热力非均匀下垫面条件下对流边界层特征的水槽模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物理模拟具有经济、操作方便、可重复性强、实验条件易控制等特点。物理模拟通过控制参数研究野外观测的现象并验证数值模拟的结果,是大气边界层研究的重要手段之一。本文利用对流水槽系统模拟了平坦热力非均匀下垫面条件下对流边界层的发展过程,分析了条状下垫面和马赛克状下垫面对流边界、层的温度场特征和流场结构。同时还进行了具有水平切变的对流边界层模拟研究。主要内容如下:
     一、均匀下垫面对流边界层水平温度场特征的水槽模拟研究
     利用对流水槽模拟分析了均匀下垫面自由对流边界层的水平温度场结构特征。根据几何相似、运动相似和动力相似等要求设置初始条件和边界条件实施模拟。对流水槽的尺度为1.5m×1.5m×0.6m,先加入具有一定温度层结的去离子水,然后底部加热形成对流,模拟对流边界层的发生和发展。利用快速响应的温度传感器测量温度廓线和不同高度上的温度起伏;利用准直光闪烁原理获得光学湍流场。根据温度廓线和光学湍流场的结果得到对流边界层厚度和稳定度等参数。根据不同高度的水平脉动温度,利用AR谱方法分析水平温度谱峰值频率所对应的尺度,该尺度对应于对流边界层的准二维对流热泡的水平尺度。统计分析结果表明,自由对流边界层大涡的水平尺度在边界层的下部随高度的增加而增加,约在0.65倍边界层厚度处达到最大,然后随高度的增加又逐渐减小。物理模拟与数值模拟和野外观测结果符合一致。根据对流热泡的这种特征,提出了一个自由对流边界层的热泡模型。
     二、非均匀下垫面对流边界层的物理模拟研究
     实施的热力非均匀下垫面对流边界层的物理模拟实验可分成两类:条状下垫面和马赛克下垫面。
     (1)条状下垫面主要利用谱分析和动力学方法研究了两条状热力非均匀下垫面对流边界层的发展过程。通过对温度场和速度场的谱分析结果,可以得出以下结论:均匀场和非均匀场的谱呈现的规律很不相同;均匀场的谱峰通常为单峰结构,而非均匀场由于受下垫面的影响,出现多峰结构;非均匀流场同时存在较大尺度的谱峰和较小尺度的谱峰。分析表明,较大尺度的峰应主要受到非均匀的影响。较小尺度的谱峰和均匀场的尺度一致,可以认为是混合层湍流发展的结果。大尺度和小尺度的峰值波长的相对强度存在起伏变化。这实际上是均匀性和非均匀性相互作用的一种表现。对于两条状下垫面会引发类似海陆风的环流。测量显示水槽能较好地获得海陆风的典型结构,甚至海陆风环流的细节特征。使用尺度化的方法分析了海陆风发生过程的特征。水槽数据显示海陆风速度在发生阶段和充分发展阶段遵从出不同的规律。当海陆风处于充分发展阶段,海风速度的尺度律类似于野外观测和数值模拟的结果。但是在海陆风的发生阶段,海陆风速度遵从另外的尺度律,由此给出了海陆风发生的条件。水槽实验结果显示海陆风并不是在早晨陆地有向上的热通量和海陆温差出现后立即形成。分析表明,临界点可以解释为海风速度是对累积热通量的响应,即陆地对流边界层发展到足够的高度后,海风才能够发生。水槽实验数据同样被用来对海陆风的高度和体积通量检测尺度化分析。尽管结果并没有显示出归一化的海风深度与Π1和Π4的依赖关系比只与n1的关系好,但体积通量尺度的有效性表明海风深度尺度与稳定度之间存在依赖关系。水槽实验也证实了陆面上方热辐合和空气自海洋到陆面的平流之间存在的平衡。在海陆风充分发展的时期,两者的平衡建立并得到维持。
     (2)马赛克下垫面主要从热力学的角度出发,分析了热通量廓线的振荡特征。通过在底面设置马赛克状隔热覆盖物,模拟热力非均匀下垫面的对流边界层的发生发展。在对流边界层发展的同时,利用实验获取的不同下垫面的温度廓线,对热通量廓线的特征进行研究。结果表明,非均匀下垫面对流边界层的归一化热通量随高度表现出非线性特征,即具有上凸和下凹的特征。上凸和下凹特征随时间出现振荡,这明显不同于均匀下垫面的情形。从热通量等值线图上可以看出,整体平均的热通量廓线振荡较小,局地热通量廓线振荡较大,而且下垫面未覆盖区域的热通量廓线比覆盖区域振荡的频率更高,振幅更大。这表明,非均匀下垫面条件下的对流边界层和均匀下垫面条件下的对流边界层的湍流结构有很大的不同。热力非均匀下垫面湍流特征呈现出一些均匀下垫面所没有的物理特性。在均匀下垫面得到的边界层的参数化规律不能简单地用于热力非均匀下垫面的对流边界层发展过程。
     三、具有水平切变对流边界层的水槽模拟研究
     风速切变是机械湍流产生的直接原因。机械湍流在大气边界层中的作用和影响一直备受关注。现有的水槽能很好地模拟对流边界层的特征,但一直未在对流边界层中引入水平流场。目前在水槽中实现同时加热和引入平流的实验还未见报道。在现有的对流水槽中引入水平流动,模拟了具有水平切变的对流边界层的发展过程。利用温度探头测量了8个高度位置处的脉动温度,并使用粒子追踪技术拍摄了二维速度场,计算了平均温度、温度方差、湍流度、平均速度等参量。分析结果表明:温度廓线在近地层满足对数关系,和野外观测较为一致;分别利用温度廓线和速度场定出了边界层随时间增长的变化关系,两者给出的结果较为一致。实验结果显示:该水槽能较好地模拟具有水平切变的对流边界层的发展过程,为后续工作的开展提供了一个很好的平台。
Physical simulation has the characteristics of economic, practical, strong repeatability and easy control of experimental conditions. Physical simulation is one of the important means of atmospheric boundary layer research by controlling the parameters to study the phenomena of field observation and verify the results of numerical simulation. In this paper, water-tank is used to simulate the progress of convection layer development under the conditions of flat and inhomogeneous surface, analyzing the characteristics of temperature and flow structure on the mosaic and strip surface, respectively. And according to the similarity theory, a new kind of water-tank is designed to study the convective boundary layer with the horizontal shear. The main content is as follows:
     1. Physical simulation on horizontal temperature characteristics of the convective boundary layer.
     The characteristics of horizontal temperature of the convective boundary layer (CBL) were analyzed using water tank simulation. Based on the geometric similarity, kinematic similarity and dynamic similarity, the initial and boundary conditions can be set for simulation. The dimension of the water tank is1.5m×1.5m×0.6m. The degassed water was first filled with inversion stratification, then the bottom was heated and the convection was generated. The generation and evolution of the CBL were simulated. Temperature profiles and fluctuations at several heights were measured using fast response temperature sensors; optical turbulence was retrieved from the record using scintillation effect. Several parameters, such as the CBL depth, can be calculated. The AR power spectrum estimate was used to obtain the peak frequency of temperature fluctuations at those heights, which corresponds to the scale of quasi two-dimensional structure. The results show that scales of quasi two—dimensional structure at the low part of CBL increase with the height, reaching the maximum scale at about0.65z1, and then decrease with the height at the upper part of the CBI. The results show good agreement with the fields and the numerical simulation. At the upper part of CBL, the normalized scales decrease with stabilizations. Based on the results, a thermal pattern for the free CBL was proposed.
     2. Physical simulation on the convective boundary Layer over the thermal inhomogeneous surface.
     The Physical simulation experiment can be divided into two kinds of thermal heterogeneity surface in convective boundary layer:the strip surface and the mosaic surface.
     (1) The strip surface researches are mainly focused on the two strip thermal inhomogeneous surface using spectral analysis and dynamics method. By the results of the spectral analysis of the temperature and velocity fields, the following conclusions can be drawn:The Characteristics of the spectrum on the inhomogeneous surface is different with that on the homogeneous surface; the structure of the spectral peaks on the homogeneous surface is usually single; while on the stip inhomogeneous surface it is multitudinous. There are some large scale and some small scale of the spectral peak on the stip inhomogeneous surface. Analysis shows that:compared with the large scale the peak should be mainly by the stip inhomogeneous surface, the influence of smaller scale spectral peaks can be thought of as the result of the development of the mixed layer turbulence, due to the same as the scale of spectral peaks on the stip inhomogeneous surface. There is fluctuation of intensity relative to peak wavelength both the large and the small scales. This is actually a combined action of the Homogeneity and heterogeneity. On the two-striped inhomogeneous surface, a circulation will be lead similar to that of the land-sea breeze. The measurements show that the water-tank can get the typical structure of the sea breeze, even the minutiae of the sea breeze circulation. The scale method is applied to analyze the characteristics of the generating process of the land-sea breeze. The scale law of the land-sea breeze is different between the generating stages to the fully developing process stages according to the water-tank dataset. When the land-sea breeze is in the stage of full development, the scale law of the land-sea breeze is similar to that of field observation and numerical simulation results. However, in the stage of the generating process, the land-sea breeze complies with the additional length scale. Based on the water-tank dataset, we give generating conditions of the land-sea breeze. Water-tank experiment results show that the land-sea breeze is not formed immediately after the the land formed with upward heat flux and the temperature difference between land and sea in the morning. The analysis showed that the critical point can be interpreted as the sea breeze speed response to the accumulation of heat flux, that is to say when the land boundary layer has developed to a sufficient height,the land-sea breeze is able to occur. Water-tank experimental dataset are also used to the scaling analysis of the height and volume of the land-sea breeze. Although the results did not show the normalized depth of the land-sea breeze has stronger dependence relationship on∏1, and∏4than that on only∏1,, but the effectiveness of the volume flux scale indicates that the dependency between the land-sea breeze depth scale and stability. The Water-tank experiments also confirmed the balance of the land surface side heat convergence and air advection from the ocean to the land surface. The balance establishes and maintains between them in the period of the full development of the land-sea breeze.
     (2) From the viewpoint of thermodynamics, the heat flux oscillation characteristics over Mosaic inhomogeneous surface is analysised.Mosaic-like cover is put on the bottom of the water-tank to achieve thermal heterogeneity. In the convective boundary layer development, temperature profiles were measured on different surface region and with which heat flux profiles are calculated. The results show that normalized heat flux profiles behave the non-linear characteristics, that is, the convex and concave features. Convex and concave features oscillate over time. This is obviously different from the case of homogeneous surface. From Heat flux contour map, the oscillation of the overall average heat flux profiles is smaller than that of uncovered and covered surface region. And the oscillation on uncovered surface region has a higher frequency and greater amplitude. The results show some turbulence structures of convective boundary layer on thermal heterogeneous surface are quite different from that on homogeneous surface. The law of the parameters for homogeneous surface cannot apply alike for heterogeneous surface. The laboratory experimental results of laboratory study can provide useful reference for numerical simulation and field observations.
     3. Physical simulation on the convective boundary layer with horizontal shear using the water-tank.
     Wind shear is the direct cause of mechanical turbulence. The Role and influence of mechanical turbulence in the atmospheric boundary layer has been great concern. Existing water-tank could do well in the simulation on the convective boundary layer. But the horizontal shear flow in CBL had not been implemented in our water-tank system before. The implement with heating and advection experiment in the water-tank has not been reported. The development process of the convective boundary layer with horizontal shear has been simulated using the convection water-tank while realizing horizontal flow. Fluctuating temperature are measured using the temperature sensor at eight different heights and two dimensional velocity fields are measured using particle tracking technology. The average temperature, temperature variance, turbulence intensity, average velocity and other parameters are calculated. The analysis results show that the temperature profile in close surface layer meet logarithmic relation, which is consistent with field observation. The hight of the boundary layer growing over time is deduced respectively using temperature variance and velocity field, and both results are consistent. The experimental results show that this water-tank can be well to simulate the development of the convective boundary layer with horizontal shear. And for the subsequent workes, it provides a good physical simulation platform.
引文
乔娟,张强,张杰,非均匀下垫面陆面过程参数化问题研究进展[J].干旱气象,2008.26(1):p.73-77,88.
    刘树华,李洁,文平辉.城市及乡村大气边界层结构的数值模拟[J].北京大学学报:自然科学版,2002.38(1):p.90-97.
    刘红年,刘罡,蒋维楣,左洪超.关于非均匀下垫面大气边界层研究的讨论[J].高原气象,2004.23(3):p.412-416.
    左洪超,吕世华,胡隐樵,等.非均匀下垫面边界层的观测和数值模拟研究(Ⅱ):逆湿现象的数值模拟研究[J].高原气象,2004.23(2):p.163-170.
    桑建国,吴熠丹,刘辉志,等.非均匀下垫面大气边界层的数值模拟[J].高原气象,1992.1(4):p.400-410.
    刘晶淼.丁裕国,周秀骥,等.湿润气候区非均匀地表平均蒸散发率参数化方案研究[J].水科学进展,2006.17(2):p.252-258.
    戴福山,李有宽.2007.利用气象要素估算海洋大气近地层光学湍流[J].光学学报,27(2):191-196.
    傅德胜,寿益禾.2002.图形图像处理学[M].东南大学出版社.
    牛国跃,洪钟祥,孙菽芬.沙漠绿洲非均匀分布引起的中尺度通量的数值模拟.大气科学,1997.21(4):p.385-395.
    阎宇平,王介民,M. Menenti等.黑河实验区非均匀地表能量通量的数值模拟[J].高原气象,2001.20(2):p.132-139.
    姜金华,胡非.大涡模拟方法在非均匀边界层研究中的应用[J].科学技术与工程,2004(5):p.352-354.
    郭会芬,邱翔,刘宇陆.2006.小波变换在湍流数值研究中的应用[J].计算力学学报,23(1)58~64.
    刘罡,蒋维楣,罗云峰.非均匀下垫面边界层研究现状与展望.地球科学进展,2005.20(2):p.223-230.
    姜金华,胡非,李磊.Mosaic方法在非均匀下垫面上的适用性研究[J].高原气象,2007.26(1):p.83-91.
    刘熙明,胡非.大气边界层的研究--从均匀到非均匀[J].气象与减灾研究,2007.30(2):p.44-51.
    高艳红,吕世华.非均匀下垫面局地气候效应的数值模拟[J].高原气象,2001.20(4):p.354-361.
    胡昌华等.1999.基于MATLAB的系统分析与设计——小波分析[M].西安电子科技大学出版社.
    季小玲,陈森会,李晓庆.2008.部分相干电磁厄米-高斯光束通过湍流大气传输的偏振特性[J].中国激光,35(1):67~72.
    蒋维楣,吴晓明,周朝辅.1991.大气环境物理模拟[M].南京:南京大学出版社,428pp.
    李萍阳,蒋维楣,孙鉴泞等.2004.实验速度场测量技术及对流边界层特征研究[J].大气科学进展,20(4):631-637.
    罗涛.2008.边界层夹卷参数化及光学湍流特性的室内模拟研究[博士].安徽合肥:中国科学技术大学地球与空间科学学院大气物理学与大气环境专业,144pp.
    罗涛,袁仁民,孙鉴泞.2006.大气边界层各向异性的室内模拟研究[J].强激光与粒子束,18(3):372~376.
    罗涛,袁仁民,孙鉴泞.2006.大气对流边界层发展的模拟研究[J].高原气象,25(6):1001-1007.
    马晓珊,朱文越,饶瑞中.2007.湍流大气中光波闪烁的圆环孔径平均因子[J].光学学报,27(9):1543~1547.
    马晓珊,朱文越,饶瑞中.2008.测量大气折射率结构常数的大口径激光闪烁仪[J].中国激光,35(6):898~902.
    潘锋,韩琦琦,马晶,谭立英.2007.3.5公里城市路径激光大气传输的闪烁测量和链路冗余估计[J].中国光学快报,5(1):1-3.
    饶瑞中.2008.湍流大气中光闪烁的通用理论[J].中国光学快报,6(8):547~549.
    饶瑞中,王世鹏,刘晓春,龚知本.1999.激光大气闪烁的小波频谱分析[J].光学学报,19(12):1634-1638.
    孙鉴泞,蒋维楣,李萍阳等.2003.对流边界层顶部夹卷速度参数化的模拟研究[J].中国科学技术大学学报,33(1):119-124.
    袁仁民.2005.白天混合层顶部夹卷层厚度的特征研究[J].地球物理学报,48(1):19-24.
    袁仁民,曾宗泳,肖黎明等.2000.湍流池湍流特征研究[J].力学学报,32(3):257-263.
    袁仁民,曾宗泳,马成胜等.2001.大气对流边界层光传输的实验室模似[J].光学学报,21(5):518-521.
    袁仁民,曾宗泳,马成胜.2001b.利用气象要素估算近地面光学湍流[J].量子电子学报.18(1):87-91.
    袁仁民,姚克亚,孙鉴泞等.2002.大气边界层的室内模拟研究——夹卷层温度场结构分析[J].大气科学,26(6)773-780.
    袁仁民,曾宗泳,孙鉴泞.2003.对流水槽温度场和速度场的测量[J].量子电子学报,20(3)380-384.
    袁仁民,罗涛,孙鉴泞.2006.对流边界层顶部光学湍流的室内模拟研究[J].光学学报,26(9): 1287-1292.
    曾宗泳,马成胜.1983.大气温度微结构观测[J].大气科学,7(3):277-284.
    Grisogono B. Wave Drag Effects in a Mesoscale Model with a Higher-Order Closure Turbulence Scheme[J]. Journal of Applied Meteorology,1995.34(4):p.941-954.
    Arola A. Parameterization of turbulent and mesoscale fluxes for heterogeneous surfaces[J]. Journal of the Atmospheric Sciences,1999.56(4):p.584-598.
    Kang S. L., K. J. Davis. The effects of mesoscale surface heterogeneity on the fair-weather convective atmospheric boundary Iayer[J]. Journal of the Atmospheric Sciences,2008. 65(10):p.3197-3213.
    Letzel M. O., S. Raasch. Large eddy simulation of thermally induced oscillations in the convective boundary layer[J]. Journal of the Atmospheric Sciences,2003.60(18):p. 2328-2341.
    Ching-Long, L. and J. W. Glendening, Large eddy simulation of an inhomogeneous atmospheric boundary layer under neutral conditions[J]. Journal of the Atmospheric Sciences|Journal of the Atmospheric Sciences,2002.59(16):p.2479-97.
    Dosio, A. and J. V. G. de Arellano, Statistics of absolute and relative dispersion in the atmospheric convective boundary layer:A large-eddy simulation study[J]. Journal of the Atmospheric Sciences,2006.63(4):p.1253-1272.
    Glendening, J. W. and C. L. Lin, Large eddy simulation of internal boundary layers created by a change in surface roughness[J]. Journal of the Atmospheric Sciences,2002.59(10):p. 1697-1711.
    Kumar, V., et al., Large-eddy simulation of a diurnal cycle of the atmospheric boundary layer: Atmospheric stability and scaling issues[J]. Water Resources Research,2006.42(6).
    Andrews L C, phillips R L, Hopen C Y, et al.1999. Theory of optical scintillation[J]. J Opt Soc Am A,16(6):1417-1429.
    Antonia, R. A., Chambers, A. J., Bradley, E. F.,1982. Relationships between structure functions and temperature ramps in the atmospheric surface layer[J]. Boundary-Layer Meteorology 23, 395-403.
    Beyrich F and Gryning S E.1998. Estimation of the Entrainment Zone Depth in a Shallow Convective Boundary Layer from Sodar Data[J]. J Appl Meteorol,37:255-268.
    Boers R.1989. A Parameterization of the Depth of the Entrainment Zone[J], Journal of Applied Meterology,28:107-111.
    Caughey S J and Palmer S G.1979. Some Aspects of Turbulence Structure through the Depth of the Convective Layer[j]. Quart J Roy Meteor Soc,105:811-827.
    Chen, R. R., Berman, N. S., Boyer, D. L., Fernando, H. J. S.,1996. Physical model of diurnal heating in the vicinity of a two-dimensional ridge. Journal of the Atmospheric Sciences 53, 62-85.
    Chen Ziyun, Sun Jianning, Yuan Renmin, Jiang Weimei,2004. Analysis of Convective Boundary Layer Eddy Structure in Water Tank by Orthonormal Wavelet (in Chinese). Journal of Geophysics 47,964-970.
    Deardorff J M.1970b. Convective Velocity and Temperature Scales for the Unstable Planetary Boundary Layer and for Raileigh Convection. J Atmos Sci.27:1211-1213.
    Deardorff, J. W., Willis, G. E., and Lilly, D. K.,1969. Laboratory investigation of non-steady penetrative convection[J]. Journal of Fluid Mechanics 35,7-31.
    Deardorff J W. Willis G E and Stockton B H.1980. Laboratory Studies of the Entrainment Zone of a Convectively Mixed Layer[J]. J Fluid Mech,100(1):41-64.
    Deardorff, J. W., Willis, G. E.,1984. Groundlevel Concentration Fluctuations from a Buoyant and a Non-buoyant Source within a Laboratory Convectively Mixed Layer[J]. Atmospheric Environment 18,1297-1309. See also discussion in Atmospheric Environment 19, 1210-1213.
    Deardorff, J. W., and Willis, G. E.,1985. Further Results From a Laboratory Model of the Convective Planetary Boundary Layer[J]. Boundary-Layer Meteorology 32,205-236.
    Deardorff, J. W., Willis, G. E.,1987. Turbulence within a baroclinic laboratory mixed layer above a sloping surface. Journal of the Atmospheric Sciences 44,772-778.
    E. Bacry, A. Arneodo, U. Frisch et al.1991. in Turbulence and Coherent Structures[M]. edited by O. Metais and M. Lesieur(Kluwer Academic, Norwell, Ma), p.450.
    Farge M.1992. Wavelet transforms and their applications to turbulence[J]. Ann Rev Fluid Mech, 24:395-457.
    Fitzjarrald, D. E.,1978. Horizontal Scales of Motion in Atmospheric Free Convection Observed during the GATE[J]. Experiment Journal of Applied Meteorology 17,213-221.
    Hibberd, M. F., Sawford, B. L.,1994a. Design Criteria for Water Tank Models of Dispersion in the Convective Boundary Layer[J]. Boundary-Layer Meteorology 67,97-118.
    Hibberd, M. F., Sawford, B. L.,1994b. A Saline Laboratory Model of the Planetary Convective Boundary-Layer[J]. Boundary-Layer Meteorology 67,229-250.
    Hibberd, M. F., Luhar, A. K.,1996. A laboratory study and improved PDF model of fumigation into a growing convective boundary layer[J]. Atmospheric Environment 30,3633-3649.
    Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., Izumi, Y., Cote, O. R.,1976. Turbulence Structure in the Convective Boundary Layer[J]. Journal of the Atmospheric Sciences 33, 2125-2169.
    Keisuke Fukui, Masamoto Nakajima,1983. A laboratory experiment on momentum and heat transfer in the stratified surface layer[J]. Quarterly Journal of the Royal Meteorological Society 109,661-676.
    Khalsa S J S and Greenhut G K.1987. Convective Elements in the Marine Atmospheric Boundary Layer. Part Ⅱ:Entrainment in the Capping Inversion[J]. J Climate Appl Meteor,26 824-836.
    Kumar, R., Adrian, R. J.,1986. Higher Order Moments in the Entrainment Zone of Turbulent Penetrative Thermal Convection. ASME, Translation, Journal of Heat Transfer 108,323-329.
    Liu Heping, Boyin Zhang, Jianguo Sang, Andrew Cheng,2001. A laboratory simulation of plume dispersion in stratified atmospheres over complex terrain[J]. Journal of Wind Engineering and Industrial Aerodynamics 89,1-25.
    Liu Huizhi, Liang Bin, Zhu Fengrong, Zhang Boyin and Sang Jianguo,2003. A laboratory Model for the flow in urban street canyons induced by bottom heating[J]. Advances in Atmospheric Sciences 20,554-564.
    Liu Huizhi, Liang Bin, Zhu Fengrong, Zhang Boyin and Sang Jianguo,2004. Water Tank Experiment on the thermal circulation induced by the bottom heating in an Asymmetric Valley[J]. Advances in Atmospheric Sciences 21,536-546.
    Lumley, J. L.,2001. A Century of Turbulence[J]. Flow, Turbulence and Combustion 66,241-286.
    Mahrt L, Lenschow D H.1976. Growth Dynamics of the Convective Mixed Layer[J]. J Atmos Sci, 46(1):79-95.
    Mitsumoto, S.,1989. A laboratory experiment on the slope wind, Journal of Meteorological Society of Japan 67,565-574.
    Muzy J F, Bacry E, Arneodo A.1993. Multifractal formalism for fractal signals:the structure-function approach versus the wavelet-transform modulus-maximum method[J]. Phys Rev E,47(2):875-884.
    Nelsons E, Stull R B and Eloranta E W.1989. A Prognostic Relationship for the Entrainment Zone Thickness[J]. J Appl Meteorol,28:885-903.
    Nieuwstadt F T M and Brost R A.1986. The Decay of Convective Turbulence[J]. J Atmos Sci,43: 532-546.
    Ohba, R., Kakishima, S., Ito, S.,1991. Water tank experiment of gas diffusion from a stack in stably and unstably stratified layers under calm conditions[J]. Atmospheric Environment 25A, 2063-2076.
    Panofsky H A.1973. The Boundary layer above 30m. Boundary-Layer Meteor.4:251-264.
    Park, O. H., Seo, S. J., Lee, S. H.,2001. Laboratory simulation of vertical plume dispersion within a convective boundary layer[J]. Bound Layer Meteorology 99,159-169.
    Poreh M, Rau M. Plate E J.1991. Design considerations for wind tunnel simulation of diffusion within the convective boundary layer[J]. Atoms Environ,25A:1251-1256.
    Querzoli, G.,1996. A Lagrangian study of particle dispersion in the unstable boundary layer[J]. Atmospheric Environment 30,2821-2829.
    Reuten, C., Steyn, D. G., Allen, S. E.,2007. Water tank studies of atmospheric boundary layer structure and air pollution transport in upslope flow systems[J]. Journal of Geophysical Research 112, D11114, doi:10.1029/2006JD008045.
    R. L. Fante.1975. Electrom agnetic beam propagation in turbulent media[J]. Proc IEEE,63(12): 1669-1692.
    Stull R B.1988. An Introduction to Boundary Layer Meteorology[M].(边界层气象学导论,杨长 新译.气象出版社,北京.1991).
    Sullivan O P, Meong C H, Stevens B Lenschaw D H, and Mayor S D.1998. Structure of the Entrainment Zone Capping the Convective Atmospheric Boundary Layer[J]. J Atmos Sci, 55(19):3042-3064.
    Sun Jianning, Jiang Weimei, Chen Ziyun et al.2005. Parameterization for the Depth of the Entrainment Zone above the Convectively Mixed Layer[J]. Advances in Atmospheric Sciences,22(1):114-121
    Sun Jianning, Jiang Weimei, Chen Ziyun et al.2005. A Laboratory Study of the Turbulent Velocity Characteristics in the Convective Boundary Layer[J]. Advances in Atmospheric Sciences, 22(5):770-780
    Tatarski.1978. Wave Propagation in a Turbulent Medium [M]. Wen Jingsong et al, transl. Beijing: Science Press,51-52(in Chinese).
    Wilde N P, Stull R B and Eloranta E W.1985. The LCL Zone and Cumulus Onset[J]. J Clim Appl Meteor,24:640-657.
    Willis. G. E. and J. W. Deardorff.1974. A laboratory model of the unstable planetary boundary layer[J]. J. Atmos. Sci,31,1297-1307.
    Willis, G. E., and Deardorff, J. W.,1981. A laboratory model of dispersion from a source in the middle of the convectively mixed layer[J]. Atmospheric Environment 15,109-117.
    Willis, G. E., and Deardorff, J. W.,1983. On plume rise within a convective boundary layer[J]. Atmospheric Environment 17,2435-2447.
    Willis, G. E., and Deardorff, J. W.,1987. Buoyant plume dispersion and inversion entrapment in and above a laboratory mixed layer[J]. Atmospheric Environment 21,1725-1735.
    Wyngaard J C, et al.1971b. Behavior of the Refractive-index-parameter near the Ground. J Opt Soc Am.61:1646-1650.
    Wyngaard J C and Richard A Brost.1984. Top-Down and Bottom-Up Diffusion of a Scalar in the Convective Boundary Layer. J Atmos Sci.41(1):102-112.
    Yamada T and Mellor G.1975. A Simulation of the Wangara Atmospheric Boundary Layer Data[J]. J Atmos Sci,32:2309-2329.