乘积微分算子的自伴性及特征值对边界的依赖性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要围绕乘积微分算子的白伴性及特征值对边界的依赖性展开研究.
     微分算子从本质来说是无界可闭的线性算子,无界闭的线性算子的定义域一定不能是全空间,因此定义域的选择始终是微分算子研究中的一个十分重要而困难的问题.在微分算式给定的前提下,对所研究的算子提出的具体要求最终体现在对定义域的限制上.定义域不同的微分算子,其谱分解,特别是离散谱会有很大不同.在这些定义域的选择中,自伴域的选择就是其中重要之一.自伴微分算子因其有重要的应用背景,不仅使得它的谱与反谱问题成为数学家研究的热门课题,同时白伴性的识别与描述问题也被提到了重要位置.
     本文首先研究了微分算式乘积的自伴域的实参数解描述问题,在适当条件的假设下,利用互为相反数的一对值所对应的解刻画了微分算式乘积的自伴域,使得自伴边界条件中矩阵的确定只与这些解在正则点的初始值有关.
     其次,对于四阶奇型对称微分算式而言,会出现中间亏指数情形.本文接着研究了由具有任意亏指数的对称常微分算式生成的两个四阶及高阶奇型微分算子的积的自伴性问题.通过在半直线上使用实参数解对自伴域的刻画定理及分析技巧,以矩阵形式给出了,具任意亏指数的奇型对称微分算式产生的两个微分算子的积自伴的充要条件,并获得了与积算子自伴性有关的一些结果.
     再次,人们在工程实践中发现:一根材料均匀的,横截面积与长度相比可忽略不计的,有弹性的杆,两端以一定的有意义的方式固定住,然后去弹奏它,会发现杆发出的音会随其长度的缩短而逐渐变强,即杆的固有频率在逐渐增高,这一现象更为力学家所熟知.用数学的语言将这一问题翻译出来就是四阶边值问题的特征值对边界的依赖性问题.结合Dauge, Q. Kong ([38],[51],[87])等人的工作,借助微分算子的谱理论这一有利工具我们研究了两类四阶及高阶边值问题的特征值对边界的依赖性.给出了第n个特征值关于其中一端点的一阶微分表达式,并证明了当区间长度趋于零时,在本文所考虑的边界条件情形下,所有的特征值会趋于无穷.并给出了具体的例子.
     最后本文研究了具有周期边界条件的四阶边值问题的矩阵表示,并考虑了它的逆过程即矩阵特征值问题的四阶边值问题表示.
     全文共分六个部分:一、介绍本文所研究问题的背景及本文的主要结果;二、文中所涉及相关符号、概念以及性质;三、微分算式乘积的自伴域的实参数解刻画;四、两个奇型微分算子乘积的自伴性;五、微分方程边值问题的特征值对边界的依赖性;六、具有周期边界条件的四阶边值问题的矩阵表示.
In this paper, we study the self-adjointness of product of differential operators and the dependence of eigenvalues on the boundary. The dif-ferential operators are essentially the unbounded closable operators, and the domains of the unbounded closable operators must not be the whole space. Hence the choice of the domains of the differential operators are always important and difficult. Given a differential expression, the specific demands for the differential operators eventually reflect on the restrictions on the domains. Differential operators with different domains will have different spectral distributions, especially the discrete spectrum. Among the choice of the domains, the choice of self-adjoint domains is one of the important. Self-adjoint differential operator, because of its important ap-plication background, not only makes its spectrum with inverse spectrum problem become a hot topic of mathematicians, at the same time the prob-lem of identification and description of self-adjointness was also mentioned the important position.
     Firstly we consider the problem of description of self-adjoint domains of product of differential expression in terms of real-parameter solutions. Under appropriate assumptions, using solutions corresponding to value of a pair of opposite each other, we present a characterization of self-adjoint boundary conditions for product of differential expression, making a matrix of self-adjoint boundary conditions be determined only associated with the initial value of the solutions in the regular point.
     For fourth order singular symmetric differential expression, there will be a middle deficiency indices case. Next we study the problem of self-adjointness of product of two fourth-order and higher-order differential operators in middle deficiency indices case. By using the theorem of char-acterization of real parameter solutions on half line for self-adjoint domains, and analytical skills, we give a sufficient and necessary condition in the form of matrix, and get some results related to the self-adjointness of product operators.
     Again, in the engineering practice people note:a elastic rod, its di-ameter are negligible compared with its length and both ends are fixed in some meaningful way, then we go to play it and find that the sound stem from the rod will gradually strengthen with its length shortening, that is, the natural frequency of the rod increases gradually, this phenomenon is highly known by dynamicists. Using mathematical language, we translate this problem to the problem of dependence of eigenvalues of fourth-order boundary value problems on the boundary. With the help of spectrum theory of differential operator, combining the work of Dauge, Q., Kong and others ([38],[51],[87]), we study the dependence of eigenvalues of two kinds of fourth order boundary value problems and a kind of higher order boundary value problems on the boundary. We give specific form of the equations for derivative of the nth eigenvalue as a function of an endpoint, and proved that as the length of the interval shrinks to zero all eigenvalues march off to plus infinity for all boundary conditions considered in this paper. In addition, we give some examples.
     Finally, we study the matrix representations of fourth order boundary value problems with periodic boundary conditions, and consider its inverse process, i.e. the representations of fourth-order boundary value problems of matrix eigenvalue problem.
     This paper contains six parts.1. The background and main results in this paper;2. The associated fundamental definitions and important lemmas;3. Characterization of real-parameter solutions of self-adjoint do-mains for the product of differential expressions;4. The self-adjointness of product of two singular differential operators;5. The dependence of eigen-values of differential equation boundary value problems on the boundary;6. Matrix representations of fourth order boundary value problems with periodic boundary conditions.
引文
[1]Coddington E. A. and Levinson N., Theory of Ordinary Differential Equations, McGraw-Hill, New York/London/Toronto, 1955.
    [2]Coddington E. A., The spectral representation of ordinary self-adjoint differential operators, Ann. of Math.,1954,60(1):192-211.
    [3]Cao Z. J., On self-adjoint domains of second order differential operators in limit-circle case, Acta Math. Sinica, New series,1985,1(3):175-180.
    [4]Cao Z. J., Sun J. and Edmunds D. E., On self-adjointness of the product of two 2-order differential operators, Acta Math. Sincia, English Series,1999,15(3):375-386.
    [5]曹之江.常微分算子,上海科技出版社,上海,1987.
    [6]曹之江.高阶极限圆型微分算子的自伴扩张,数学学报,1985,28(2):205-217.
    [7]曹之江,孙炯.微分算子文集,内蒙古大学出版社,呼和浩特,1992.
    [8]王爱平,孙炯,高鹏飞.具有正则型点的奇异微分算子的自共轭扩张[J].应用数学学报,2010,33(4):632-639.
    [9]Everitt W. N. and Zettl A., Sturm-Liouville differential operators in direct sum spaces, Rocky Mountain J. Math.,1986,16(3):497-516.
    [10]Everitt W. N., Self-adjoint boundary value problems on finite intervals, J. London Math. Soc., 1962,37: 372-384.
    [11]Everitt W. N. and Neuman F., A concept of adjointness and symmetry of differential expressions based on the generalized Lagrange identity and Green's formula, Lecture Notes. in Math.1032, Springer-Verlag, Berlin, 1983,161-169.
    [12]Everitt W. N. and Zettl A., Generalized symmetric ordinary differential expressions I: The general theory. Nieuw Archief voor Wiskunde, 1979, 27(3):363-397.
    [13]Everitt W. N., A note on the self-adjoint domains of 2nth-order differential equations, Quart. J. Math. (Oxford),1963,14(2):41-45.
    [14]Everitt W. N., Integrable-square solutions of ordinary differential equations (III), Quart. J. of Math. (Oxford),1963,14(2):170-180.
    [15]Everitt W. N., Singular differential equitions I: the even case, Math. Ann.,1964, 156:9-24
    [16]Everitt W. N., Singular differential equitions II: some self-adjoint even case, Quart. J. of Math. (Oxford),1967,18(2):13-32.
    [17]Everitt W. N., Integrable-square analytic solutions of odd-order, formally symmetric ordi-nary differential equations, Proc. London Math. Soc.,1972,25(3):156-182.
    [18]Everitt W. N. and Kumar V. K., On the Titchmarsh-Weyl theory of ordinary symmetric differential expressions I: the general theory, Nieuw Archief voor Wiskunde, 1976,34(3): 1-48.
    [19]Everitt W. N. and Kumar V. K., On the Titchmarsh-Weyl theory of ordinary symmetric differential expressions II: The odd order case, Nieuw Archief voor Wiskunde,1976,34(3): 109-145.
    [20]Everitt W. N. and Markus L., Boundary value problems and symplectic algebra for ordinary differential and quasi-differential operators, Mathematical Surveys and Monographs 61. American Math. Soc., 1999.
    [21]Wei Guangsheng, Xu Zongben, Sun Jiong. Self-adjoint domains of products of differential expressions[J]. J. Differential Equations, 2001,174:75-90.
    [22]Fu S. Z., On the self-adjoint extensions of symmetric ordinary differential operators in direct sum spaces, J. Diff. Equations, 1992,100(2):269-291.
    [23]Li W. M., The high order differential operators in direct sum spaces, J. Diff. Equations, 1990,84(2):273-289.
    [24]Boyd J. P., Sturm-Liouville eigenvalue problems with an interior pole, J. Math. Physics, 1981,22(8):1575-1590.
    [25]Gesztesy F. and Kirsch W., One-dimensional Schrodinger operators with interactions sin-gular on a discrete set, J. Reine u. Ang. Mathematik, 1985, 362:28-50.
    [26]Wang A. P., Sun J. and Zettl A., Characterization of domains of self-adjoint ordinary differential operators, Journal of Differential Equations, 2009, 246:1600-1622.
    [27]Everitt W. N. and Zettl A., Differential operators generated by a countable number of quasi-differential expressions on the line, Proc. London Math. Soc., 1992,64(3):524-544.
    [28]Zettl A., Sturm-Liouville Theory, American Mathematical Society, Mathematical Surveys and Monographs v.121, Providence, R.I.: American Mathematical Society, 2005.
    [29]Sun J., On the self-adjoint extensions of symmetric ordinary differential operators with middle deficiency indices, Acta Math. Sincia, New Series,1986,2(2):152-167.
    [30]Wang W. Y. and Sun J., Complex J-symplectic geometry characterization for J-symmetric extentions of J-symmetric differential operators, Advances in Mathematics,2003,32(4): 481-484.
    [31]Wang A. P., Sun J. and Zettl A., The classification of self-adjoint boundary conditions: Separated, coupled and mixed, Journal of Functional Analysis,2008,255:1554-1573.
    [32]Wang A. P., Sun J. and Zettl A., The classification of self-adjoint boundary conditions of differential operators with two singular endpoints, J. Math. Anal. Appl., 2011,378:493-506.
    [33]Hao X. L., Sun J., Wang A. P. and Zettl A., Characterization of domains of self-adjoint ordinary differential operators II, Results in Mathematics,2012, 61:255-281.
    [34]Kauffan R. M., Read T. and Zettl A. The Deficiency Index Problem of Powers of Ordi-nary Differential Expressions[M]. Lecture Notes in Math. Volum 621, Berlin/New York: Springer-Verlag,1977.
    [35]Everitt W. N. and Giertz M. On the Deficiency Indices of Powers of Formally Symmet-ric Differential Expressions[M]. Lecture Notes in Math., Volume 1032, Berlin/New York: Springer-Verlag,1982.
    [36]曹之江,刘景麟.奇异对称常微分算子的亏指数理论[J].数学进展,1983,
    [37]Kauffman R. M. "Factorization and the Friedrichs Extension of Ordinary Differential Oper-ators," Lecture Notes in Mathematics, Vol.1032, Springer-Verlag, Berlin/New York:1982.
    [38]Dauge M. and Helffer B., Eigenvalues Variation. I. Neumann problem for Sturm-Liouville operators, J. Diff. Equations,1993,104:243-262.
    [39]G. Wei, J. Wu, Positive self-adjoint operators generated by products of differential expres-sions. J. Math. Anal. Appl., 296(2004):495-503.
    [40]Kong Q. and Zettl A., Eigenvalues of regular Sturm-Liouville problems, J. Differential Equations,1996,131:1-19.
    [41]Battle L. E., Solution dependence on problem parameters for initial value problems associ-ated with the Stieltjes Sturm-Liouville equations, Electron. J. Differential Equations, 2005, 2005(2):1-18.
    [42]Kong Q., Wu H. and Zettl A., Dependemce of eigenvalues on the problems, Math. Nachr., 1997,188:173-201.
    [43]Greenberg L. and Marletta M., The code SLEUTH for solving fourth order Sturm-Liouville problems, ACM Trans. Math. Software, 1997, 23: 453-493.
    [44]Scott M. R., An initial value method for the eigenvalue problem for systems of ordinary differential equations, J. Comp. Phy.,1973, 12:334-347.
    [45]Lord M. E., Scott M. R. and Watts H. A., Computation of eigenvalue/eigenfunctions for two-point boundary-value problems, Applied Non-Linear Analysis, edited by V. Laksh-mikantham, Academic Press,1979,635-656.
    [46]Greenberg L., An oscillation method for fourth order self-adjoint two-point boundary value problems with nonlinear eigenvalues, SIAM J. Math. Anal.,1991,22:1021-1042.
    [47]孙炯,王忠.线性算子的谱分析,北京:科学出版社,2005.
    [48]Chanane B., Eigenvalues of fourth order Sturm-Liouville problems using Fliess series, Jounal of Computational and Applied Mathematics, 1998, 96: 91-97.
    [49]Greenberg L. and Marletta M., Numerical methods for higher order Sturm-Liouville prob-lems, Jounal of Computational and Applied Mathematics, 2000, 125:367-383.
    [50]Chanane B., Fliess series approach to the computation of the eigenvalues of fourth-order Sturm-Liouville problems, Applied Mathematics Letters, 2002,15: 459-463.
    [51]M. Dauge, B. Helffer, Eigenvalues variation, Ⅱ. Neumann problem for Sturm-Liouville operators. J. Differ. Equa. 104 (1993),263-297.
    [52]Kong Q. and Zettl A., Linear ordinary differential equations, in "Inequalities and Applica-tions" (R. P. Agarwal, Ed.), WSSIAA 1994, 3: 381-397.
    [53]Dieudonne J., "Foundations of Modern Analysis," Academic Press. New York/London, 1969.
    [54]Molchnov A. M., The conditions for the discreteness of the spectrum of second order dif-ferential equations, Trudy Moskov Mat. Obsc., 1953,2(1):169-200 (Russian).
    [55]Moller-Pferiffer E., Spectral Theory of Ordinary Differential Operators, Chichester:Ellis Horwood Limited, Chichester, West Sussex,1981.
    [56]Glazman I. M., Direct Method of Qualitative Spectral Analysis of Singular Differential Operators, Jerusalem:Israel Programm for scientific translations,1965.
    [57]Edmunds D. E. and Evans W. D., Spectra Theory and Differential Operators, Oxford University Press, Oxford,1987.
    [58]Naimark M. A., Linear Differential Operators, Part Ⅱ, London: Harrap,1968.
    [59]Dunford N. and Schwartz J. T., Linear Operators, Part II, Interscience Pub. New York London, 1963.
    [60]Friedrichs K.O., Spectral Theory of Operators in Hilbert Space, Springer-verleg New York. Heidelberg. Berlin,1973.
    [61]Hinton D. and Lewis R. T., Singular differential operators with spectra discrete and bounded below, ProRoyal Soc London A,1979,84(2):117-134.
    [62]J. Toomore, J.R. Zahn, J. Latour, E.A. Spiegel, Stellar convection theory Ⅱ:single-mode study of the second convection zone in A-type stars, Astrophys. J.,207 (1976):545-563.
    [63]A. Boutayeb, E.H. Twizell, Numerical methods for the solution of special sixth-order bound-ary value problems, Int. J. Comput. Math.,45 (1992):207-233.
    [64]E.H. Twizell, A. Boutayeb, Numerical methods for the solution of special and general sixthorder boundary value problems, with applications to Benard layer eigenvalue problems, Proc. Roy. Soc. Lond. A 431 (1990):433-450.
    [65]Moller-Pferiffer E. and Sun J., On the discrete spectrum of ordinary differential operators in weighted function spaces, Zeitschrift fur Analysis und ihre Anwendungen,1995,14(5): 637-646.
    [66]B. M. Levitain, Expansion in Eigenfunctions of Second-Order Differential Equations. Gostekhizdat.1950(Russian).
    [67]杨传福,杨孝平,黄振友.m个微分算式乘积的自伴边界条件[J].数学年刊,2006,27A(3):313-324.
    [68]Richard Courant, D. Hilbert, Methods of Mathematical Physics, Vol. 1. Wiley-Interscience, 1989.
    [69]Evans W. D., Kwong M. and Zettl A., Lower bounds for the spectrum of ordinary differential equations, J. Diff. Equat.,1983,48:123-155.
    [70]F. V. Atkinson, Discrete and Continuous Boundary Value Problems, Academic Press, New York/London, 1964.
    [71]Q. Kong, H. Wu, A. Zettl, Sturm-Liouville problems with finite spectrum, J. Math. Anal. Appl. 263(2001) 748-762.
    [72]J. J. Ao, J. Sun, M.Z. Zhang, The finite spectrum of Sturm-Liouville problems with trans-mission conditions, Appl. Math. Comput.,2011,218(4):1166-1348.
    [73]J.J. Ao, J. Sun, M.Z. Zhang, Matrix representations of Strum-Liouville problems with transmission conditions, Comput. Math. Appl.,2012,63(8):1335-1348.
    [74]J.J. Ao, J. Sun, M.Z. Zhang, The finite spectrum of Strum-Liouville problems with trans-mission conditions and eigenparameter-dependent boundary conditions, Results Math., 63(2013):1057-1070.
    [75]J. J. Ao, J. Sun, A. Zettl, Matrix representation of fourth order boundary value problems, Linear Algebra Appl.,2012,436(7):2359-2365.
    [76]J. J. Ao, J. Sun, A. Zettl, The equivalence of fourth order boundary value problems and matrix eigenvalue problems, Results Math., 63(2013):581-595.
    {77] Behncke H., Hinton D. and Remling C., The spectrum of differential operators of order 2n with almost constant coefficients, J. Differential Equations,2001,175(1):130-162.
    [78]Q. Kong, H. Volkmer and A. Zettl, Matrix Representations of Sturm-Liouville problems with finite spectrum, Result. Math.,54, (2009):103-116.
    [79]Dosly and Ondfej, Oscillation criteria and the discreteness of the spectrum of self-adjoint even order differential operators, Proc. Roy. Soc. Edinburgh Sect. A, 1991,119(3-4):219-232.
    [80]Manafov M. D., Spectrum of differential operator with periodic generalized potential, Dokl. Nats. Akad. Nauk Azerb.,2007,63(3):19-25.
    [81]J. Q. S., W. Y. W., Eigenvalues of a class of regular fourth-order Sturm-Liouville Promblems. Appl. Math. Comput.,2012,218(19):9716-9729.
    [82]Hao X. L., Sun J. and Zettl A., Real-parameter square-integrable solutions and the spec-trum of differential operators, J. Math. Anal. Appl.,2011,376:696-712.
    [83]Makin A. S., On the spectrum of the Sturm-Liouville operator with degenerate boundary conditions, Dokl. Akad. Nauk,2011,437(2):154-157 (Russian).
    [84]Race D. and Zettl A. On the commutativity of certain quasi-differential expression(I)[J]. J. Lomdon Math. Soc., 1990,42:489-504.
    [85]Cao X.F., Wang Z. and Wu H.Y., On the boundary conditions in self-adjoint multi-interval Sturm-Liouville problems, Linear Algebra and its Applications,2009,430:2877-2889.
    [86]尚在久,朱瑞英.(-∞,∞)上对称微分算子的自伴域,内蒙古大学学报(自然科学版),1986,17(1):17-28.
    [87]Q. Kong, A. Zettl, Dependence of eigenvalues of Sturm-Liouville problems on the boundary. J. Differ. Equa.,126(1996):389-407.
    [88]曹之江,孙炯,Edmunds D. E., On self-adjointness of the product of two 2-nd order differ-ential operators, Acta Math. Sincia, English Series,1999,15(3):375-386.
    [89]杨传富,黄振友,杨孝平.两个四阶微分算子积的自伴性[J].数学进展,2004,33(3):291-302.
    [90]安建业,孙炯,On the self-adjointness of the product operators of two mth-order differential operators on [0,+∞), Acta Math. Sincia, English Series,2004,20(5):793-802.
    [91]Weyl H., Uber gewohnliche differ entialgleichungen mit singularityten und kiezugehorigen entwicklungen willkurlicher funktionen, Math. Ann.,1910,68:220-269.
    [92]Weidmann J., Linear Operators in Hilbert Spaces, Graduate Texts in Mathematics, Springer-Verlag, Berlin,1980.
    [93]Weidmann J., Spectral Theory of Ordinary Differential Operators, Lecture Notes in Math-ematics 1258, Springer-Verlag, Berlin,1987.
    [94]王万义.微分算子的辛结构与一类微分算子的谱分析(博士学位论文),内蒙古大学,2002.
    [95]王万义,孙炯.高阶常型微分算子自伴域的辛几何刻画,应用数学,2003,16(1):17-22.
    [96]尚在久,On J-selfadjoint extensions of J-symmetric ordinary diRerential operators. J. DiR. Eq.,1988, 73(1):153-177.
    [97]Krall A. M. and Zettl A., Singular self-adjoint-Sturm-Liouville problems, Differential Inte-gral Equations,1988, 1:423-432.
    [98]Krall A. M. and Zettl A., Singular self-adjoint Sturm-Liouville problems, II. Interior sin-gular points, Siam J. Math. Anal.,1988,19:1135-1141.
    [99]王爱平.关于Weidmann猜想及具有转移条件微分算子的研究(博士学位论文),内蒙古大学,2006.
    [100]郝晓玲.微分算子实参数平方可积解的个数与谱的定性分析(博士学位论文),内蒙古大学,2010.
    [101]姚斯琴.对称微分算子的几类扩张问题(博士学位论文),内蒙古大学,2013.
    [102]W. N. Everitt and L. Markus, Complex symplectic geometry with applications to or-dinary diffrential operators. Transactions of the American Mathematical Society, 1999, 351(12):4905-4945.
    [103]E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equa-tions [J], Part I, second edition, Oxford,1962.
    [104]W. D. Evans and E. I. Sobhy, Boundary conditions for general ordinary differential opera-tors and their adjoints. Proceedings of the Royal Society of Edinburgh, 1990,114A: 99-117.
    [105]傅守忠,直和空间上微分算子的延拓问题Ⅱ:直和空间上的J-自伴问题,内蒙古大学学报(自然科学版),1991,22(1):1-5.
    [106]李文明,两端奇异端点的对称微分算子的自伴域,内蒙古大学学报(自然科学版),1989,20(3):291-298.
    [107]L. Greenberg and M. Marletta, Numerical mathods for highr order Sturm-Liouville prob-lems, J. Comp. and Appl. Math.,125, (2000),367-383.