航空伽玛能谱稳谱技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空伽玛能谱测量是将航空γ能谱仪安装在飞机上探测陆地介质放出的γ射线,进而确定地表介质中U、Th、K的含量。航空γ能谱测量技术是放射性矿产勘查、地质填图、辐射环境调查和核应急等领域的主要支撑技术。航空伽玛能谱稳谱的实现是提高航空伽玛能谱系统的稳定性和航空伽玛能谱测量数据的质量的重要保证。论文选题来源于“十一五”863计划重大项目课题“航空伽玛能谱勘查系统研发”(课题编号:2006AA06A207)和国家自然科学基金项目“核地球物理学天然伽玛辐射场研究”(基金编号:40774063)。论文以航空伽玛能谱勘查系统的谱漂为研究对象,在分析航空伽玛能谱测量过程中谱漂产生原因的基础上,通过理论研究、物理实验、数值模拟和生产试验,论文设计并实现了新的硬软件相结合的PID自动稳谱技术。论文成果具有重大的实用价值和科学意义。
     论文对国内外航空伽玛能谱测量技术和伽玛能谱稳谱方法技术进行了广泛调研、分析与总结。在此基础上开展了航空伽玛能谱稳谱技术研究,研究内容涉及:,1)较深入地探讨了航空伽玛能谱仪仪器谱的形成机理和仪器谱谱漂产生的原因。以大晶体NaI(Tl)闪烁计数器为伽玛射线探测器,开展伽玛能谱温漂实验和温漂规律研究,为航空伽玛能谱的稳谱提供理论与实验基础;2)将比例-积分-微分(PID)控制调节技术应用于航空伽玛能谱的稳谱,研究PID算法中稳谱参数的整定方法,包括稳谱参数的定义,基于模糊控制的自整定方法,多种PID算法比较等,为航空伽玛能谱测量提供一种新的软硬件结合的稳谱技术;3)开展软件稳谱方法技术研究。其中包含数字平移方法、抽样率转化以及GMM模型的谱线校正方法,为仪器谱的软件稳谱方法提供数学模型;4)开展光滑,降噪、扣本底、谱漂提取等仪器谱数据处理技术研究,为稳谱技术的实现提出高质量的仪器谱;5)开展航空伽玛能谱测量的应用试验,检验稳谱效果。
     论文的主要研究成果与创新点如下:
     1)在分析航空伽玛射线仪器谱形成的基础上,探讨了仪器谱漂移产生的原因。在航空伽玛能谱测量过程中,航空NaI(Tl)闪烁计数器的温度效应是航空伽玛能谱产生漂移的主要因素;通过室内物理实验表明,航空NaI(Tl)闪烁计数器温度效应可以产生能谱的正向漂移,采用3阶多项函数进行描述,其拟合系数优于0.99。为航空伽玛能谱的稳谱提供理论依据和实验基础。
     2)在理论研究和数值模拟的基础上,提出了硬件、软件相结合的模糊自整定PID稳谱技术。建立了采用比例(P)环节和微分(D)环节实现根据谱漂进行判断,产生超前校正;采用积分(I)环节减小航空能谱仪谱漂的负反馈校正方法。根据模糊控制算法,由谱漂以及谱漂的变化率实现对比例系数,积分系数和微分系数的自整定。
     3)为有效获取航空伽玛射线仪器谱特征峰净峰面积,提出小波多次迭代扣本底技术。该方法利用小波多分辨率的思想,采用多次迭代的方法实现了对本底的扣除。对模拟的谱线数据表明:峰的强度(峰高)发生变化的时候,会影响对本底扣除的效果,当高斯峰的强度由20到5的时候,其峰面积的变化与实际峰面积的变化相比均小于5%;当峰固定为20的时候,外加噪声从1倍单位噪声(从0到1的高斯分布的随机噪声)到4倍噪声的时候,理论本底与估计本底的偏差低于5%,该方法在扣除本底的过程中,不会在谱线数据中出现无物理意义的负数。
     4)提出了基于信号处理的稳谱方法,实现对已采集仪器谱的自稳谱。分别采用数字平移,抽样率转换与小高斯函数拟合的方式,实现了谱线的校正。当航空能谱仪处于256道分辨率,谱漂为11道的条件下,经过校正后的谱线的K峰(1.46MeV)和Th峰(2.62MeV)的能量特征峰的变化在±1道范围内;与在同一条件下测量的标准谱线(未发生谱漂的谱线)比较,其K道,Th道和总道的峰面积的相对偏差均优于5%。
     5) PID稳谱技术已应用于AGS-863航空伽玛能谱仪。经静态试验和动态试验结果表明,经过29秒可以使40K-1.46MeV的能量特征峰稳定在±1道(256道);人工使谱线漂移16道之后,航空能谱系统能在180秒以内稳定在±2道(1024道),在240秒之内稳定在±1道(1024道)。AGS-863航空伽玛能谱仪在内蒙某试验区开展了20000测线公里的试生产性飞行,获得了高质量的航空伽玛能谱数据,成功地圈定了试验区的地层。
Airborne gamma-ray spectrometry survey is to detect the radiation from terrenewhich the airborne gamma-ray spectrometry is fixed on airplane. Furthermore, we candetermine the U, Th and K contents of the terrene from the count of those energywindows. Airborne gamma-ray spectrometry survey is main supportive technologiesforradioactive mineral exploration, geological mapping, environment radiationevaluation and nucleus emergency. The paper comes from "the eleventh five-yearplan"–the research and development on Airborne gamma-ray spectrometry surveysupported by National863Program of China(Project Number:2006AA06A207)andNational Natural Science Foundation of China “The research on Natural gamma rayfield in the nuclear geophysics”(Project Number:40774063). This article takesspectral drift of airborne gamma spectroscopy system as the research object,systematically analyzed the reason of spectrum drift about the detector with the largeSodium iodide crystal. The experiment about law between drift and temperature iscarred out. The result of experiment provide the experimental basis and experimentalbasis to stabilize the airborne gamma-ray spectrometry system.A new method of fuzzyself-tuning PID stabilizer, combined with the software and hardware, is established.The achievement about the research can improve the stability and quality of theairborne gamma-ray spectrometry system which have high practical value andscientific significance.
     It is carried out the research and investigation about the airborne gamma-rayspectrometry technology and gamma spectroscopy spectrum stabilization methods athome and abroad. The paper introduces the research.
     1)The mechanism of the airborne gamma energy spectrum instrument spectrumis probed. And the reason of the spectrum drift is revealed. The experiment is carriedout about the gamma spectroscopy drift experiments and temperature drift law. Thisexperiment takes the gamma-ray detector with crystal NaI (Tl) scintillation asexperimental object.Theexperimental result provide theoretical and experimental basisfor for airborne gamma spectroscopy spectrum stabilization.
     2)The PID control algorithm is taked to stabilize the airborne gamma-rayspectrometry system.The paper introduces the definition of stable spectral parameters,the fuzzy control tuning method, and avariety of control algorithm. So the newlystabilization system for airborne gamma ray spectroscopy is set up which is combinedwith the hardware and software.
     3)The method to stabilize the spectral are developed by the software. It containsthe digital shift method, sample rate conversion and the GMM model for correctingthe spectrum. These methods provide a mathematical model to correct the spectrum.
     4) The research about how to smooth the data,reduce the noise, deduct thebackground and extract the drift of the spectrum. Research findings provide thetechnology to achieve high-quality instrument spectrum.
     5)The stabilization system is applied into the airborne gamma-ray spectrometryto check up the effect.
     In the paper, the author gets the result such as:
     1)Based on the analysis of airborne gamma-ray instrument spectrum formed toexplore the causes of the instrument spectral drift. Temperature effect is in the processof airborne gamma-ray spectrometry, aviation NaI (Tl) scintillation counter theairborne gamma spectroscopy drift factors; by indoor physical experiments show that,aviation NaI (Tl) scintillation counter temperature effect can be generated canspectrum positive shift3-order polynomial function to describe, the fittingcoefficients better than0.99. Theexperimental result provide theoretical andexperimental basis for for airborne gamma spectroscopy spectrum stabilization.
     2) Based on the heoretical study and numerical simulation, the fuzzy self-tuningPID spectrum stabilization technology is proposed which is combined about thehardware and software. According the spectrum drift, the proporional element and theintegral element will bring the phase-lead quantity. And the differentiation element isused to diminish the steady-state error in the system.According the fuzzy controlalgorithm, the stabilization system can obtain proper coefficient by the spectrum driftand the variance ratio of the spectrum drift.
     3)Effective for airborne gamma-ray instrument spectral peaks net peak area, putforward the wavelet multiple iterations buckle the background technology. Themethod uses the idea of wavelet multi-resolution, multiple iterations to achieve thededuction on the bottom. For simulated spectral data showed that: the peak intensity(peak height) when a change occurs, the impact on the bottom net of the effect, whenthe Gaussian peak intensity from time20to5, the variation of the peak area and theactual peak area changes compared to less than5%; when peak20fixed time, plus thenoise from the unit noise (from0to1, Gaussian distributed random noise) to1times4times the noise when the theory with the estimated bottom end of the present thedeviation is less than5%, the method does not appears in the spectral data in thebottom of the net of the present process, no physical meaning of the negative.
     4)The spectrum stabilization method based on signal processing is proposed torelease self-stabilization. Three methods are proposed to correct the spectrum. Thereare digital translations, sampling rate conversion and gauss function fitting. Afterdeducting the linear background, the peak location obtains by gaussian function fittingto get peak location. The result show that the diversification of the peak location isless than1channel;compared with the cross reference, the absolute value of therelative deviation of the peak area is less than5%.
     5)The fuzzy self-tuning PID stabilizer is used in airborne gamma spectroscopysystem. The result in the laboratory tests show that airborne gamma spectrometer canstabilize in±1channel(channel256) for the characteristic peak of40K-1.46MeVwhen the system started at29seconds. When the spectrum is adjusted to deviate thestandard, the system will stabize between±2channels(channel1024)for thecharacteristic peak of40K-1.46MeV in the180seconds and between±1channels(channel1024)in240seconds. Vehicle experiment and field test data show that,under the condition of complex dynamic, the movement of the characteristic peakposition of40K-1.46MeV is between±1channel(channel256).AGS-863Airbornegamma spectrometer carry out trial production of20,000line km flight in a pilot areain Inner Mongolia. The result shows that the method to stabilize the spectroscopy isEffective to stabilize the system and elineation of the strata of the test area.
引文
[1]万建华,熊盛青,范正国,等.全国航空物探工作现状及未来工作重点浅析[J].中国矿业,2011,20(s1):151-154,166.
    [2]吴慧山.用航空γ能谱法普查铀矿[J].国外铀金地质,2001,18(4):227-231.
    [3]张喜旺,周月敏,李晓松,等.土壤侵蚀评价遥感研究进展[J].土壤通报2010,41(4):1010-1017.
    [4] HENRY SELIGMAN. Airborne gamma ray spectrometer surveying,technical reports seriesno.323: International atomic energy agency [J]. International Journal of Radiation Applicationsand Instrumentation,1991,43(3):469-470.
    [5]韦中亚,徐素宁,邬伦.环境航空测量与评价系统的设计与实现[J].地理学与国土研究2000.16(6):86-89.
    [6]刘艳阳,张志勇,刘庆成.我国航空伽玛能谱测量概述[J].铀矿冶,2007(2):64~69.
    [7]刘东海.放射性方法在油气勘探中的应用研究[J],天然气地球科学,1991,(5):233-237.
    [8]王守坦.航空物探技术[J].地学前缘,1998,5(1-2):223~231.
    [9]程业勋,王南萍,熊盛青,等.基于航空γ能谱数据的陆地地表γ空气吸收剂量率估算[C].中国地球物理2006,206-207.
    [10]程业勋,等.核辐射场与放射性勘查[M].北京:地质出版社,2005.
    [11]刘裕华,顾仁康,候振荣.航空放射性测量[J].物探与化探,2002,26(4):250-253.
    [11]于百川.开发航空伽玛能谱测量应用的新领域[J].国外铀金地质,1989(4):50-59.
    [12]周锡华,乔广志.新一代航空多道伽玛能谱仪的引进和初步应用[J].物探与化探.2002,26(4):318-324.
    [13]郭良德.西方国家航空物探技术的若干进展[J].物探与化探,2000(5):341-344.
    [14]张洪瑞,范正国.2000年来西方国家航空物探技术的若干进展[J].物探与化探,2007,31(1):1-8.
    [16]陈方强.航空γ能谱系统测试与标定方法研究[D].成都:成都理工大学,2011.
    [17] E. A. Lepel, B. D. Geelhood, W. K. Hensley, W. M. Quam.A field-deployable,aircraft-mounted sensor for the environmental survey of radionuclides[J].Journal ofRadioanalytical and Nuclear Chemistry,1998,233(1-2):211-215.
    [18] J.E. Fast,C.E. Aalseth, D.M. Asner,C.A. Bonebrake, ect.The Multi-sensor Airborne RadiationSurvey (MARS) instrument[J].2013,(698):152-167.
    [19] Fast, J.E. Bonebrake, C.A. Dorow,ect.Initial Field Measurements with the MultisensorAirborne Radiation Survey (Mars) High Purity Germanium (Hpge) DetectorArray[C],Technologies for Homeland Security (HST), Technologies for Homeland Security(HST), IEEE International Conference on,2010,374-379.
    [20] Γ.А.普列西夫采夫.在航空伽玛能谱测量中按相对强度法计算岩石中铀钍钾含量的量板和诺模图[J]国外放射性地质,1972,(2):5-7.
    [21]蔡振京.高精度大比例尺(1:5万)航空物探在油气藏勘探中的应用[J].物探与化探,1989,13(6).
    [22]郑秉钧东秦岭—大别山铀钍钾空间分布与铀矿化[J],1990,6(1):27-33.
    [23]于百川.“七五”期间航空放射性测量取得重大成果[J].铀矿地质,1994,11(1):40-45.
    [24]熊盛青.航空伽玛能谱异常解释中地形影响及校正方法研究[J],地学前缘,1998,5(1-2):341.
    [25]刘艳阳,刘庆成,张志勇.航空γ能谱测量三维地形改正方法初探[J].铀矿冶,2008,27(4):216-220.
    [26]万骏,刘庆成,于长春,等.复杂地形条件下航空伽玛能谱地形改正方法探讨[J].地球物理学报,2004,47(2):344-348.
    [27]张庆贤,葛良全,谷懿,等.航空伽玛能谱测量氡校正方法探讨[J].核电子学与探测技术,2009,29(3):349-352.
    [28]谷懿.航空伽玛能谱测量大气氡校正方法研究[D].成都:成都理工大学,2010.
    [29]葛良全,谷懿,张庆贤,等.航空γ能谱测量谱线比法大气氡校正的理论研究[J].核技术.2010.33(11):844-848.
    [30]倪卫冲.航空伽玛射线全能谱数据分析方法的理论研究[J],铀矿地质,2011,27(4):231-241.
    [31]胡明考,蔡根庆,房江奇,等.航空伽玛能谱全谱信息开发研究[C]十五“地质”行业重大找矿成果资抖汇编,2006:132.
    [32]胡明考,蔡根庆,沈正新,等.航空伽玛能谱全谱信息开发研究[C].中国核科学技术进展.2009,11:160-163.
    [33]庞巨丰. γ能谱数据分析[M].陕西科学技术出版社,西安,1993.
    [34] I. Winkelmann, C.Strobl, M.Thomas. Aerial measurements of artificial radionuclides inGermany in case of a nuclear accident. Journal of Environmental Radioactivity72(2004):225–231.
    [35]李如松,何彬,等.小波变换及其在γ能谱去噪处理中的应用[J].核科学与工程,2007,(02),187-191.
    [36]黄洪全,方方,龚迪琛,丁卫撑.GMM模型在核能谱平滑滤波中的应用[J].核技术,2010,33(5):374-379.
    [37]顾民,葛良全.基于变参数双指数平滑法的自然伽玛能谱处理[J].物探化探计算技术.2008,30(6).506-509.
    [38]B. Dickson and G. Taylor.Maximum noise fraction method reveals detail in aerial gamma-raysurveys[J] Exploration Geophysics,2000,31(2):73–77.
    [39]Bruce L Dickson.Recent advances in aerial gamma-ray surveying[J].Journal of EnvironmentalRadioactivity.2004,75(1-2):225–236.
    [40] Miroslav Morhac.An algorithm for determination of peak regions and baseline elimination inspectroscopic data[J].Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment.2009,600(2):478–487
    [41] Donald D. Burgess, Richard J. Tervo. Background estimation for gamma-rayspectrometry[J].Nuclear Instruments and Methods in Physics Research.1983,214(2-3):431–434.
    [43]S. A. Bogatov,A. M.Shvedov. Reconstruction of the background spectrum for processingairborne gamma survey data[J]. Atomic Energy,2011,111(1):48-54.
    [44] Killian, E., Hartwell, J.,2000. PCGAP: Users guide and algorithm description. Idaho Natl.Engineering and Environmental Lab. Bechtel BWXT Idaho, LLC. INEEL/EXT-2000e00908.
    [45]Mariscotti, M.,1967. A method for automatic identification of peaks in the presenceofbackground and its application to spectrum analysis[J]. Nuclear Instrumentsand Methods,309-320.
    [46]陈亮,魏义祥,屈建石.便携式γ谱仪中的核素识别算法[J].清华大学学报(自然科学版).2009,49(5)635-638.
    [47]Matoba M. An Experimental Study for Stabilizing a Spectrum With No ReferencePeaks[J].Nucl Instrum Methods,1971,3:153~155.
    [48]Ludwik Loska.A computer method of γ-ray spectra stabilization[J].Applied Radiation andIsotopes.1995,,46(9):949–953
    [49]吴永鹏,赖万昌,葛良全,肖刚毅,林延畅.多道γ能谱仪中的特征峰稳谱技术[J],物探与化探,2003(2):131~135
    [50]张健雄,张进,姚洪略.一种便携式天然γ能谱测量仪及其稳谱原理[J].核技术,2005(8):637-642.
    [51]G. Pausch, J. Stein, and N. Teofilov. Stabilizing scintillation detector systems byexploiting the temperature dependence of the light pulse decay time[J]. IEEE Trans. Nucl. Sci.vol.52, no.5, pp.1849–1855, Oct.2005.
    [52] Zh. K. Samatov, A. A. Stakhin, and V. I. Fominykh.Stabilization of Nuclear Radiation Spectraby the Hardware and Software Correction[J]. Instruments and Experimental Techniques,2007,Vol.50, No.6, pp.772–777.
    [53]文群基于LED的NaI(T1)闪烁γ谱仪稳谱技术研究[D]南华大学2007.
    [54]鲁保平,张惠芳.四能窗稳谱技术在岩性密度测井仪中的应用[J]测井技术2008(1)::76~80.
    [55]敖奇,魏义祥,屈建石. NaI谱仪数字稳谱方法设计[J].核电子学与探测技术.2009(1):19~22.
    [56]顾民,葛良全,杨峰.基于时延估计法的自然伽玛能谱自动稳谱[J].核电子学与探测技术.2010,30(2).293~295.
    [57]Manor, A.1; Osovizky.Compensation of scintillation sensor gain variation during temperaturetransient conditions using signal processing techniques[D].IEEE Nuclear Science SymposiumConference Record, p2399-2403,2009,2009IEEE Nuclear Science Symposium ConferenceRecord, NSS/MIC2009.
    [58]方方.野外地面γ射线全谱测量研究[D].成都:成都理工大学核自院,2001.
    [59]魏彪,贾文懿.一种重写谱数据文件的计算机稳谱技术研究[J].物探与化探,1998(1):68-70.
    [60]S. Pommé, G. Sibbens.Concept for an off-line gain stabilisation method[J]. Applied Radiationand Isotopes60(2004)151–154.
    [61]Martin J P, Zeilger R A. Computer code for on-line peak stabilization[J], Nuclear instrumentsand methods,1978,153(3):489~492.
    [62]R. Casanovasa,J.J.Morantb, M Salvadóa.Temperature peak-shiftcorrection methods for NaI(Tl)and LaBr3(Ce) gamma-ray spectrum stabilization[J].Radiation Measurements.2012,47(8):588–595.
    [63]吴慧山.核技术勘查[M].原子能出版社,北京,1994.
    [64]程业勋,王南萍,侯胜利.核辐射场与放射性勘查[M],地质出版社北京,2005.
    [65]章晔.放射性勘查方法[M].原子能出版社,北京,1994.
    [66]宋传信.热锻大尺寸NaI(T1)闪烁体的研制及其性能[J].人工晶体,1986(4):258-264.
    [67]李艳红.钨酸铋钠闪烁晶体的研究[D].吉林:中国科学院长春光学精密机械与物理研究所.2003.
    [68]卓韵裳,雷章云,曾宇,等.NaI(T1)探测系统稳定性研究[J].清华大学学报(自然科学版),1996(12):40-44.
    [69]汪婧,陈伯显,庄人遴.无机闪烁探测器综述[J].核电子学与探测技术,2006(6):1039-1042.
    [70]董永伟,熊少林等. HXMT主探测器磁屏蔽设计与实验结果[J].高能物理与核物理.2007-1.
    [71]杨涣章.航空γ能谱探头温度效应及校正技术研究[D].成都:成都理工大学核技术与自动化工程学院,2009.
    [72]黄洪全,方方,龚迪琛,等基于HMM双重模型的伽马能谱漂移模拟[J].物探与化探.2010,34(4).482-484,502.
    [73]曾国强,葛良全,熊盛青,等.卡尔曼滤波在航空γ能谱勘查系统自动稳谱中的应用[J].核电子学与探测技术.2010,30(5).698-702
    [74]曾国强,葛良全,熊盛青,倪卫冲,赖万昌.数字技术在航空伽马能谱仪中的应用[J].物探与化探.2010(2):209-212.
    [75] Kenneth D. Jarman A comparison of simple algorithms for gamma-ray spectrometers inradioactive source search applications[J] Applied Radiation and Isotopes.66(2008)362-371.
    [76]金戈吴其反范正国王金龙张文志张积运江民忠航空γ能谱测量工作人员在仪器标定及实验过程中受照剂量的评估.物探与化探2008,32(4).
    [77]凌球,郭兰英.核辐射探测[M].北京:原子能出版社,1992:23-46.
    [78]章晔,华荣洲,石柏慎.放射性方法勘查[M].原子能出版社,1990.
    [79] P.J.奥塞夫.核辐射物理学[M].1980.
    [80]卢炎,戴丽君,王平.地面γ能谱测量影响因素初探[J].长春地质学院学报,1994(1):65-68.
    [81]复旦大学,北京大学,清华大学合编.原子核物理实验方法[M].原子能出版社,1985.
    [82]章晔,华荣洲,石柏慎.放射性方法勘查[M].原子能出版社,1990.
    [83]克劳塞梅尔.应用γ射线能谱学[M].北京:原子能出版社,1977:222-243.
    [84]汲长松.核辐射探测器及其实验技术手册[M].北京:原子能出版社,1990:150-178.
    [85] Pakkanen A,Stenman F.Nuclear Instrument Methods,1966,44:321~324.
    [86]汤天知,郭斌等.稳谱系统的关键问题与设计实现[J].石油仪器.2008-9
    [87]陈恭印,张志康.单片机控制的高精度稳谱器[J].核电子学与探测技术,1996.11(6):479-482.
    [88]屈国普,凌球,郭兰英等.13N监测仪的稳谱技术研究核技术[J].第28卷第7期:562-566.
    [89] M. Bottcher, W.D. Brewer, E. Klein. A simple method for the stabilization of scintillationdetectors[J], Nuclear Instruments and Methods in Physics Research,Volume206,Issues1-2,15February1983,Pages177~181.
    [90]刘晨霞;傅雨田;基于数字电位器AD8402的程控增益系统[J]科学技术与工程.2007-7
    [91]赵媛媛,赵书俊,刘洋.四象限乘法器/除法器AD734在伽玛相机中的应用[J].现代电子技术.2005-2.
    [92]吴先用.双8位乘法数模转换器TCL7528原理及应用[J].现代电子技术.2003-1
    [93]高金辉,汪晓晨等.车载GPS/DR组合导航系统卡尔曼滤波方法的改进[J].河南师范大学学报.2009.3.
    [94] OpenCV参考手册. www.opencv.org.cn.2009.5.
    [95]任晓荣.Na(T1)闪烁探测器测量r射线的性能分析[J].传感器世界,2004(1):21-26.
    [96]李源新,黄治俭,腾慧洁.稳谱器在低比度放射性测量中的应用[D].北京:中国科学院原子能研究所,1987.
    [97]成都地质学院三系.放射性探测方法[M].北京:原子能出版社,1987.
    [98]北京第三研究所.野外γ能谱测量[M].北京:原子能出版社,1977.
    [99]巩建忠,王卫华.一种用于自然γ能谱测井仪器的自动稳谱技术[J]石油仪器2006(10):6-9.
    [100]Ludmil Todorov Tsankov, Mityo Georgiev Mitev A SIMPLE METHOD FORSTABILIZATION OF ARBITRARY SPECTRA ELECTRONICS’200719–21September,Sozopol, BULGARIA
    [101]Miodrag Boli, Vujo Drndarevi.Digital gamma-ray spectroscopy based on FPGA technology.Nuclear Instruments and Methods in Physics Research. Volume482, Issue3,21April2002, Pages761-766.
    [102]J.D.Allyson and D.C.W.Sanderson, Monte Carlo simulation of Environmental AirborneGamma-Spectrometry[J], Environ Radioactivity,1998,38(3):259-282.
    [103]裴少英,王南萍.航空γ能谱全谱数据的高斯分解方法[J].科技导报,2006(11):88-92.
    [104]R.L.Grasty. Background measurements in gamma ray survey[J], Geological SurveyinCanada,1988,128(2):763~768.
    [105]吴晓林PID控制稳定性分析[D].上海师范大学.2009.4.
    [106]陈坚祯,郭兰英,凌球等.NaI(Tl)γ谱的计算机稳峰技术[J].原子能科学技术.39(3):266-270.
    [105]李必红陆士立韩绍阳车载伽玛能谱测量数据处理方法探讨///东华理工大学学报:自然科学版.2008,31(3).-265-268
    [107]Christos Tsabaris, Aristides Prospathopoulos, Automated quantitative analysis of in-situ NaImeasured spectra in the marine environment using a wavelet-based smoothing technique, AppliedRadiation and Isotopes, Volume69, Issue10, October2011, Pages1546-1553, ISSN0969-8043,10.1016/j.apradiso.2011.06.012.
    [108]COMPUTER EVALUATION OF NAI(TL) AND GE(LI) GAMMA-RAY SPECTRAQUITTNER P; WAINERDI RE//At Energy Rev, v8, n2, p361-415,1970
    [109]Publisher: Inst. of Elec. and Elec. Eng. Computer SocietyAuthor affiliation:1SpaceExploration Technology Laboratory, Macao University of Science and Technology, Avenue WaiLong, Taipa, China
    [109]Fourier transformation methods in the field of gamma spectrometry/Abdel-Hafiez,A//Pramana-Journal of Physics, v67, n3, p457-466,2006
    [110]胡寿松.自动控制原理.科学出版社[M],2007.
    [111]罗耀耀.航空γ能谱系统中自动稳谱的研究与实现[D].成都:成都理工大学,2010.
    [112]张彬,杨风暴编著.小波分析方法及其应用[M].国防工业出版社,2011.
    [113]罗耀耀,葛良全,熊超,等.小波阈Wiener滤波器在航空伽玛能谱降噪中的应用[J].核技术,2010,35(10):755-758.
    [114]张文斌,于长春,周锡华.一种新的航空伽马能谱测量数据改正方法[J].物探与化探,2007,31(2):143-148.
    [115]航空伽玛能谱测量规范,EJ/T1032-2005.