钢筋混凝土结构破坏全过程的MFPA模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着土木工程、水利水电工程、铁路隧道工程等的迅速发展,钢筋混凝土结构的应用越来越广,对于钢筋混凝土结构的研究也越来越多,这些研究主要集中在钢筋混凝土的变形和极限强度问题上,而对于钢筋混凝土结构破坏全过程的研究较少。目前国内外有一些钢筋混凝土结构破坏的实验研究,但由于钢筋混凝土结构力学性能的复杂性,试验和量测手段的局限性,无法从试验中得到结构的全部力学性能,因此,需要其它方法与试验相结合来分析结构的力学性能,在试验研究的同时出现了数值模拟研究。20世纪60年代美国学者把有限元法引进到钢筋混凝土结构数值模拟分析中来,开始了钢筋混凝土结构的数值研究,取得了一定成果。但有限元模型的解决方法仍有不足之处,基于有限元基本理论的数值模拟方法的结构计算要求变形连续协调,对于钢筋和混凝土之间存在的不连续介质力学问题,应用有限元法很难计算。
     由东北大学岩石破裂与失稳中心开发的复合材料破坏全过程分析系统MFPA2D,为研究钢筋混凝土结构的破坏提供了一种可行的方法。MFPA系统数值模型采用具有残余强度的弹脆性本构模型,引入统计分布函数,反映了混凝土的非均匀性影响;认为单元应力达到破坏准则发生破坏,并对破坏单元进行刚度退化处理,故可以以连续介质力学方法处理物理非连续介质问题。
     采用MFPA2D数值模拟系统,对钢筋混凝土结构破坏全过程进行数值模拟,研究内容及结果包括以下三方面:
     首先,对钢筋混凝土梁进行数值模拟。选用参考文献的试验模型,对钢筋混凝土梁施加对称集中荷载的四点弯曲受力形式进行数值模拟,给出模拟结果,主要有结构破坏过程的应力、位移变化及破坏形式,还有试验很难获得的声发射能量与声发射次数等。通过数值模拟结果与相应试验结果的比较分析,发现数值模拟结果在一定程度上和试验结果有着较好的一致性。在数值模拟中,采用了文献中的500MPa高强钢筋作为梁的受力筋,同时也进行了用普通钢筋HRB335作为受力钢筋的梁的数值模拟,对两者的模拟结果进行对比,发现500MPa高强钢筋混凝土梁与普通钢筋混凝土梁的受力性能、变形规律、裂缝发展等破坏过程基本相同,从而为高强钢筋在钢筋混凝土梁中的应用研究提供了一定的参考。
     其次,对钢筋混凝土柱进行数值模拟。模拟主要考虑了大偏心受压和小偏心受压两种情况,模拟结果包括应力、位移和声发射能量等。该模拟也采用了相应的试验模型作为模拟的数值模型,目的是便于和试验进行比较分析。通过两种偏压形式的模拟结果比较,得出大小偏心受压的各自受力、变形和破坏特点,与试验结果基本吻合。
     最后,对钢筋混凝土框架结构进行数值模拟。数值模拟了钢筋混凝土单层框架的受力变形和破坏,为框架结构的研究提供了一定参考。
     通过上述三方面的数值模拟研究,证实了MFPA2D数值模拟在钢筋混凝土梁、柱、框架等方面研究具有一定的参考价值,为钢筋混凝土结构的研究提供了一种新的方法。
In recent years, with the rapid development of civil engineering, hydroelectic engineering and railway tunnel engineering, the reinforced concrete structure has become more widely used, the researches on reinforced concrete structure become more and more. These researches mainly concentrated on the deformation and limit strength of reinforced concrete, but rarely studied the whole failure process of reinforced concrete structure. At present, there are some researches on the failure of reinforced concrete structure at home and abroad. However, the complication of mechanics property of reinforced concrete structure and the limitations of tests and measures made it difficult to obtain all property data from the tests. Therefore, tests combined with other methods are required to analyze the mechanics property of structure. In the meantime of the tests, the numerical simulation research emerged. In 1960's, American scholars introduced the finite element method to the numerical simulation analysis of reinforced concrete structure, started the numerical research on reinforced concrete structure and gained a certain achievements. But the method for finite element model still had some deficiency. The structure calculation of numerical simulation method based on the finite element theory required that the deformation is continuous and harmonious, but for the uncontinuous medium mechanics existing between the reinforcing bar and the concrete, it is hard to use the finite element method to solve the problem.
     The whole failure process analysis system of composite material-MFPA2D developed by Centre for Rock Instability and Seismicity Research, Northeasten University provided a feasible method of studying the failure of reinforced concrete structure. The numerical model of the MFPA system utilizes elastic damage constitutive model with residual strength, and introduced statistical distribution function, reflected the concrete heterogeneity. It showed that when the unit stress reached the point of failure, the failure produced, and the failure unit was treated to soften the rigidity, thus the physical uncontinuous medium problem can be solved by the continuous medium mechanics.
     By the MFPA2D numerical simulation system, the numerical simulation of the whole failure process of reinforced concrete structure was conducted. The research and conclusions contain the following three aspects:
     First, numerical simulation of reinforced concrete beam. The test model was selected from the reference documents, and the numerical simulation of four point-bend loading mode of the reinforced concrete beam subjecting symmetrical concentrated load was performed. The simulation results mainly included the variation of stresses and displacement, the failure mode, and the energy and times of Acoustic Emission hardly obtained from test, etc. By comparing the results of numerical simulation with those of corresponding tests, it was found that, to certain extent, there is a good agreement between the results of numerical simulation and those of the corresponding tests,. During the numerical simulation, the 500MPa high-strength reinforced bar from the reference document was selected as the loaded bar. Meanwhile, the numerical simulation of regular reinforced bar HRB335 was also carried out. Through comparing the results from the two numerical simulations, it indicated that the failure process of loading feature, deformation pattern and crack development of the 500MPa high-strength reinforced bar was basically identical to that of regular reinforced bar. Thereby, it provided a certain reference for the research on the reinforced concrete beam with high-strength reinforced bar.
     Second, Numerical simulation of reinforced concrete column. The simulation mainly considered two cases-large eccentric loading and small eccentric loading. The simulation results included stress, displacement and the energy of Acoustic Emission, etc. The simulation also chose the corresponding test model as the numerical simulation model in order to make it convenient for comparing with the results of the corresponding test. By comparing the results between the two eccentric loading cases, it showed that the respective loading, deformation and failure feature of the large eccentric loading and small eccentric loading are basically identical to those of test.
     Third, Numerical simulation of reinforced concrete frame. It simulated the deformation and failure of single reinforced concrete frame. It offered a certain reference for the research on the frame structure.
     By the numerical simulation research on the three aspects above, the certain referense of the numerical simulation-MFPA2D was verified, therefore, it provided a new method for the research on reinforced concrete beam, column and frame.
引文
1.唐春安,黄明利.采动诱发顶板岩层失稳过程的数值模拟方法[J].煤矿开采,1998,29.
    2.乔河,唐春安,李晓,陈荣德.采动诱发岩体移动破坏过程数值模拟研究[J].工程地质学,1998,6(4).
    3.乔河,唐春安,李晓,陈荣德.岩爆及采矿诱发岩体失稳破坏过程数值模拟新方法[J].地质力学学报,1999,(5)1.
    4.Tang C A. Numerical simulation of rock failure and associated seismicity[J]. Int J Rock Mech Min Sci,1997,34:249-262.
    5.唐春安,乔河,徐小荷,秦四清,李晓,杨志法.矿柱破坏过程及其声发射规律的数值模拟[J].煤炭学报,1999,24,(3).
    6.C A Tang, LG Tham, P K K Lee, etc. Numerical studies of the influence of microstructure on rock failure in uniaxial compression[J]. International Journal of Rock Mechanics and Mining Science,2000,37:571-583.
    7.唐春安,刘红元,秦四清,杨志法.非均匀性对岩石介质中裂纹扩展模式的影响[J].地球物理学报,2000,43(1).
    8.黄明利,唐春安,朱万成.岩石破裂过程的数值模拟研究[J].岩石力学与工程学报.2000,19(4).
    9.傅宇方,黄明利,任凤玉,唐春安.不同围压条件下孔壁周边裂纹演化的数值模拟分析[J].岩石力学与工程学报,2000,(19)5.
    10.朱万成,唐春安,齐安文.混凝土三点弯曲试件破坏过程的数值模拟.
    11.唐春安,傅宇方,林鹏.颗粒增强复合材料基体破坏过程的数值模拟分析[J].复合材料学报,1999,16(3).
    12.唐春安,傅宇方,朱万成.界面性质对颗粒增强复合材料破坏模式影响的数值模拟分析[J].复合材料学报,1999,16(4).
    13.芮勇勤,唐春安.直剪状态下裂纹扩展过程的数值分析[J].长沙交通学院学报,2001,17(3).
    14.芮勇勤,唐春安.岩石剪切破坏过程的RFPA2D数值模拟[J].岩石力学与工程学报,2002,21(3):364~368.
    15.唐春安,傅宇方,赵文.震源孕育模式的数值模拟研究[J].地震学报,1997,(19)4.
    16.唐春安,黄明利,张国民,焦明若.岩石介质中多裂纹扩展相互作用及其贯 通机制的数值模拟[J].地震,2001,21(2).
    17.傅宇方,唐春安.岩石声发射Kaiser效应的数值模拟试验研究[J].力学与实践,2000,22.
    18.刘红元,唐春安,杨天鸿,李连崇.对称和非对称载荷下声发射特征的数值模拟研究[J].岩土力学,2001,22(4).
    19.梁正召,唐春安,黄明利,傅宇方.岩石破裂过程中声发射模式的数值模拟[J].东北大学学报(自然科学版),2002,2(10).
    20.王善勇,唐春安,徐涛,谭志宏.矿柱岩爆过程声发射的数值模拟[J].中国有色金属学报,2003,13(3).
    21.徐涛,杨天鸿,唐春安,梁正召.孔隙压力作用下煤岩破裂及声发射特性的数值模拟[J].岩土力学,2004,25(10).
    22.唐春安,芮勇勤,刘红元,刘建新.含瓦斯试样突出现象的RFPA2D数值模拟[J].煤炭学报,2000,25(5).
    23.杨天鸿,唐春安,朱万成,冯启言.岩石破裂过程渗流与应力耦合分析[J].岩土工程学报,2001,23(4).
    24.杨天鸿,唐春安,冯启言.孔隙水压作用下岩样加载破坏过程的数值模拟[J].岩土力学,2001,22(4).
    25.唐春安,杨天鸿,李连崇,梁正召.孔隙水压力对岩石裂纹扩展影响的数值模拟[J].岩土力学,2003,24卷增刊.
    26.杨天鸿,谭国焕,唐春安,冷雪峰,李连崇.非均匀性对岩石水压致裂过程的影响[J].岩土工程学报,2002,24(6).
    27.冷雪峰,唐春安,杨天鸿,李连崇.岩石水压致裂过程的数值模拟分析[J].东北大学学报(自然科学版),2002,23(11).
    28.李连崇,唐春安,杨天鸿,杨春和,张永彬.FSD耦合模型在多孔水压致裂试验中的应用[J].岩石力学与工程学报,2004,23(19):3240-3244.
    29.杨天鸿,唐春安,刘红元,朱万成,冯启言.承压水底板突水失稳过程的数值模型初探[J].地质力学学报,2003,9(3).
    30.杨天鸿,唐春安,李连崇,朱万成.非均匀岩石破裂过程渗透率演化规律研究[J].岩石力学与工程学报,2004,23(5):758-762.
    31.梁正召,唐春安,杨天鸿,焦明若.含弱层岩石破裂前兆规律的数值模拟分析[J].地震,2003,23(3).
    32.焦明若,张国民,唐春安,傅宇方.含预制软弱带的岩石破裂过程的数值模拟[J].地震学报,2002,24(1).
    33.Zhu W C, Tang C A. Numerical simulation on shear fracture process of concrete using mesoscopic mechanical model [J]. Construction and Building Materials,2002, 16(8):453-463.
    34.朱万成,林天革,唐春安,黄明利,梁正召.混凝土拉伸断裂过程及尺寸效应的数值模拟[J].岩土力学,2002,23(2).
    35.Zhu W C, Teng J G, Tang C A. Numerical Simulation of strength envolope and fracture patterns of concrete under biaxial loading [J]. Magazine of Concrete Research, 2002,54(6):395-409.
    36.朱万成,赵启林,唐春安,卓家寿.混凝土断裂过程的力学模型与数值模拟[J].力学进展,2002,32(4).
    37.王述红,唐世斌,唐烈先,朱万成,唐春安.混凝土试件内压作用下破裂过程试验[J].混凝土,2004,10.
    38.唐烈先,唐春安,唐世斌.混凝土静态破碎的物理试验与数值试验[J].混凝土.2005,8.
    39.刘庭金,唐春安.包体泊松比对含包体试样破裂模式的影响的数值试验[J].大地测量与地球动力学,2002,22(2).
    40.刘庭金,唐春安,朱合华.低弹模包体强度对试样破裂模式影响的数值试验[J].同济大学学报,2002,30(3).
    41.刘庭金,朱合华,唐春安.高弹模包体强度对试样破裂模式影响数值试验[J].同济大学学报,2002,30(6).
    42.杨天鸿,梁正召,刘红元,唐春安,陆培炎.地铁开挖引起地表沉陷过程的数值模拟[J].岩石力学与工程学报,2002,21(11):1620~1626.
    43.芮勇勤,岳中琦,唐春安,杨天鸿,陆陪炎.隧道开挖方式对建筑物桩基影响的数值模拟分析[J].岩石力学与工程学报,2003,22(5).
    44.王善勇,唐春安,王述红,陆培炎.地铁开挖对地基沉降影响的数值分析[J].东北大学学报(自然科学版),2002,23(9).
    45.朱万成,黄志平,唐春安,逢铭璋.含预制裂纹巴西盘试样破裂模式的数值模拟[J].岩土力学,2004,25(10).
    46.朱万成,逢铭璋,唐春安,黄志平,李慎刚.含预制裂纹岩石试样在动载荷作用下破裂模式的数值模拟[J].地下空间与工程学报,2005,1(6).
    47.唐世斌,杨天鸿,徐涛,唐春安,石必明,余启香.远程卸压瓦斯抽放数值模拟[J].矿井地质.
    48.徐涛,唐春安,王述红,张永彬.岩石破裂过程围压效应的数值试验[J].中南大学学报(自然科学版),2004,35(5).
    49.解联库,李华炜,杨天鸿,唐春安,陈长华,赵兴东.侧向压力作用下巷道围岩破坏机理的数值模拟[J].中国矿业,2006,15(3).
    50.贾蓬,唐春安,王述红.巷道层状岩层顶板破坏机理[J].煤炭学报,2006, 31(1).
    51.梁正召,杨天鸿,唐春安,张娟霞,唐世斌,于庆磊.非均匀性岩石破坏过程的三维损伤软化模型与数值模拟[J].岩土工程学报,2005,27(12).
    52.王述红,唐春安,朱浮声,朱万成.砌体结构开裂过程细观损伤数值模型及其分析方法[J].建筑结构学报,2003,24(2).
    53.Wang S H, Tang C A, Zhu W C, Zhang K. Numerical test of fracture characteristics of concrete-brick blocks material failure subjected to biaxial loading[J]. Key Engineering Materials,2002,243-244:363-368.
    54.王述红,唐春安,吴献.砌体开裂过程数值模型及其模拟分析[J].工程力学,2005,22(2).
    55.王述红,唐春安,谭志宏,张永彬.砌体复合剪压受力特性与数值分析方法[J].力学与实践,2004,26.
    56.张亚芳,唐春安,梁正召,张娟霞.颗粒增强脆性基复合材料的尺寸效应[J].武汉理工大学学报,2006,28(3).
    57.张亚芳,唐春安,陈树坚,常旭,杨天鸿.纤维增强脆性基复合材料的力学性能和破裂过程研究[J].中山大学学报(自然科学版),2006,45(1).
    58.张娟霞,唐春安,王述红,张后全.钢筋混凝土结构破裂过程的数值模拟[J].东北大学学报(自然科学版),2005,26(4).
    59.张娟霞,唐春安,王述红,李连崇,张亚芳.偏心加载钢筋混凝土结构破坏过程的数值模拟[J].建筑材料学报,2006,9(1).
    60.吴献,吴勃,秦桂娟,唐春安.石墨混凝土破坏过程力学与电学关系的数值模拟[J].东北大学学报(自然科学版),2006,27(5).
    61.王铁成,李艳艳,戎贤.配置500MPa钢筋的混凝土梁受弯性能试验[J].天津大学学报,2007,40(5).
    62.刘立新,李洪彦,张艳丽,李千.500MPa级钢筋混凝土偏心受压柱受力性能的试验研究[J].郑州大学学报(工学版),2007,28(2).
    63.徐诗童,黄音,陈明政,王正霖.“梁强于柱”、“等强梁柱”单层单跨框架试验研究[J].重庆建筑大学学报,2005,27(2).