrohexaazaisowurtzitane. Chem. Eng. Jpn. J.,1999,32:237-241
    [73]Prabhakaran P V, George B K, Ravindran P V. NMR characterization of hexaazahexabenzylisowurtzitane (HBIW). The proceeding of the 33rd International Annual Conference of ICT, Karlsruhe 2002,66/1-66/9
    [74]Kaiser M, Ditz B. Characterization of impurities in CL-20 by NMR spectroscopy. The proceeding of the 30th International Annual Conference of ICT, Karlsruhe, June 29-July 3,1999,94/1-94/16
    [75]Sorescu D C, Rice B M, Thompson D L. Molecular packing and NPT-molecular dynamics investigation of the transferability of the RDX intermolecular potential to 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane. J. Phys. Chem. B,1998,102:948-952
    [76]Liu J, Zhao X, Lu M, Pan J. Complete NMR spectral assignment of monoacetylpentanitrohexaazaisowurtzitane. Chin. J. Explos. Prop.,1997,20:26-28
    [77]Pace M D. EPR spectra of photochemical nitrogen dioxide formation in monocyclic nitramines and hexanitrohexaazaisowurtzitane. J. Phys. Chem.,1991,95:5858-5864
    [78]Qiu W, Chen S, Yu Y. Structure of 2,4,8,10-tetrabenzyl-6,12-dibenzoyl-2,4,6, 8,10,12-hexaazatetracyclo [5.5.0.05.9.03.11] dodecane. Chin. J. Explos. Prop.,2001,24: 62-63
    [79]Chukanov V N, Golovina N I. Nedelko V V. Phase transformations in hexanitrohexaazaisowurtzitane. The proceeding of the 32nd International Annual Conference of ICT, Karlsruhe 2001,101/1-101/9
    [80]Feng Z W, Liu C L, Fang T, Zhao X Q. Molecular and crystal structure of diacetyltetranitrohexaazaisowurtzitane (DATN). Chin. J. Explos. Prop.,2001,1: 38-40
    [81]Jacob G, Lacroix G, Destombes V. Identification and analysis of impirities of HNIW. The proceeding of the 31st International Annual Conference of ICT, Karlsruhe, June 27-30,2000,106/1-106/12
    [82]Foltz M F. Thermal stability of ε-hexanitrohexaazaisowurtzitane in an estane formulation. Prop. Explos., Pyrotech.,1994,19:63-69
    [83]Kholod Y, Okovytyy S, Kuramshina G, Qasim M, Gorb L, Furey J, Honea P, Fredrickson H, Leszczynski J. Are 1,5-and 1,7-dihydrodiimidazo [4,5-b:4',5'-e] pyrazine the main products of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaz-aisowurtzitane (CL-20) alkaline hydrolysis? A DFT study of vibrational spectra. J. Mol. Struct.(Theochem.),2006,794:288-302
    [84]Kholod Y, Okovytyy S, Kuramshina G, Qasim M, Gorb L, Leszczynski J. An analysis of stable forms of CL-20:A DFT study of conformational transitions, infrared and raman spectra. J. Mol. Struct.(Theochem.),2007,843:14-25
    [85]吴文辉,王传印,欧育湘.笼形含能化合物HNIW的结构与性能研究.火炸药学报,2000,23:28~30
    [86]张骥,肖鹤鸣,姬广富.六硝基六氮杂异伍兹烷结构和性质的理论研究.化学学报,2001,59:1265~1271
    [87]Xu X J, Zhu W H, Xiao H M. DFT studies on the four polymorphs of crystalline CL-20 and the influences of hydrostatic pressure on s-CL-20 crystal. J. Phys. Chem. B,2007,111:2090-2097
    [88]Eaton P E, TWJr C. Cubane. J. Am. Chem. Soc.,1964,86:3157-3158
    [89]Kortus J, Pederson M R, Richardson S L. Density functional-based prediction of the electronic, structural, and vibrational properties of the energetic molecule: Octanitrocubane. Chem. Phys. Lett.,2000,322:224-230
    [90]Schmitt R J, Bottaro J C. New Nitration Concepts. AD-A201416,1988
    [91]Zhang J, Xiao H M, Gong X D. Theoretical studies on heats of formation for polynitrocubanes using the density functional theory B3LYP method and semiempirical MO methods. J. Phys. Org. Chem.,2002,14:583-588
    [92]Fan X W, Ju X H, Xia Q Y, Xiao H M. Strain energies of cubane derivatives with different substituent groups. J. Hazard. Mater.,2008,151:255-260
    [93]Nielsen A T, Nissan R A. Polynitropolyaza caged explosives. California:Centre Technical Publication 6692,1986
    [94]李俊贤.化学推进剂用精细化学品发展概况.化学推进剂与高分子材料,2003,1:1-7
    [95]Chung H S, Chen C S H, Kremer R A, Boulton J R. Recent development in high-energy density liquid hydrocarbon fuels. Energy Fuels,1999,13:641-649
    [96]贺芳,禹天福,李亚裕.吸热型碳氢燃料的研究进展.导弹与航天运载技术,2005,1:26~29
    [97]熊中强,米镇涛,张香文,刑恩会.多尺度科学的研究进展.化学进展,2005,17:359~367
    [98]Beaver B D, Clifford C B, Fedak M G, Gao L, Lyer P S, Sobkowiak M. High heat sink jet fuels. Part 1. Development of potential oxidative and pyrolytic additives for JP-8. Energy Fuels,2006,20:1639-1646
    [99]Eaton P E, Cassar L, Hudsonm R A, Hwang D R. J. Org. Chem.,1976,41:1445-1448
    [100]Strout D L. Isomer stability of N6C6H6 cages. J. Phys. Chem. A,2006,110: 7228-7231
    [101]Mcadory D, Jones J, Gilchrist A, Shields D, Langham R, Casey K, Strout D L. Stability of N10C10H10 and N12C12H12 cages and the effects of endohedral atoms and ions. J. Chem. Theory Comput.,2007,3:2176-2181
    [102]Shi L W, Wu W M, Zhao G, Chen M B. From tortoise-shell-like molecular segments to C4nH2nN2n(n=3-8) cages stabilized by alkenyl:A theoretical study. J. Phys. Chem. A, 2010,114:3691-3697
    [103]Shi L W, Chen B, Zhou J H, Zhang T, Kang Q, Chen M B. Structure and relative stability of drum-like C4nN2n(n=3-8) cages and their hydrogenated products C4nH4nN2n(n=3-8) cages. J. Phys. Chem. A,2008,112:11724-11730
    [104]郭忠诚,笪有仙,刘汉范.高分子催化剂用于四环烷的异构化反应.太阳能学报,1986,7:213~218
    [105]Akioka T, Inoue Y, Yanagawa A, Hiyamizu M, Takagi Y, Sugimori A. A comparative study on photocatalytic hydrogen transfer and catalytic hydrogenation of norbornadiene and quadricyclane catalyzed by [Rh6(CO)16]. J. Mol. Catal. A:Chem., 2003,202:31-39
    [106]Nomura M, Hiroshi H, Fujita T, Eguchi Y, Abe R, Yokoyama M, Takayama C, Akiyama T, Sugimori A, Kajitani M. Formation, structure, and reactivities of 1:1 adducts between quadricyclane and (η5-cyclopentadienyl) (1,2-diphenyl-or-dimethoxycarbonyl-1,2-ethenedithiolato)rhodium (III). J. Organomet. Chem.,2004, 689:997-1005
    [107]Marchand A P, Zope A, Zaragoza F, Bott S G Synthesis, characterization and crystal density modeling of four C24H28 cage-functionalized alkenes.Tetrahedron,1994,50: 1687-1698
    [108]Marchand A P, Deshpande M N, Reddy G M. American Chemical Society Division of Fuel Chemistry,1989,34:946-954
    [109]Marchand A P, Reddy S P, Rajapaksa D, Ren C T, Watson W H, Kashyap R P. Lewis acid promoted reactions of 11-methylenepentacyclo [5.4.0.02.6.03,10.05,9] undecan-8-one and pentacyclo [5.4.0.02,6.03,10.05,9] undecan-8-one with ethyl diazoacetate. J. Org. Chem.,1990,55:3493-3498
    [110]Pethe S, Livingston T, Segal C, Williams K R, Powell D H. Physico-chemical properties and combustion characteristics of new high-energy-density caged hydrocarbon compounds. Combust. Sci. Tech.,1998,132:17-35
    [111]邢恩会,米镇涛,张香文.用作新型高密度燃料的高张力笼状烃的研究进展.火炸药学报,2004,27:13~16
    [112]Stedman R J, Miller L S, Davis L D, Hoover J R E. Synthetic studies related to the bird-cage system. Ⅲ. Derivatives of pentacyclo [5.4.0.02,6.03,10.05,9] undecane, tetracyclo [4.4.0.03,9.04,8] decane, and pentacyclo [4.4.0.02,5.03,9.04,8] decane. J. Org. Chem.,1970,35:4169-4175
    [113]Marchand A P, Allen R W. Improved synthesis of pentacyclo [5.4.0.02,6.03,10.05,9] undecane. J. Org. Chem.,1974,39:1596-1596
    [114]Reardon W C, Wilson J E, Trisler J C. Reaction of 4-nitrobenzil with cyanide ion in aprotic solvents. J. Org. Chem.,1974,39:1596-1601
    [115]Marchand A P, Suri S C, Earlywine A D, Powell D R, Helm D V. Synthesis of methyl-and nitro-substituted pentacyclo [5.4.0.02,6.03,10.05,9] undecane-8,11-diones. J. Org. Chem.,1984,49:670-675
    [116]Marchand A P, Reddy G M. Enantioselective microbial asymmetric reduction of pentacyclo [5.4.0.02,6.03,10.05,9] undecane-8,11-dione. Tetrahedron Lett.,1990,31: 1811-1814
    [117]Segal C, Shyy W. Energetic fuels for combustion applications. Journal of Energy Resources Technology-Transactions of The ASME,1996,118:180-186
    [118]Marchand A P, Zope A, Zaragoza F, Bott Z G Synthesis, characterization and crystal density modeling of four C24H28 cage-functionalized alkenes. Tetrahedron,1994,50: 1687-1698
    [119]Pethe S, Livingston T, Segal C. Physico-chemical properties and combustion characteristics of new high-energy-density caged hydrocarbon compounds. Combust. Sci. Technol.,1998,132:17-34
    [120]Alan P M, Deshpande N, Madhusudhan R G. Novel C22H24 alkene dimers formed via titantium promoted reductive dimerization of polycyclic cage ketones. Potential new fuels for airbreathing missiles. Am. Chem. Soc., Div. Fuel Chem.,1989,34: 946-954
    [121]Kabo G. J, Kozyro A A, Diky V V, Simirsky V V, Ivashkevich L S, Krasulin A P, Sevruk V M. Thermodynamic properties of pentacyclo [5.4.0.02,6.03,10.05,9] undecane, C11H14. J. Chem. Thermodyn.,1995,27:707-720
    [122]Qiu L M, Hou J X, Wei W, Zheng J, Gong X D, Xiao H M. Density functional theory investigation on a caged compound pentacyclo [5.4.0.02,6.03,10.05,9] undecane. Acta Chim. Sinica,2008,66:745-750
    [123]张香文,米镇涛,李家玲.巡航导弹用高密度烃类燃料.火炸药学报,1999,22:41~45
    [124]Rao P N, Kunzru D. Thermal cracking of JP-10:Kinetics and product distribution. J. Anal. Appl. Pyrolysis,2006,76:154-160
    [125]Nakra S, Green R J, Anderson S L. Thermal decomposition of JP-10 studied by micro-flowtube pyrolysis-mass spectrometry. Combust. Flame,2006,144:662-674
    [126]Christe K O, Wilson W W, Sheehy J A, Boatz J A. N5+:A novel HOMO. N5+:A novel homoleptic polynitrogen ion as a high energy density material. Angew. Chem. Int. Ed.,1999,38:2004-2009
    [127]肖鹤鸣,李永富著.金属叠氮化物的能带和电子结构—感度和导电性.北京:科学出版社,1996
    [128]肖鹤鸣.高能化合物的结构和性质.北京:国防工业出版社,2004
    [129]肖鹤鸣,陈兆旭著.四唑化学的现代化理论.北京:科学出版社,2000
    [130]肖鹤鸣,王遵尧,姚剑敏.芳香族硝基炸药感度和安定性的量子化学研究Ⅰ.苯胺类硝基衍生物.化学学报,1985,43:14~18
    [131]Fan J F, Xiao H M. Theoretical study on pyrolysis and sensitivity of energetic compounds.(2) Nitro derivatives of benzene. J. Mol. Struct.(Theochem.),1996,365: 225-229
    [132]Xiao H M, Fan J F, Gu Z M, Dong H S. Theoretical study on pyrolysis and sensitivity of energetic compounds (3) Nitro derivatives of aminobenzenes. Chem. Phys.,1998,226:15-24
    [133]Xiao H M, Li Y F. Banding and electronic structures of metal azides-sensitivity and conductivity. Sci. China. Ser. B,1995,38:538-545
    [134]Zhu W H, Xiao J J, Xiao H M. Comparative first-principles study of structural and optical properties of alkali metal azides. J. Phys. Chem. B,2006,110:9856-9862
    [135]Chen Z X, Xiao H M, Yang S L. Theoretical investigation on the impact sensitivity of tetrazole derivatives and their metal salts. Chem. Phys.,1999,250:243-248
    [136]Chen Z X, Xiao H M. Impact sensitivity and activation energy of pyrolysis for tetrazole compounds, Int. J. Quantum Chem.,2000,79:350-357
    [137]Hartree D R. Wave mechanics of an atom with a non-coulomb central field. I. Theory and methods. II. Some results and discussion. III. Term values and intensities in series in optical spectra. Prog. Camb. Phil. Soc.,1928,24:89-110; 426-437
    [138]Fock V Z. The initial degrees of freedoms of the electron. Phys.,1931,68:522-534
    [139]Roothan C C J. New developments in molecular orbital theory. Rev. Mod. Phys., 1951,23:69-89
    [140]Moller C, Plesset M S. Note on an approximation treatment for many-electron systems. Phys. Rev.,1934,46:618-622
    [141]Hohenberg P, Kohn W. Inhomogenous electron gas. Phys. Rev. B,1964,136: 864-871
    [142]Kohn W, Sham L. Self-consistent equations including exchange and correction effects. J. Phys. Rev. A,1965,140:1133-1138
    [143]Parr R J, Yang W. Density funetional theory of atoms and molecules. New York: Oxford University Press,1989
    [144]Nagy A. Density funetional theory and application to atoms and molecules. Phys.Rep.,1998,298:1-79
    [145]Beek A D. Density-functional thermoechemistry. Ⅲ. The role of exact exchange. Chem. Phys.,1998,93:5648-5652
    [146]Lee C, Yang W T, Parr R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B.,1988,37:785-789
    [147]Perdew J P. Density-functional approximation for the correction energy for the inhomogeneous electron density. Phys.Rev. B.,1986,33:8822-8824
    [148]Perdew J P, Burke K, Wang Y. Generalized gradient approximation for exchange-correlation hole of a many-electron system. Phys. Rev. B.,1996,54: 16533-16539
    [149]Slater J C. Atomic Shielding Constants. Phys. Rev.,1930,36:57-64
    [150]Hariharan, P. C.; Pople, J. A. Self-consistent-field molecular orbital methods. XII. Further extension of Gaussian-type basis sets. Theor. Chim. Acta,1973,28:213-222.
    [151]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr., Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, Revision C.02. Wallingford CT:Gaussian, Inc.,2004
    [152](1) Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B,1990,41:7892-7895 (2) Materials Studio 3.0.1; Accelrys Inc.:San Diego, CA,2004
    [153]Sun H, Rigby D. Polysiloxanes:ab initio force and structural, conformational, and thermophysical properties. Spectrochim. Acta. A.,1997,153:1301-1323
    [154]Sun H, Ren P, Fried J R. The COMPASS Force Field:Parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci.,1998,8:229-246
    [155]Sun H. Compass:An ab initio force-field optimized for condense-phase applications-overview with details on alkanes and benzene compounds. J. Phys. Chem. B.,1998,102:7338-7364
    [156]Bunte S W, Sun H. Molecular modeling of energetic materials:The parameterization and validation of nitrate esters in the COMPASS force field. J. Phys. Chem. B,2000, 104:2477-2489
    [157]克莱兰著,龚少明译.统计热力学.上海:上海科技出版社,1980
    [158]Hill T L. An Intrduction to statistical thermodynamics. New York:Addision-Wesley Publishing Company INC,1964
    [159]傅献彩,沈文霞,姚天扬编.物理化学.第四版.北京:高等教育出版社,1990
    [160]Baur W H, Kassner D. The perils of Cc:comparing the frequencies of falsely assigned space groups with their general population. Acta Crystallogr. B,1992,48: 356-369
    [161]Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne, M C J. First-principles simulation:ideas, illustrations, and the CASTEP code. J. Phys-Condens. Mat.,2002,14:2717-2743
    [162]Payne M C, Teter M P, Allan D C. Arias T A, Joannopoulos J D. Iterative minimization techniques for ab initio total energy calculations:Molecular dynamics andconjugate gradients. Rev. Mod. Phys.,1992,64:1045-1097
    [163]Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett.,1996,77:3865-3868
    [164]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B.,1990,41:7892-7895
    [165]Greenberg A, Liebman J F. Strained organic molecules Organic Chemistry Series, Academic Press, New York,1978,38:1-406
    [166]Singh A, Ganguly B. DFT studies toward the design and discovery of a versatile cage-functionalized proton sponge. Eur. J. Org. Chem.,2007,2007:420-422
    [167]Hehre W J, Radom L, Schleyer P v R, Pople J A. Ab initio molecular orbital theory; Wiley-Interscience:New York,1986
    [168]Delly B. From molecules to solids with the DMol3 approach. J. Chem. Phys.,2000, 113:7756-7764
    [169]Hammer B, Hansen LB, Norskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerh of functionals. Phys. Rev. B,1999,59:7413-7421
    [170]Monkhorst H J, Pack J D. Special points for brillouin-zone integrations. Phys. Rev. B, 1976,13:5188-5192
    [171]Monkhorst H J, Pack J D. Special points for brillouin-zone integrations-a reply. Phys. Rev.B,1977,16:1748-1749
    [1]Ghule V D, Jadhav P M, Patil R S, Radhakrishnan S, Soman T. Quantum-chemical studies on hexaazaisowurtzitanes. J. Phys. Chem. A,2010,114:498-503
    [2]Sun C H, Zhao X Q, Li Y C, Pang S P. Synthesis of two new cage molecules containing trinitromethyl group. Chin. Chem. Lett.,2010,21:572-575
    [3]Nielsen A T, Eds.Olah G A, Squire D R. Chemistry of energetic materials. San Diego: Academic Press, Inc.,1991
    [4]Eaton P E. Angew. Chem. Cubanes:starting materials for the chemistry of the 1990s and the next century. Int. Ed. Engl.,1992,104:1447-1462
    [5]He W D, Zhou G, Hu H R,Tian S H, Tian A, Wen Z, Zhao P J, Xu L M. Study on an energetic material 2,6-diamino-3,5-dinitropyrazine-l-oxide by B3LYP. Acta Chim. Sinica,2001,59:1210-1215
    [6]Patil D G, Brill T B. Thermal decomposition of energetic materials 53. Kinetics and mechanism of thermolysis of hexanitrohexazaisowurtzitane. Combust. Flame,1991, 87:145-151
    [7]Beckhaus H D, Ruchardt C, Lagerwall D R, Paquette L A, Wahl F, Prinzbach H. Experimental enthalpies of formation and strain energies for the caged C20H20 pagodane and dodecahedrane frameworks. J. Am. Chem. Soc.,1994,116: 11775-11778
    [8]Hong B H, Lee J Y, Cho S J, Yun S, Kim K S. Theoretical study of the conformations and strain energies of [n,n] metaparacyclophanes:Indication of stable edge-to-face and displaced face-to-face conformers for n=4. J. Org. Chem.,1999,64:5661-5665
    [9]Wiberg K B. The concept of strain in organic chemistry. Angew. Chem., Int. Ed. Engl., 1986,25:312-322
    [10]Weiser V. The proceeding of 31st International Annual Conference ICT,2000,144
    [11]欧育湘,徐永江.乙腈法与乙醇法合成六苄基六氮杂异伍兹烷的比较.含能材料,1999,7:152~155
    [12]贾建峰,武海顺.Ⅲ-Ⅴ族多面体团簇的稳定性规律.化学进展,2012,24:1008~1022
    [13]赵存元,韦统师.小螺浆烷的“弯”键的研究.化学学报,1991,49:546~552
    [14]赵存元,王永成,韦统师.宝塔烷电子结构与张力的ab initio研究.化学学报,1992,50:228~232
    [15]王文俊,张占权.21世纪初固体推进剂技术展望.推进技术,2000,6:1-5
    [16]王文俊.新型含能材料及其推进剂的研究进展.推进技术,2001,22:269-275
    [17]Golfier M, Graindorge H, Longevialle Y, Mace H. New energetic molecules and their applications in the energetic materials. The proceeding of the 29th International Annual Conference of ICT, Karlsruhe, June 30-July 3,1998,3/1-3/17
    [18]Simpson R L, Urtiev P A, Ornellas D L, Moody G L, Scribner K J, Hoffman D M. CL-20 performance exceeds that of HMX and its sensitivity is moderate. Prop. Explos. Pyrotech.,1997,22:249-255
    [19]Russel T P, Miller P J, Piermarini G J, Black S. High pressure phase transition in y-hexanitrohexaazaisowurtzitane. J. Phys. Chem.,1992,96:5509-5512
    [20]Foltz M F, Coon C L, Garcia F, Nichols A L. Ⅲ, The thermal stability of the polymorphs of hexanitrohexaazaisowurtzitane, Part II. Prop., Explos., Pyrotech.,1994, 19:133-144
    [21]Thome V, Kempa P B, Herrman M. Solvent effects on the morphology of ε-CL-20 crystals. The proceeding of the 32nd International Annual Conference of ICT, Karlsruhe 2001,157/1-157/7
    [22]Johnston E H, Eugene R W. Use of chlorine-free non-solvents in solvent crystallization of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12,-hexaazatetracyclo [5.5.0.059. 03.11] dodecane (CL-20) explosive, US 5874574 A, February 23,1999
    [23]Russel T P, Miller P J, Piermarini G J, Black S. Pressure/temperature phase diagram of hexanitrohexaazaisowurtzitane. J. Phys. Chem.,1993,97:1993-1997
    [24]Jin S, Yu Z, Song Q, Ou Y. The role of properties of solvents in the properties of HNIW. The proceeding of the 34th International Annual Conference of ICT, Karlsruhe 2003,57/1-57/4
    [25]Wardle R B, Hinshaw J C, Braithwaite P, et al. Synthesis of the caged nitramine HNIW(CL-20). The proceeding of the 27th International Annual Conference of ICT, Karlsruhe, June 25-28,1996,27/1-27/10
    [26]Marioth E, Lobbecke S, Krause H. Screening units for particle formations of explosives using super-critical fluids. The proceeding of the 31st International Annual Conference of ICT, Karlsruhe, June 27-30,2000,119/1-119/3
    [27]Kim J, Yim Y. Effect of particle size on the thermal decomposition of ε-hexanitrohexaazaisowurtzitane. Chem. Eng. Jpn. J.,1999,32:237-241
    [28]Prabhakaran P V, George B K, Ravindran P V, et al. NMR characterization of hexaazahexabenzylisowurtzitane(HBIW). The proceeding of the 33rd International Annual Conference of ICT, Karlsruhe,2002,66/1-66/9
    [29]Kaiser M, Ditz B. Characterization of impurities in CL-20 by NMR spectroscopy. The proceeding of the 30th International Annual Conference of ICT, Karlsruhe, June 29-July 3,1999,94/1-94/16
    [30]Sorescu D C, Rice B M, Thompson D L. Molecular packing and NPT-molecular dynamics investigation of the transferability of the RDX intermolecular potential to 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane. J. Phys. Chem. B,1998,102:948-952
    [31]Liu J, Zhao X, Lu M, Pan J. Complete NMR spectral assignment of monoacetylpentanitrohexaazaisowurtzitane. Chin. J. Explos. Props.,1997,20:26-28
    [32]Pace M D. EPR spectra of photochemical nitrogen dioxide formation in monocyclic nitramines and hexanitrohexaazaisowurtzitane. J. Phys. Chem.,1991,95:5858-5864
    [33]Qiu W, Chen S, Yu Y. Structure of 2,4,8,10-tetrabenzyl-6,12-dibenzoyl-2,4,6, 8,10,12-hexaazatetracyclo [5.5.0.05.9.03.11] dodecane. Chin. J. Explos. Prop.,2001,24: 62-63
    [34]Chukanov V N, Golovina N I, Nedelko V V, et al. Phase transformations in hexanitrohexaazaisowurtzitane. The proceeding of the 32nd International Annual Conference of ICT, Karlsruhe 2001,101/1-101/9
    [35]Feng Z W, Liu C L, Fang T, Zhao X Q. Molecular and crystal structure of diacetyltetranitrohexaazaisowurtzitane(DATN). Chin. J. Explos. Prop.,2001,1:38-40
    [36]Jacob G, Lacroix G, Destombes V. Identification and analysis of impirities of HNIW. The proceeding of the 31 st International Annual Conference of ICT, Karlsruhe, June 27-30,2000,106/1-106/12
    [37]Foltz M F. Thermal stability of ε-hexanitrohexaazaisowurtzitane in an estane formulation. Prop., Explos., Pyrotech.,1994,19:63-69
    [38]Sikder A K, Sikder N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J. Hazard. Mater.,2004,112:1-15
    [39]Ghule V D, Jadhav P M, Patil R S, Radhakrishnan S, Soman T. Quantum-chemical studies on hexaazaisowurtzitanes. J. Phys. Chem. A,2010,114:498-503
    [40]李彦军,宋婧,李春迎,杨建明,吕剑,王文亮.几种新型六氮杂异伍兹烷衍生物结构与性能的理论预测—高能量密度化合物的寻求.化学学报,2009,67:1437~1446
    [41]张骥,肖鹤鸣,姬广富.六硝基六氮杂异伍兹烷结构和性质的理论研究.化学学报,2001,59:1265~127
    [43]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr., Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03; Gaussian, Inc.:Pittsburgh, PA,2003
    [44]Becke A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys.,1993,98:5648-5652
    [45]Lee C, Yang W, Parr R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B,1988,37:785-789
    [46]Hariharan P C, Pople J A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta,1973,28:213-222
    [47]陈兆旭,宋伟红,肖鹤鸣.有机叠氮化物几何构型和生成热的分子轨道研究.含能材料,1999,7:103~109
    [48]刘晓芳,徐文国,卢士香.叠氮化合物C6H6-n(N3)n(n=1-6)的密度泛函理论研究.高等学校化学学报,2009,30:1406~1409
    [49]李金山,肖鹤鸣.均三叠氮基三硝基苯热解反应的理论研究.化学物理学报,1999,12:597~602
    [50]邱丽美,贡雪东,郑剑,肖鹤鸣.由原子化反应法求算高能化合物的生成热.含能材料,2008,16:647~651
    [51]Qiu L, Xiao H M, Gong X D, Ju X H, Zhu W H. Theoretical studies on the structures, thermodynamic properties, detonation properties, and pyrolysis mechanisms of spiro nitramines. J. Phys. Chem. A,2006,110:3797-3807
    [52]Zhang J, Xiao H M. Computational studies on the infrared vibrational spectra, thermodynamic properties, detonation properties, and pyrolysis mechanism of octanitrocubane. J. Chem. Phys.,2002,116:10674-10683
    [53]Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C J. First-principles simulation:ideas, illustrations and the CASTEP code. Condens. Mater Phys.,2002,14:2717-2743
    [54]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B,1990,41:7892-7895
    [55]Fischer T H, Almlof J. General methods for geometry and wavefunction optimization. J. Phys. Chem.,1992,96:9768-9774
    [56]Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett.,1996,77:3865-3868
    [57]Eaton P E. Cubane:Starting materials for the chemistry of the 1990s and the new century. Angew. Chem. Int. Ed. Engl,1992,31:1421-1436.
    [58]肖鹤鸣.高能化合物的结构与性质.北京:国防工业出版社,2004
    [59]Cundari T R, Stevens W J. Effective-core-potential methods for the lanthanides. J. Chem. Phys.,1993,98:5555-5556
    [60]Bond energies from:Atkins P, de Paula. J. Physical Chemistry,7th ed.; W. H. Freeman and Co.:New York,2002
    [61]Glendening E D, Reed A E, Carpenter J E, Weinhold F. NBO, version 3.1; Madison, WI,1988
    [62]Sun H, Rigby D. Polysiloxanes:ab initio force and structural, conformational and thermophysical properties. Spectrochimi. Acta A.,1997,153:1301-1323
    [63]Sun H, Ren P, Fried J R. The COMPASS Force Field:Parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci.,1998,8:229-246
    [64]Sun H. Compass:An ab initio force-field optimized for condense-phase applications-overview with details on alkanes and benzene compounds. J. Phys. Chem. B,1998,102:7338-7364
    [65]Bunte S W, Sun H. Molecular modeling of energetic materials:The parameterization and validation of nitrate esters in the COMPASS Force Field. J. Phys. Chem. B,2000, 104:2477-2489
    [66]Belsky V K. The symmetries of molecules and of their positions in a crystal. Struct. Chem.,1974,15:631-634
    [67]Chernikova N Y, Belsky V K, Zorkii P M. New statistical data on the topology of homomolecular organic crystals. Struct. Chem.,1990,31:661-666
    [68]Mighell A D, Himes V L, Rodgers J R. Space-group frequencies for organic compounds. Acta Crystallogr. A,1983,39:737-740
    [69]Wilson A J C. Space groups rare for organic structures. I. Triclinic, monoclinic and orthorhombic crystal classes. Acta Crystallogr. A,1988,44:715-724
    [70]Srinivasan R. On space-group frequencies. Acta Crystallogr. A,1992,48:917-918
    [71]Baur W H, Kassner D. The perils of Cc:comparing the frequencies of falsely assigned space groups with their general population. Acta Crystallogr. B,1992,48:356-369
    [72]Materials Studio, Version 4.4, Accelrys Software, San Diego,2008
    [73]肖鹤鸣,李永富.金属叠氮物的能带和电子结构—感度和导电性.北京:科学出版社,1996
    [74]肖鹤鸣,李永富.金属叠氮化物的能带和电子结构—感度和导电性.中国科学(B辑),1995,25:23~28
    [75]肖鹤鸣,李永富,钱建军.碱金属和重金属叠氮化物的感度和导电性研究.物理化学学报,1994,10:235~240
    [76]肖鹤鸣,李永富.金属叠氮化物的能带和电子结构.北京:科学出版社,1996
    [77]Zhu W H, Xiao J J, Xiao H M. Comparative first-principles study of structural and optical properties of alkali metal azides. J. Phys. Chem. B,2006,110:9856-9862
    [78]Zhu W H, Xiao J J, Xiao H M. Density functional theory study of the structural and optical properties of lithium azide. Chem. Phys. Lett.,2006,422:117-121
    [79]Xu X J, Zhu W H, Xiao H M. DFT studies on the four polymorphs of crystalline CL-20 and the influences of hydrostatic pressure on ε-CL-20 crystal. J. Phys. Chem. B,2007,111:2090-2097
    [80]Zhu W H, Xiao J J, Ji G F, Zhao F, Xiao H. M. First-principles study of the four polymorphs of crystalline octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. J. Phys. Chem. B,2007,111:12715-12722
    [81]姬广富,肖鹤鸣,董海山.β-HMX晶体结构及其性质的高水平计算研究.化学学报,2002,60:194~199
    [82]Zhu W H, Zhang X W, Wei T, Xiao H M. First-principles study of crystalline mono-amino-2,4,6-trinitrobenzene, 1,3-diamino-2,4,6-trinitrobenzene, and 1,3,5-triamino-2,4,6-trinitrobenzene. J. Mol. Struct.(Theochem.),2009,900:84-89
    [83]肖鹤鸣.硝基化合物的分子轨道理论.北京:国防工业出版社,1993
    [1]董海山.高能量密度材料的发展及对策.含能材料,2004(增刊):1-11
    [2]程谱生,郑斌,曹欣茂等.国外高能量密度材料研究最新进展.报告号:BQB97-0334,1996
    [3]王乃兴,陈博仁,欧育湘.N,N-双(2,4,6-三硝基-3,5-二氨基苯基)-3,5-二硝基-2,6-二氨基吡啶的合成.北京理工大学学报,1994,14:34~37
    [4]张启戎,左军,陈学林,郁卫飞.吡啶硝化衍生物的合成及应用.化学研究与应用,2002,14:383-386
    [5]李金山,黄奕刚,董海山,杨光成.多硝基吡啶的密度泛函理论研究.含能材料,2003,11:176~181
    [6]尚威,杨国春,臧庆军,陈兰慧,苏忠民.取代吡啶衍生物一阶超极化率的理论研究.东北师大学报自然科学版,2005,37:57~60
    [7]J.A.焦耳K.米尔斯著,业诚,高大彬译.杂环化学.北京:科学出版社,2004,108~111
    [8]王长守,黄建良,张志杰.2-氯-4-硝基吡啶的合成.陕西化工,1999,28:15~16
    [9]钱进省,朱晓俊.毗啶类N-氧化物制备.中国医药工业杂志,1996,27:419
    [10]王长守,黄建良,张志杰.催化氧化法制备2-氯-4-硝基吡啶-N-氧化物.陕西化工,1999,28:23~25
    [11]齐燕,陈煦,王越,明媚.吡啶类-N-氧化物的研究进展.天津化工,2005,19:1-3
    [12]张玮.吡啶的亲电取代反应及其亲核性.石家庄职业技术学院学报,2000,12:31~33
    [13]姚子鹏,任平达.吡啶的亲核性.大学化学,1998,13:53~56
    [14]Qiu L, Xiao H M, Gong X D, Ju X H, Zhu W H. Theoretical studies on the structures, thermodynamic properties, detonation properties, and pyrolysis mechanisms of spiro nitramines. J. Phys. Chem. A,2006,110:3797-3807
    [15]Zhang J, Xiao H M. Computational studies on the infrared vibrational spectra, thermodynamic properties, detonation properties, and pyrolysis mechanism of octanitrocubane. J. Chem. Phys.,2002,116:10674-10683
    [16]肖鹤鸣.高能化合物的结构与性质,北京:国防工业出版社,2004
    [17]Du H C, Wang G X, Gong X D, Xiao H M. A theoretical study on the adduct of chlorine trifluoride oxide and boron trifluoride-molecular and crystal structures, vibrational spectrum, and thermodynamic properties. Int. J. Quantum Chem.,2012, 112:1291-1298
    [18]Zhang J Y, Du H C, Wang F, Gong X D, Huang Y S. DFT studies on a high energy density cage compound 4-trinitroethyl-2,6,8,10,12-pentanitrohezaazaisowurtzitane. J. Phys. Chem. A,2011,115:6617-6621
    [19]Zhang J Y, Du H C, Wang F, Gong X D, Huang Y S. Theoretical investigations of a high density cage compound 10-(1-nitro-1,2,3,4-tetraazol-5-yl))methyl-2,4,6,8,12-hexanitrohexaazaisowurtzitane. J. Mol. Model.,2012,18:165-170
    [20]Zhang J Y, Du H C, Wang F, Gong X D, Ying S J. Crystal structure, detonation performance, and thermal stability of a new polynitro cage compound:2,4,6,8,10, 12,13,14,15-nonanitro-2,4,6,8,10,12,13,14,15-nonaazaheptacyclo [5.5.1.13,11.15,9] pe- ntadecane. J. Mol. Model.,2012,18:2369-2376
    [21]陈兆旭,宋伟红,肖鹤鸣.有机叠氮化物几何构型和生成热的分子轨道研究.含能材料,1999,7:103~109
    [22]刘晓芳,徐文国,卢士香.叠氮化合物C6H6-n(N3)n(n=1-6)的密度泛函理论研究.高等学校化学学报,2009,30:1406~1409
    [23]李金山,肖鹤鸣.均三叠氮基三硝基苯热解反应的理论研究.化学物理学报,1999,12:597~602
    [24]邱丽美,贡雪东,郑剑,肖鹤鸣.由原子化反应法求算高能化合物的生成热.含能材料,2008,16:647~651
    [25]肖鹤鸣.高能化合物的结构与性质,北京,国防工业出版社,2004
    [26]李彦军,宋婧,李春迎,杨建明,吕剑,王文亮.几种新型六氮杂异伍兹烷衍生物结构与性能的理论预测—高能量密度化合物的寻求,化学学报,2009,67:1437~1446
    [27]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr., Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, Revision C.02. Wallingford CT:Gaussian, Inc.,2004
    [28]Scott A P, Radom L. Harmonic vibrational frequencies:An evaluation of Hartree-Fock, Moller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. J. Phys. Chem.,1996,100: 16502-16513
    [29]赵信岐.六硝基六氮杂异伍兹烷四种晶型的Fourier变换红外光谱.兵工学报,1995,4:21~23
    [30]Folts M F. Thermal stability of ε-hexanitrohexaazaitane in an estane formulation. Prop. Explos. Pyrotech.,1994,19:63-69
    [31]Holtz E V, Ornellas D, Folts M F, Clarkson J E. The solubility of ε-CL-20 in selected material. Prop. Explos. Pyrotech.,1994,19:206-212
    [1]李战雄,唐松青,欧育湘,陈博仁.呋咱含能衍生物合成研究进展.含能材料,2002,10:59~65
    [2]何天白,胡汉杰.功能高分子与新技术.北京:化学工业出版社,2001.
    [3]张德雄,张衍,王琦.呋咱系列高能量密度材料的发展.固体火箭技术,2004,1:32~36
    [4]邓敏智,杜恒,赵凤起,罗阳,袁潮.四唑类盐的制备及其在固体推进剂中的应用初探.固体火箭技术,2003,26:53-57
    [5]赵凤起,陈沛,李上文,王百成,杜恒,邓敏智.四唑类化合物的金属盐作为微烟推进剂燃烧催化剂的研究.兵工学报,2004,25:30~33
    [6]苗艳玲,张同来,乔小晶,张建国,郁开北.4,6-二硝基苯并氧化吠咱的制备、晶体结构及热分解机理.有机化学,2004,24:205~209
    [7]周红萍,董海山,郝莹.苯并氧化呋咱类化合物的研究进展.含能材料,2003,11: 236~240
    [8]李上文,赵凤起,袁潮,罗阳,高茵.国外固体推进剂研究与开发的趋势.固体火箭技术,2002,2:236~240
    [9]阳世清,岳守体.国外四嗪四唑类高氮含能材料研究进展.含能材料,2003,11:231~235
    [10]胡焕性,张志忠,赵凤起,肖川,王亲会,袁宝慧.高能量密度材料,3,4-二硝基呋咱基氧化呋咱性能及应用研究.兵工学报,2004,25:155~158
    [11]宋纪蓉.NTO金属配合物的研究,北京:化学工业出版社,1998
    [12]姬广富,肖鹤鸣,董海山,贡雪东.ANTA的结构、性质及其互变异构的理论研究.化学学报,2001,59:895~900
    [13]徐丽娜,肖鹤鸣,方国勇,居学海.NTO二聚体分子间相互作用的理论研究.化学学报,2005,63:1062-1068
    [14]陈兆旭.四唑衍生物及其配合物结构和性能的量子化学研究,博士学位论文,1999
    [15]孙荣康,任特生,高怀琳.猛炸药的化学与工艺学(上册).北京:国防工业出版社,1981,7:39~42
    [16]Gunasekarna A. A convenient synthesis of diaminoglyoxime and diaminofurazan: Useful precursors for the synthesis of high density energetic materials. J. Heterocycl. Chem.,1995,32:1405-1407
    [1.7]Zelenin A K, Trudell M L, Gilardi R D. Synthesis and strucutre of dinitroazofurazan. J. Heterocyclic Chem.,1998,35:151-155
    [18]Lobbecke S. Thermal analysis of different nitrofuroxans. The proceeding of the 30th International Annual Conference of ICT,1999,116
    [19]Sinditskii V P. Study on combustion of new enegretic furaznas. The proceeding of the 29th International Annual Conference of ICT,1998,170
    [20]Makahova N N.4-Amnio-3azidocarbonyl furoxan as a universal snyton for the synthesis of enegetic compounds of the furoxan series. The proceeding of the 30th International Annual Conference of ICT,1999,58
    [21]Makahova N N. Synihesis, physical-chemical and detonation characteristics of nirtrofuroxan as promising building blocks for enegretic materials design. The proceeding of the 28th International Annual Conference of ICT,1997,5
    [22]史彦山,李战雄,欧育湘,陈博仁.3,3’-二硝基氧化偶氮呋咱的合成及性能.火炸药学报,2002,2:14~15
    [23]洪伟良,田德余,刘剑洪,王芳.含二硝基偶氮氧化呋咱推进剂的能量特性研究. 固体火箭技术,2001,24:41~53
    [24]Liu H, Wang F, Wang G X, Gong X D. Theoretical investigations on structure, density, detonation properties, and sensitivity of the derivatives of PYX. J. Comput. Chem.,2012,33:1790-1796
    [25]Liu H, Du H C, Wang G X, Liu Y, Gong X D. Molecular design of new nitramine explosives:1,3,5,7-tetranitro-8-(nitromethyl)-4-imidazolino[4,5-b]4-imidazolino-[4,5-e] pyridine and its N-oxide. J. Mol. Model.,2012,18:1325-1331
    [26]Liu H, Du H C, Wang G X, Gong X D. Theoretical studies on the structures, densities, detonation properties and pyrolysis mechanism of energetic compounds containing pyridine ring. J. Struct. Chem.,2012,23:479-486
    [27]赵雁来.杂环化学导论.北京:科学出版社,1992,308-311
    [28]姚子鹏,任平达.吡啶的亲核性.大学化学,1998,13:53~56
    [29]张锁秦,封继康,任爱民.取代吡啶系列分子的光谱和二阶非线性光学性质的理论研究.高等学校化学学报,1999,11:1754~1758
    [30]陈文凯,许娇.2-羟基吡啶与水氢键作用的理论研究.结构化学,2002,5:567-571
    [31]NielsenA T, Nissan R A, Vanderah D J, Coon C L, Gilardi R D, George C F, Anderson J F. Polyazapolycyclics by condensation of aldehydes with amines.2. Formation of 2,4,6,8,10,12-hexabenzyl-2,4,6,8,10,12-hexaazatetracyclo [5.5.0.05,9. O3,11] dodecanes from glyoxal and benzylamines. J. Org. Chem.,1990,55:1459-1466
    [32]Zhang M X, Eaton P E, Gilardi R, Gelber N, Iyer S, Surapaneni R. Prop. Explos., Pyrotech.,2002,27:1-6
    [33]Zhang M X, Eaton P E, Gilardi R. Polynitrocubanes:Advanced high-density, high energy materials. Adv. Mater.,2000,12:1143-1148
    [34]Zhang M X, Eaton P E, Gilardi R. Hepta-and octanitrocubanes. Angew. Chem. Int. Ed.,2000,39:401-404
    [35]Schulman J M, Disch R L. J. Am. Chem. Soc.,1984,106:1202-1204
    [36]Xu X J, Xiao H M, Gong X D, Ju X H, Chen Z X. Theoretical studies on the vibrational spectra, thermodynamic properties, and pyrolysis mechanisms for polynitroadamantanes. J. Phys. Chem. A,2005,109:11268-11274
    [37]Stetter H, Mayer J, Schwarz M, Wolff K. Chem. Ber.,1960,93:226-230
    [38]Sun C H, Zhao X Q, Li Y C, Pang S P. Synthesis of two new cage molecules containing trinitromethyl group. Chin. Chem. Lett.,2010,21:572-575
    [39]Zhang J Y, Du H C, Wang F, Gong X D, Huang Y S. DFT studies on a high energy density cage compound 4-trinitroethyl-2,6,8,10,12-pentanitrohezaazaisowurtzitane. J. Phys. Chem. A,2011,105:6617-6621
    [40]Zhang J Y, Du H C, Wang F, Gong X D, Huang Y S. Huang. Theoretical investigations of a high density cage compound 10-(1-nitro-1,2,3,4-tetraazol-5-yl)) methyl-2,4,6,8,12-hexanitrohexaazaisowurtzitane. J. Mol. Model.,2012,18:165-170
    [41]Zhang J Y, Du H C, Wang F, Gong X D, Ying S J. Crystal structure, detonation performance, and thermal stability of a new polynitro cage compound:2,4,6,8,10,12, 13,14,15-nonanitro-2,4,6,8,10,12,13,14,15-nonaazaheptacyclo [5.5.1.13,11.15,9] penta-decane. J. Mol. Model.,2012,18:2369-2376
    [42]Pagoria P F, Lee G S, Mitchell A R, Schmidt R D. A review of energetic materials synthesis. Thermochim. Acta,2002,384:187-204
    [43]Xu X J, Xiao H M, Ju X H, Gong X D, Zhu W H. Computational studies on polynitrohexaazaadmantanes as potential high energy density materials (HEDMs). J. Phys. Chem. A,2006,110:5929-5933
    [44]Qui L, Xiao H M, Gong X D, Ju X H, Zhu W H. Theoretical studies on the structures, thermodynamic properties, detonation properties, and pyrolysis mechanism of spiro nitramines. J. Phys. Chem. A,2006,110:3797-3807
    [45]Xu X J, Xiao H M, Ju X H, Gong X D, Zhao X C. Theoretical studies on the vibrational spectra, thermodynamic properties, detonation properties, and pyrolysis mechanisms for polynitroadamantanes. J. Phys. Chem. A,2005,109:11268-11274
    [46]Qui L, Xiao H M, Zhu W H, Ju X H, Gong X D. Theoretical study on the high energy density compound hexanitrohexaazatricyclotetradecanedifuroxan. Chin. J. Chem., 2006,24:1538-1546
    [47]Becke A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys,1993,98:5648-5652
    [48]Lee C, Yang W, Parr R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B,1988,37:785-789
    [49]Hariharan P C, Pople J A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta,1973,28:213-222
    [50]Scott A P, Radom L. Harmonic vibrational frequencies:An evaluation of Hartree-Fock, Moller-Plesset, Quadratic Configuration interaction, Density Functional Theory, and Semiempirical Scale Factors. J. Phys. Chem.,1996,100: 16502-16513
    [51]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr., Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, Revision C.02. Wallingford CT:Gaussian, Inc.,2004
    [52]Chen Z X, Xiao H M, Song W Y. Theoretical investigation of nitro derivatives of tetrazole with density theory (DFT). J. Mol. Struct.(Theochem),1999,460:167-173
    [1]Singh R P, Verma R D, Meshri D T, Shreeve J M. Energetic Nitrogen-Rich Salts and Ionic Liquids. Angew. Chem., Int. Ed.,2006,45:3584-3601
    [2]Pagoria P F, Lee G S, Mitchell A R, Schmidt R D. A review of energetic materials synthesis. Thermochim. Acta,2002,384:187-204
    [3]Fried L E, Manaa M R, Pagoria P F, Simpson R L. Design and synthesis of energetic materials. Annu. Rev. Mater. Res.,2001,31:291-321
    [4]Agrawalt J P. Recent trends in high-energy material. Prog. Energy Combust. Sci.,1998, 24:1-30
    [5]Hiskey M A, Chavez D E, Naud D L, Son S F, Berghout H L, Bolme C A. Proc. Int. Pyrotech. Semin.,2000,27:3-14
    [6]Nair U R, Sivabalan R, Gore G M, Geetha M, Asthana S N, Singh H. Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based formulations. Combust. Explos. Shock Waves.,2005,41:121-132
    [7]Geetha M, Nair U R, Sarwade D B, Gore G M, Asthana S N, Singh H. Studies on CL-20:The most powerful high energy material.2003,73:913-922
    [8]Nedelko V V, Chukanov N V, Raevskii A V, Korsounskii B L, Larikova T S, Kolesova O I, Volk F. Comparative investigation of thermal decomposition of various modifications of hexanitrohexaazaisowurtzitane (CL-20). Prop. Esplos. Pyrotech., 2000,25:255-259
    [9]Fanny M R, Louise P, Stephane D, Vimal K, Balakrishnan, Chantale B, Jalal H. Physico-chemical measurements of CL-20 for environmental applications: Comparison with RDX and HMX. J. Chromatogr. A,2004,1025:125-132
    [10]Akademiai Kiado, co-published with Springer Science Business Media B.V., Formerly Kluwer Academic Publishers B.V. Studies on CL-20:The most powerful high energy material. J. Therm. Anal. Calorim.,2004,73:913-922
    [11]Crocker F H, Indest K J, Fredrickson H L. Biodegradation of the cyclic nitramine explosives RDX, HMX, and CL-20. Appl. Microbiol. Biotechnol.,2006,73:274-290
    [12]Bhushan B, Halasz A, Thiboutot S, Ampleman G, Hawari J. Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Biochem. Biophys. Res. Commun.,2004,316:816-821
    [13]Xu X J, Zhu W H, Xiao H M. DFT Studies on the four polymorphs of crystalline CL-20 and the influences of hydrostatic pressure on ε-CL-20 crystal. J. Phys. Chem. B,2007,111:2090-2097
    [14]Antoine E. D. M. van der Heijden, Richard H. B. Bouma. Crystallization and characterization of RDX, HMX, and CL-20. Cryst. Growth Des.,2004,4:999-1007
    [15]Xu X J, Xiao H M, Xiao J J, Zhu W H, Huang H, Li J S. Molecular dynamics simulations for pure ε-CL-20 and ε-CL-20 Based PBXs. J. Phys. Chem. B,2006,110: 7203-7207
    [16]Hamilton R S, Sanderson A J, Wardle R B, Warner K F. Studies of the synthesis and crystallization of CL-20. Energetic materials-Analysis, diagnostics and testing; Proceedings of the 31st ICT International Conference, Karlsruhe, Germany; 2000, 27-30 June, pp.21-1 to 21-8
    [17]肖鹤鸣.硝基化合物的分子轨道理论.北京:国防工业出版社,1994
    [18]Xiao H M, Fan J F, Gu Z M, Dong H S. Theoretical study on pyrolysis and sensitivity of energetic compounds (3) nitro derivatives of aminobenzenes. Chem. Phys.,1998, 226:15-24
    [19]Xu X J, Xiao H M, Gong X D, Ju X H, Chen Z X. Theoretical investigation on density, detonation properties, and pyrolysis mechanism of nitro derivatives of benzene and aminobenzenes. J. Phys. Chem. A,2005,109:11268-11274
    [20]王桂香,贡雪东,肖鹤鸣.苯和苯胺类硝基衍生物热解机理和撞击感度的理论研究.化学学报,2008,66:711~716
    [21]Wang G X, Gong X D, Liu Y, Xiao H M. A theoretical investigation on the structures, densities, detonation properties, and pyrolysis mechanism of the nitro derivatives of phenols. Int. J. Quantum Chem.,2010,110:1691-1701
    [22]Owens F J, Jayasurya K, Abrahmsen L, Politzer P. Computational analysis of some properties associated with the nitro groups in polynitroaromatic molecules. Chem. Phys. Lett.,1985,116:434-438
    [23]Murray J S, Politzer P. Chemistry and physics of energetic materials. Kluwer Academic Publishers, Netherlands,1990
    [24]Owens F J. Calculation of energy barriers for bond rupture in some energetic molecules. J. Mol. Struct.(Theochem.),1996,370:11-16
    [25]Politzer P, Murray J S. Relationships between dissociation energies and electrostatic potentials of C-NO2 bonds:applications to impact sensitivities. J. Mol. Struct.(Theochem.),1996,376:419-424
    [26]Rice B M, Sahu S, Owens F J. Density functional calculations of bond dissociation energies for NO2 scission in some nitroaromatic molecules. J. Mol. Struct.(Theochem.),2002,583:69-72
    [27]Guillaume F, Laurent J, Patricia R, Carlo A. Theoretical study of the decomposition reactions in substituted nitrobenzenes. J. Phys. Chem. A,2008,112:4054-4059
    [28]Thomas B B, Kenneth J J. Kinetics and mechanisms of thermal decomposition of nitroaromatic explosives. Chem. Rev.,1993,93:2667-2692
    [29]肖鹤鸣,李永富.金属叠氮化物的能带和电子结构.北京:科学出版社,1996
    [30]Wang L J, Zgierski M Z, Mezey P G. Stable structures of nitrogen-rich sulfides: S(N3)m(m=1-4). J. Phys. Chem. A,2003,107:2080-2084
    [31]Bitner T W, Zink J I. Luminescence of dimethylgallium(Ⅲ) azide. Inorg. Chem., 2001,40:3252-3254
    [32]Arenas J F, Otero J C, Adelaida S, Juan S. Application of SQMFF vibrational calculations to transition states:DFT and ab initio study of the kinetics of methyl azide and ethyl azide thermolysis. J. Phys. Chem. A,1998,102:1146-1151
    [33]王乃兴.叠氮化合物及其衍生物的研究.火炸药,1992,1:39~41
    [34]周明川.国外叠氮有机化合物的研究.固体火箭技术,1990,1:59-63
    [35]周智明,陈博仁.几种有机叠氮化合物的合成及性能.含能材料,1996,4:49-56
    [36]金韶华,李文,松全才.有机叠氮化物的热分解.含能材料,1998,6:123-127
    [37]施明达.一种新型含能材料—叠氮有机化合物.火炸药,1992,4:24-30
    [38]陈兆旭,宋伟红,肖鹤鸣.有机叠氮化物几何构型和生成热的分子轨道研究.含能材料,1999,7:103~109
    [39]刘晓芳,徐文国,卢士香.叠氮化合物C6H6-n(N3)n(n=1-6)的密度泛函理论研究.高 等学校化学学报,2009,30:1406~1409
    [40]Zhang J Y, Du H C, Wang F, Gong X D, Huang Y S. DFT studies on a high energy density cage compound 4-trinitroethyl-2,6,8,10,12-pentanitrohezaazaisowurtzitane. J. Phys. Chem. A,2011,115:6617-6621
    [41]Zhang J Y, Du H C, Wang F, Gong X D, Huang Y S. Theoretical investigations of a high density cage compound 10-(1-nitro-1,2,3,4-tetraazol-5-yl))methyl-2,4,6,8,12-hexanitrohexaazaisowurtzitane. J. Mol. Model.,2012,18:165-170
    [42]Zhang J Y, Du H C, Wang F, Gong X D, Ying S J. Crystal structure, detonation performance, and thermal stability of a new polynitro cage compound: 2,4,6,8,10,12,13,14,15-nonanitro-2,4,6,8,10,12,13,14,15-nonaazaheptacyclo [5.5.1. 13,11.15,9] pentadecane. J. Mol. Model.,2012,18:2369-2376
    [43]Dixon D A, Smart B E. Nulnerical simulation of molecular system. The detennination of their mochemical Properties. Chem. Eng. Commun.,1990,98:173-184
    [44]Stewart J J P. Optimization of parameters for semiempirical methods. I J. comput. Chem.,1989,10:209-220
    [45]邱玲,居学海,肖鹤鸣.高能化合物生成热的半经验分子轨道研究.含能材料,2004,12:69~73
    [46]Disch R L, Schulman J M. Ab initiotio heat of fomation of mediumsized hydrocarbons.7. The[n] prismanes. J. Am. Chem. Soc.,1988,110:2102-2105
    [47]Nicolaides A, Rauk A, Glukhovtsev M N, Radom L. Heat of fomation from G2, G2(MP2), and G2(MP2, SVP) total energies. J. Phys. Chem.,1996,100: 17460-17464
    [48]Chen Z X, Xiao J J, Xiao H M, Chiu Y N. Studies on heats of formation for tetrazole derivatives with density functional theory B3LYP method. J. Phys. Chem. A,1999, 103:8062-8066
    [49]Zhang J, Xiao J J, Xiao H M. Theoretical studies on heats of formation for cubylnitrates using density functional theory B3LYP method and semiempirical MO methods, Int. J. Quantum Chem,2002,86:305-312
    [50]Curtiss L A, Raghavachari K, Redfern P C, Stefanov B B. Assessment of complete basis set methods for calculation of enlthalpies of formation. J. Chem. Phys.,1998, 108:692-697
    [51]Petyersson G A, Malick D K, Wilson W G, Ochterski J W, Montgomery J A, Frisch M J. Calibration and comparison of the G2, CBS, and DFT methods for computational thermochemistry. J. Chem. Phys.,1998,109:10570-10579
    [52]Castro E A. A simplified scheme of atom equivalents to relate ab initiotio energiesto enthalpies of formation. J. Mol. Struct.(Theochem.),1994,304:93-99
    [53]Politer P, Lane P, Concha M C. Computational determination of the energies of boron ignition/combustion reactions. J Phys Chem A,1999,103:1419-1425
    [54]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr., Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03; Gaussian, Inc.:Pittsburgh, PA,2003
    [55]Becke A D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys.,1993,98:5648-5652
    [56]Lee C, Yang W, Parr R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B,1988,37:785-789
    [57]Hariharan P C, Pople J A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta,1973,28:213-222
    [58]Lide D R, Ed. CRC Handbook of Chemistry and Physics,89th ed.; CRC Press/Taylor and Francis:Boca Raton, FL,2009; Internet Version,2010
    [59]Slikder A K, Sikder N. A review of advanced high performance, insensitive and thermal stable energetic materials emerging for military and space applications, J. Hazard. Mater.,2004,112:1-15
    [60]Wang F, Du H C, Zhang J Y, Gong X D. Comparative Theoretical studies of energetic azo s-triazines. J. Phys. Chem A,2011,115:11852-11860
    [61]Wang F, Wang G X, Du H C, Zhang J Y, Gong X D. Theoretical studies on the heats of formation, detonation properties, and pyrolysis mechanisms of energetic cyclic nitramines. J. Phys. Chem A,2011,115:13858-13864
    [62]Wang F, Du H C, Zhang J Y, Gong X D. Computational studies on the crystal structure, thermodynamic properties, detonation performance, and pyrolysis mechanism of 2,4, 6,8-tetranitro-1,3,5,7-tetraazacubane as a novel high energy density material. J. Phys.Chem A,2011,115:11788-11795
    [63]Ghule V D, Jadhav P M, Patil R S, Radhakrishnan S, Soman T. Quantum-chemical studies on hexaazaisowurtzitanes. J. Phys. Chem. A,2010,114:498-503
    [64]Jursic B S. Computing the heat of formation for cubane and tetrahedrane with density functional theory and complete basis set ab initio methods. J. Mol. Struct.(Theochem.), 2000,499:137-140
    [65]Jursic B S. Computation of the heats of formation of cyclopropane and cyclobutane derivatives using density functional theory methods. J. Mol. Struct.(Theochem.),1997, 391:75-83
    [66]Jursic B S. High level ab initio and density functional theory study of bond dissociation energy and enthalpy of formation for hypochloric and hypobromic acids. J. Mol. Struct.(Theochem.),1999,467:173-179
    [67]Zhang J, Xiao H M, Gong X D. Theoretical studies on heats of formation for polynitrocubanes using the density functional theory B3LYP methods and semiempirical MO methods, J. Phys. Org. Chem.,2001,14:583-588
    [68]Qiu L M, Gong X D, Zheng J, Xiao H M. J. Hazard. Mater.,2009,166:931-938
    [1]Leininger M L, Sherrill C D, Schaefer H. N8:A structure analogous to pentalene, and other high-energy density minima. J. Phys. Chem.,1995,99:2324-2328
    [2]Korkin A A, Bartlett R J. Theoretical prediction of 2,4,6-trinitro 1,3,5-triazine (TNTA). A new, powerful, high-energy density material? J. Am. Chem. Soc.,1996,118: 12244-12245
    [3]Simpson R L, Urtiew P A, Ornellas D L, Moody G L, Scribner K J, Hoffman D M. CL-20 performance exceeds that of HMX and its sensitivity is moderate. Prop. Explos. Pyrotech.,1997,22:249-255
    [4]Ghule V D, Jadhav P M, Patil R S, Radhakrishnan S, Soman T. Quantum-chemical studies on hexaazaisowurtzitanes. J. Phys. Chem. A,2010,114:498-503
    [5]Sikder A K, Sikder N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J. Hazard. Mater.2004,112:1-15
    [6]李彦军,宋婧,李春迎,杨建明,吕剑,王文亮.几种新型六氮杂异伍兹烷衍生物结构与性能的理论预测—高能量密度化合物的寻求化学学报,2009,67:1437~1446
    [7]Xu X J, Xiao H M, Gong X D, Ju X H, Chen Z X. Theoretical investigation on density, detonation properties, and pyrolysis mechanism of nitro derivatives of benzene and aminobenzenes. J. Phys. Chem. A,2005,109:11268-11274
    [8]Sun C H, Zhao X Q, Li Y C, Pang S P. Synthesis of two new cage molecules containing trinitromethyl group. Chin. Chem. Lett.,2010,21:572-575
    [9]Zhang J Y, Du H C, Wang F, Gong X D, Huang Y S. DFT studies on a high energy density cage compound 4-trinitroethyl-2,6,8,10,12-pentanitrohezaazaisowurtzitane. J. Phys. Chem. A,2011,115:6617-6621
    [10]Zhang J Y, Du H C, Wang F, Gong X D, Huang Y S. Theoretical investigations of a high density cage compound 10-(1-nitro-1,2,3,4-tetraazol-5-yl))methyl-2,4,6,8,12-hexanitrohexaazaisowurtzitane. J. Mol. Model.,2012,18:165-170
    [11]Zhang J Y, Du H C, Wang F, Gong X D, Ying S J. Crystal structure, detonation performance, and thermal stability of a new polynitro cage compound: 2,4,6,8,10,12,13,14,15-nonanitro-2,4,6,8,10,12,13,14,15-nonaazaheptacyclo [5.5.1. 13,11.15,9] pentadecane. J. Mol. Model.,2012,18:2369-2376
    [12]Pagoria P F, Lee G S, Mitchell A R, Schmidt R D. Thermochim. Acta,2002,384: 187-204
    [13]Greenberg A, Liebman J F. Strained organic molecules organic chemistry series, Academic Press, New York,1978,38:1-406
    [14]Baeyer A. Ueber polyacetylenverbindungen, Ber. Deuts. Chem. Ges.,1885,18: 2269-2281
    [15]Coulson C A, Moffitt W E. The properties of certain strained hydrocarbons. Philos Mag.,1949,40:1-35
    [16]Politzer P, Domelsmith L N, Sjoberg P. Electrostatic potentials of strained systems: nitroclyclopropane. Chem. Phys. Lett,1982,92:366-370
    [17]Politzer P, Jayasuriya K, Zilles B A. Some effects of amine substituents in strained hydrocarbons. J. Am. Chem. Soc.,1985,107:121-124
    [18]赵存元,韦统师,邱文元.小螺浆烷的弯键研究.化学学报,1991,49:546~552
    [19]赵存元,韦统师,邱文元.小螺浆烷C-C中心键的量子化学研究.高等学校化学学报,1991,12:932~934
    [20]赵存元,王永成.宝塔烷电子结构与张力的ab initio研究.化学学报,1992,50:228~232
    [21]赵存元,邱文元.多面体碳烷(CH)。的结构与张力特性研究.科学通报,1992,4:331~333
    [22]赵存元,韦统师.小螺浆烷的量子化学计算.西北师范大学学报(自然科学版),1990,3:36~39
    [23]Wiberg K B, Bader R F W, Lau C D H. Theoretical anylisis of hydrocarbon propertis. 2. Additivity of group properties and the origin of strain energy. J. Am. Chem. Soc., 1987,109:1001-1012
    [24]Politzer P, Abrahmsen L, Sjoberg P, Laurence P R. The use of bond paths for quantitatively charactering bond strain. Chem. Phys. Lett.,1983,102:74-78
    [25]杜奇石,彭周人.Hellmann-Feyman力的ab initio计算及在化学键理论中的应用,Ⅰ理论与计算.化学学报,1984,42:843~849
    [26]杜奇石,彭周人.Hellmann-Feyman力的ab initio计算及在化学键研究中的应用,Ⅰ通用程序ABHF.兰州大学学报(自然科学版),1983,19:112~119
    [27]范晓薇.高能量密度材料取代基效应理论研究.博士论文.2009
    [28]Marhand A P. Suri S C. Synthesis of 3,5,5-trinitropentacyclo [5.3.0.02,6.03,10.04,8] decane. J. Org. Chem.,1984,49:2041-2043
    [29]Kybett B D, Carroll S, Natalis P, Bonnell D W, Margrove J L, Franklin J L. Thermodynamic properties of cubane. J. Am. Chem. Soc.,1966,88:626-626
    [30]Cox J D, Pilcher G.. Thermochemistry of organic and organometallic compounds, Academic Press, New York,1970,571-643
    [31]Kirklin D R, Chorney K L, Domalski E S. Enthalpy of combustion of 1,4-dimethylcubane dicarboxylate, J. Chem. Thermo.,1989,21:1105-1113
    [32]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr., Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, Revision C.02. Wallingford CT:Gaussian, Inc.,2004
    [33]Coulson C A, Moffitt W E. The properties of certain strained hydrocarbons. Philos Mag.,1949,40:1-35
    [34]Greenberg A, Liebman J F. Strained organic molecules organic chemistry series, Academic Press, New York,1978,38:1-406
    [35]Singh A, Ganguly B. DFT Studies toward the design and discovery of a versatile cage-functionalized proton sponge. Eur. J. Org. Chem.,2007,2007:420-422
    [36]Hehre W J, Radom L, Schleyer P v R, Pople J A. Ab initio molecular orbital theory; Wiley-Interscience:New York,1986
    [37]George P, Trachtman M, Bock C W, Brett A M. An alternative approach to the problem of assessing stabilization energies in cyclic conjugated hydrocarbons. Theor. Chim. Acta.,1975,38:121-129
    [38]Zhao M, Gimarc B. M. Strain energies in cyclic On, n=3-8. J. Phys. Chem.,1993,97: 4023-4030
    [39]Warren D S, Gimarc B M. Strain energies in sulfur rings, Sn, n=3-8. J. Phys. Chem., 1993,97:4031-4035
    [40]Magers D H, Davis S R. Ring strain in the oxazetidines. J. Mol. Struct.(Theochem.), 1999,487:205-210
    [41]Lewis L L, Turner L L, Salter E A, Magers D H. Computation of the conventional strain energy in oxaziridine. J. Mol. Struct.(Theochem.),2002,592:161-171
    [42]Schulman J M, Disch R L. Ab initio heats of formation of medium-sized hydrocarbons. The heat of formation of dodecahedrane. J. Am. Chem. Soc.,1984,106: 1202-1204
    [43]Walker J E, Adamson P A, Davis S R. Comparison of calculated hydrocarbon strain energies using ab initio and composite methods. J. Mol. Struct.(Theochem.),1999, 487:145-150
    [44]Lee C, Yang W, Parr R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B,1988,37:785-789
    [45]Becke A D. Density-functional thermochemistry Ⅱ. The effect of the Perdew-Wang generalized-gradient correlation correction, J. Chem. Phys.,1992,97:9173-9177
    [46]Zhao M, Gimarc B M. Strain energies in cyclic On, n=3-8, J. Phys. Chem.,1993,97: 4023-4030
    [47]Bachrach S M. Theoretical studies of phosphirane and phosphetane. J. Phys. Chem., 1989,93:7780-7784
    [48]Dill J D, Greenberg A, Liebman J F. Substituent effects on strain energies. J. Am. Chem. Soc.,1979,101:6814-6826
    [49]Magers D H, Davis S R. Ring strain in the oxazetidines. J. Mol. Struct.(Theochem.), 1999,487:205-210
    [50]Lewis L L, Turner L L, Salter E A, Magers D H. Computation of the conventional strain energy in oxaziridine. J. Mol. Struct.(Theochem.),2002,592:161-171
    [51]Scott A P, Radom L. Harmonic vibrational frequencies:An evaluation of Hartree-Fock, Moller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. J. Phys. Chem.,1996,100: 16502-16513
    [52]Jayasuriya K. Effect of heteroatoms and nitro substituents on strain energies in the cubane cage system. Struct. Chem.,1990,1:165-170
    [53]Dill J D, Greenberg A, Liebman J F. Substituent effects on strain energy. J. Am. Chem. Soc.,1979,101:6814-6825
    [1]Liu H, Wang F, Wang G X, Gong X D. Theoretical investigations on structure, density, detonation properties, and sensitivity of the derivatives of PYX. J. Comput. Chem., 2012,33:1790-1796
    [2]Liu H, Du H C, Wang G X, Liu Y, Gong X D. Molecular design of new nitramine explosives:1,3,5,7-tetranitro-8-(nitromethyl)-4-imidazolino[4,5-b]4-imidazolino [4,5-e] pyridine and its N-oxide. J. Mol. Model.,2012,18:1325-1331
    [3]Liu H, Du H C, Wang G X, Gong X D. Theoretical studies on the structures, densities, detonation properties and pyrolysis mechanism of energetic compounds containing pyridine ring. Struct. Chem.,2012,23:479-486
    [4]Du H C, Wang G X, Gong X D, Xiao H M. A Theoretical study on the adduct of chlorine trifluoride oxide and boron trifluoride — Molecular and crystal structures, vibrational spectrum, and thermodynamic properties. Int. J. Quantum Chem.,2012, 112:1291-1298
    [5]Zhang J Y, Du H C, Wang F, Gong X D, Huang Y S. DFT studies on a high energy density cage compound 4-trinitroethyl-2,6,8,10,12-pentanitrohezaazaisowurtzitane. J. Phys. Chem. A,2011,115:6617-6621
    [6]Zhang J Y, Du H C, Wang F, Gong X D, Huang Y S. Theoretical investigations of a high density cage compound 10-(1-nitro-1,2,3,4-tetraazol-5-yl))methyl-2,4,6,8,12-hexanitrohexaazaisowurtzitane. J. Mol. Model.,2012,18:165-170
    [7](1) Zhang J Y, Du H C, Wang F, Gong X D, Ying S J. Crystal structure, detonation performance, and thermal stability of a new polynitro cage compound: 2,4,6,8,10,12,13,14,15-nonanitro-2,4,6,8,10,12,13,14,15-nonaazaheptacyclo [5.5.1. 13,11.15,9] pentadecane. J. Mol. Model.,2012,18:2369-2376(2)邱丽美,贡雪东,郑剑,肖鹤鸣.由原子化反应法求算高能化合物的生成热.含能材料,2008,16:647~651
    [8]肖鹤鸣.高能化合物的结构与性质,北京:国防工业出版社,2004
    [9]Kamlet M J, Jacobs S J. Chemistry of detonations. I. A simple method for calculating detonation properties of C-H-N-O explosives. J. Chem. Phys.,1968,48:23-35
    [10]唐敖庆.量子化学.北京:科学出版社,1982
    [11]徐光宪,黎乐民,王德民.量子化学-基本原理和从头算法.北京:科学出版社,1985
    [12]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr., Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi Ⅰ, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, Revision C.02. Wallingford CT:Gaussian, Inc.,2004
    [13]Becke A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys.,1993,98:5648-5652
    [14]Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B,1988,37:785-789
    [15]Hariharan P C, Pople J A. Self-consistent-field molecular orbital methods. XII. Further extension of Gaussian-type basis sets. Theor. Chim. Acta.,1973,28:213-222
    [16]张熙和,云主惠编.爆炸化学.北京:国防工业出版社,1989
    [17]惠君明,陈天云.炸药爆炸理论.南京:江苏科学技术出版社,1995
    [18]周霖编.爆炸化学基础.北京:北京理工大学出版社,2005
    [19]Kamlet M J, Jacobs S J. Chemistry of detonations. I. Simple method for calculating detonation properties of C-H-N-O explosives. J. Chem. Phys.,1968,48:23-35
    [20]Qiu L, Xiao H M, Gong X D, Ju X H, Zhu W H. Crystal density predictions for nitramines based on quantum chemistry. J. Hazard. Mater.,2007,141:280-288
    [21]Stine J R. On predicting properties of explosive-detonation velocity. J. Energ. Mater., 1990,8:41-73
    [22]Ou Y X, Liu J Q. High energy density compound, National Defence Industry Press, Beijing,2005(in chinese)
    [23]Qui L, Xiao H M, Zhu W H, Ju X H, Gong X D. Theoretical study on the high energy density compound hexanitrohexaazatricyclotetradecanedifuroxan. Chin. J. Chem., 2006,24:1538
    [24]Slikder A K, Sikder N. A review of advanced high performance, insensitive and thermal stable energetic materials emerging for military and space applications, J. Hazard. Mater.,2004,112:1-15
    [25]Qiu L M, Gong X D, Zheng J, Xiao H M. J. Hazard. Mater.,2009,166:931-938
    [26]Lide D R, Ed. CRC Handbook of Chemistry and Physics,89th ed.; CRC Press/Taylor and Francis:Boca Raton, FL,2009; Internet Version,2010
    [27]Zhang J, Xiao H M, Gong X D. Theoretical studies on heats of formation for polynitrocubanes using the density functional theory B3LYP methods and semiempirical MO methods. J. Phys. Org. Chem.,2001,14:583-588
    [28]张熙和,云主惠编.爆炸化学.北京:国防工业出版社,1989
    [29]惠君明,陈天云.炸药爆炸理论.南京:江苏科学技术出版社,1995
    [30]周霖编.爆炸化学基础.北京:北京理工大学出版社,2005
    [1]Lauderdale W J, Stanton J F, Barlett R J. Stability and energetics of metastable molecules:tetraazatetrahedrane (N4), hexaazabenzene (N6), and octaazacubane (N8). J. Phys. Chem.,1992,96:1173-1178
    [2]Glukhovtsev M N, Jiao H, Schleyer P v R. Besides N2, what is the most stable molecule composed only of nitrogen atoms? Inorg. Chem.,1996,35:7124-7133
    [3]Leininger M L, Van Huis T J, Henry III F S. Protonated high energy density materials: N4 tetrahedron and N8 octahedron. J. Phys. Chem. A,1997,101:4460-4464
    [4]Zheng J P, Jacek W, Jens S L, Daniel M B, Radziszewski J G. Tetrazete(N4). Can it be prepared and observed? Chem. Phys. Lett.,2000,328:227-233
    [5]Fau S, Wilson K J, Bartlett R J. On the stability of N5+N5-. J. Phys. Chem. A,2002,106: 4639-4644
    [6]Gagliardi L, Evangelisti S, Vincenzo B, Bjorn O R. On the dissociation of N6 into 3N2 molecules. Chem. Phys. Lett.,2000,320:518-522
    [7]Wang L J, Peter W, Paul G M. Theoretical prediction on the synthesis reaction pathway of N6 (C2h). J. Phys. Chem. A,2002,106:2748-2752
    [8]Ray E. Ab-initio correlated calculations of six N2 Isomers (N6). J. Phys. Chem.,1992, 96:10789-10792
    [9]Motoi T, Rodney J B. Structure and stability of N6 isomers and their spectroscopic characteristics. J. Phys. Chem. A,2001,105:4107-4113
    [10]Li Q S, Hu X G, Xu W G. Structure and stability of N7 cluster. Chem. Phys. Lett., 1998,287:94-99
    [11]Engelke R, Stine J R. Is N8 cubane stable? J. Phys. Chem.1990 94:5689-5694
    [12]Schmidt M W, Gordon M S, Boatz J A. Cubic fuels? Int. J. Quantum Chem,2000,76: 434-446
    [13]Matthew L L, Shemill C D, Henry III F S. N8:A structure analogous to pentalene, and other high energy density minima. J. Phys. Chem.,1995,99:2324-2328
    [14]Anmin T, Ding F J, Zhang L F. New isomers of N8 without double bonds. J. Phys. Chem. A,1997,101:1946-1950
    [15]Appendix D. Polynitrogen chemistry. Preparetion and characterization of (N5)2SnF6, N5SnF5, and N5B(CF3)4. Chem. Eur. J.,2003,9:2840-2844
    [16]Bruney L Y, Bledson T M, Strout D L. What makes an N12 cage stable? Inorg. Chem., 2003,42:8117-8120
    [17]Sturdivant S E, Nelson F A, Strout D L. Trends in stability for N18 Cages. J. Phys. Chem. A,2004,108:7087-7090
    [18]Bliznyuk A A, Shen M, Schaefer III H F. The dodecahedral N20 molecule. Some theoretical predictions. Chem. Phys. Lett.,1992,198:249-252
    [19]Ha T K, Suleimenov O, Nguyen M T. A quantum chemical study of three isomers of N20. Chem. Phys. Lett.,1999,315:327-334
    [20]Strout D L. Why isn't the N20 dodecahedron ideal for three-coordinate nitrogen? J. Phys. Chem. A,2005,109:1478-1480
    [21]Strout D L. Isomer stability of N24, N30, and N36 Cages:Cylindrical versus spherical structure J. Phys. Chem. A,2004,108:2555-2558
    [22]Li Q S, Zhao J F. Theoretical study of potential energy surfaces for N12 Clusters. J. Phys. Chem. A,2002,106:5367-5372
    [23]Karleta D C, Roshawnda C, Douglas L S. Stability of carbon-nitrogen cages in 3-Fold symmetry. J. Chem. Theory Comput.,2006,2:25-29
    [24]李松,曲红,李前树.N60的量子化学研究.高等学校化学学报,1997,18:297-299
    [25]黄辉,王泽山,黄亨建,李金山.新型含能材料的研究进展.火炸药学报,2005,28:9-13
    [26]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr., Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03; Gaussian, Inc.:Pittsburgh, PA,2003
    [27]Becke A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys.,1993,98:5648-5652
    [28]Lee C, Yang W, Parr R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B,1988,37:785-789
    [29]Hariharan P C, Pople J A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta,1973,28:213-222
    [30]Wang G X, Gong X D, Liu Y, Xiao H M. A theoretical investigation on the structures, densities, detonation properties, and pyrolysis mechanism of the nitro derivatives of phenols. Int. J. Quantum Chem,2010,110:1691-1701
    [31]Qiu L, Xiao H M, Gong X D, Ju X H, Zhu W H. Theoretical studies on the structures, thermodynamic properties, detonation properties, and pyrolysis mechanisms of spiro nitramines. J. Phys. Chem. A,2006,110:3797-3807
    [32]Zhang J, Xiao H M. Computational studies on the infrared vibrational spectra, thermodynamic properties, detonation properties, and pyrolysis mechanism of octanitrocubane. J. Chem. Phys.,2002,116:10674-10683
    [33]Zhang J Y, Du H C, Wang F, Gong X D, Huang Y S. DFT studies on a high energy density cage compound 4-trinitroethyl-2,6,8,10,12-pentanitrohezaazaisowurtzitane. J. Phys. Chem. A,2011,115:6617-6621
    [34]Zhang J Y, Du H C, Wang F, Gong X D, Huang Y S. Theoretical investigations of a high density cage compound 10-(1-nitro-1,2,3,4-tetraazol-5-yl))methyl-2,4,6,8,12-hexanitrohexaazaisowurtzitane. J. Mol. Model.,2012,18:165-170
    [35]Zhang J Y, Du H C, Wang F, Gong X D, Ying S J. Crystal structure, detonation performance, and thermal stability of a new polynitro cage compound:2,4,6, 8,10,12,13,14,15-nonanitro-2,4,6,8,10,12,13,14,15-nonaazaheptacyclo [5.5.1.13,11.15,9] pentadecane. J. Mol. Model.,2012,18:2369-2376
    [36]Harris N J, Lammertsma K. Ab initio density functional computations of conformations and bond dissociation energies for hexahydro-1,3,5-trinitro-1,3,5-triazine. J. Am. Chem. Soc.,1997,119:6583-6589
    [37]Ling Q, Xiao H M, Gong X D, Ju X H, Zhu W H. Theoretical studies on the structures, thermodynamic properties, detonation properties, and pyrolysis mechanisms of spiro nitramines. J. Phys. Chem. A,2006,110:3797-3807
    [38]Chung G, Schmidt M W, Gordon M S. An ab initio study of potential energy surfaces for N8 isomers. J. Phys. Chem. A,2000,104:5647-5650