蒸发式冷却器传热传质的试验研究及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业生产中所用的冷却塔因冷却水与空气直接接触,水质容易受污染,蒸发式冷却器因其环保、节能、洁净等优点,广泛应用于化工、冶金等行业。在目前蒸发式冷却器试验研究、数值计算和CFD模拟的基础上,本文将试验研究、数值计算和CFD模拟相结合,研究了蒸发式冷却器的传热传质过程,分析了其热力性能。主要研究工作和结论如下:
     (1)搭建了蒸发式冷却器的试验测试平台,测试不同工况下的热力性能,分析了喷淋水流量、风速和空气湿球温度对管内冷却水出口温度、喷淋水温度、空气出口焓值和传热系数等的影响,当喷淋水流量达到最小喷淋密度时,换热量随喷淋水流量的增加几乎不变,拟合得到了喷淋水膜对流传热系数和水膜对空气传质系数经验公式。
     (2)从传热传质基本原理出发,分别针对Poppe和Merkel假设,构建了蒸发式冷却器的数学模型,分别建立了对Poppe法和Merkel法的一维和二维Matlab计算流程和相应计算程序,并与椭圆管型蒸发式冷却器的试验数据对比,一维和二维模型计算所得的管内冷却水出口温度几乎一致,结果表明采用一维模型即可准确计算预测其热力性能;Merkel法与Poppe法所得的沿盘管高度方向的热流密度分布比值在1.01-1.06之间,致性较好;Poppe法预测的出口空气温度和含湿量更接近试验测试值,而且稳定性更好。建立了基于Poppe法的空气处于过饱和情况下的分段计算模型,计算前先判断微元单元空气是否过饱和然后选择相应的微分方程求解,理论分析预测了空气饱和度对换热量、管内冷却水出口温度,空气出口干球温度、含湿量分布及焓值分布的影响,对于过饱和的情况,假设为非饱和情况对于准确预测管内冷却水出口温度和设备换热量是非常有效的;但如果空气过饱和,采用非饱和的Poppe法假设无法准确预测出口空气的干球温度和含湿量;过饱和情况容易发生在空气干球温度较低时。
     (3)采用CFD软件——ANSYS FLUENT中的Species transport without reactions模拟分析蒸发式冷却器的热力性能和流场分布,结果表明:标准k-ε模型和非平衡壁面函数是预测圆管和椭圆管型蒸发式冷却器热力性能的最佳组合。将数学分析模型与FLUENT模拟相结合来预测蒸发式冷却器的热力性能,对比了试验、数学分析模型和FLUENT所得的数据,验证了FLUENT模拟的可行性;同时对比数学分析模型与FLUENT模拟所得的含湿量和温度分布。
     (4)采用FLUENT模拟分析了旁路流、管型和椭圆管排列形式对蒸发式冷却器性能的影响。随着旁路宽度的增加,旁路面积占最小流通面积的比例增加,流经旁路的空气占总空气流量的百分比增加,通过这些旁路的空气,没有充分参与传热传质,导致出口空气焓值下降,设备换热性能降低,影响其使用经济性和高效利用性。因此,在蒸发式冷却器的安装过程中,满足管束与箱体最小装配间隙时,应尽量避免过大的间隙;对比分析了圆管和3种不同长短轴比的椭圆管的热力性能,包括出口空气焓值、传质柯尔本因子、旁路流所占比例以及局部的流线和含湿量等值线,椭圆管的传质柯尔本因子高于圆管;通过对椭圆管排列形式的模拟,发现:随着管束与空气竖直方向流向夹角的增大,流线弯曲程度增加,湍流程度增大,传质过程得到强化。
In industry, due to the fact that the cooling water in cooling towers directly contacts with air, cooling water can easily be polluted. Evaporative coolers because of its environmentally friendly and energy-savings, are widely used in chemical, metallurgy, etc. Based on the experimental investigation, computational analysis and CFD simulation, the heat and mass transfer and thermal performance of the evaporative coolers are presented as follows:
     (1) The experimental test platform was set up and the thermal performance characteristics of the oval-tube and twisted-tube evaporative coolers were studied. The impact of deluge water flow rate, air velocity and air wet bulb temperature on the process water outlet temperature, deluge water temperature, air outlet enthalpy and heat transfer coefficient were analyzed. The deluge water flow rate had little impact on the heat transfer rate when it reached the minimum flow rate. From the experimental results, correlations for the water film heat transfer coefficient and air-water mass transfer coefficient were developed.
     (2) By employing these assumptions and following an approach similar to Poppe and Merkel, analytical models of the evaporative cooler were derived from basic principles. Flowchart of the calculating process were showed as one and two-dimensional models. Compared with the experimental data, the predicted outlet process water temperatures showed little difference between the one and two-dimensional models, thus one-dimensional model was proposed. The distribution of heat flux along the evaporative cooler by Poppe and Merkel methods compared well with each other and was between1.01and1.06. The predicted outlet air temperature and humidity ratio by Poppe method were closer to the experimental data. Analytical model was adopted to investigate the thermal performance under supersaturated condition based on Poppe method and solved by a sectional method. Under the supersaturated condition, whether the air was supersaturated or not was determined by the program, then the program automatically selected the corresponding governing equations. The effect of degree of saturation of inlet air on the heat transfer rate and process-water outlet temperature was presented, and little difference was found between the unsaturated and supersaturated conditions if the outlet air was supersaturated. The air temperature, humidity ratio and enthalpy distributions under both unsaturated and supersaturated conditions could be predicted with the analytical model and the differences between the two conditions were also presented. The assumption that the air was unsaturated was a very useful assumption to predict the total heat transfer rate and outlet process-water temperature of the evaporative coolers if the actual air was supersaturated. Supersaturation was likely to occur at low inlet air temperature. The predicted air temperatures and humidity ratio were not very close to the two conditions if the outlet air was supersaturated.
     (3) The thermal and hydraulic performance of plain tube and oval tube evaporative coolers were investigated numerically. Computational fluid dynamics (CFD), ANSYS FLUENT12.1, was implemented for the numerical solution. Species transport without reactions was adopted to simulate the mass transfer from the air-deluge water interface to the air. Different turbulence models and near-wall treatments were used to assess which model fit the data better. The mass transfer Colburn factor jm, and friction factor/were presented and compared with experimental data. The Standard k-ε model with non-equibibrium wall functions was the most suitable combination for the prediction. The proposed FLUENT model was also applied to predict the mass transfer coefficient of other evaporative coolers and compared well with experimental data. The comparison between computational analysis and FLUENT simulation showed an acceptable agreement with each other.
     (4) The bypass flow, tube type and tube layout pattern were investigated numerically. The fraction of the bypass to total flow rate increased with the increasing of the bypass width. Thus, the fraction of the air crossing the tube bundle decreased, which resulted in the lower of the outlet air enthalpy and less heat transfer rate. It was proposed to avoid leakage if the minimum requirement of assembling was reached. Different tube types (plain and oval tube with three different axial ratio) were adopted to analyze thermal performance, which included the out air enthalpy, mass transfer Colburn factor, fraction of bypass. The results showed mass transfer Colburn factor for the oval tube was higher than that for the plain tube. The simulation of the tube layout pattern concluded the larger the tube layout angle, the higher the turbulent intensity and mass transfer.
引文
[1]国务院办公厅. “十二五”节能减排综合性工作方案.2011.http://www.gov.cn/zwgk/2011-09/07/content 1941731.htm.
    [2]刘晶.密闭式冷却塔冷却过程的计算机仿真及参数优化研究[D],2006.
    [3]别尔曼,胡伦桢.循环水的蒸发冷却[M].中国工业出版社,1965.
    [4]ASHRAE H. Systems and Equipment Handbook[M].1996.
    [5]ASHRAE. ASHRAE Systems and Equipment [M]. USA; American Society of Heating Refrigeration and Air Conditioning Engineers.1992.
    [6]BAC大连有限公司.FXV闭式冷却塔[M].大连:BAC大连有限公司,2011.
    [7]Evapco. ATW闭式冷却塔[M].中国:Evapco,2011.
    [8]Hwang Y, Radermacher R, Kopko W. An experimental evaluation of a residential-sized evaporatively cooled condenser[J]. International Journal of Refrigeration,2001,24(3): 238-249.
    [9]Gan G, Riffat SB. Numerical simulation of closed wet cooling towers for chilled ceiling systems[J]. Applied Thermal Engineering,1999,19(12):1279-1296.
    [10]王少为,于立强.蒸发式冷凝器应用于户式空调的实验研究[J].节能,2003,(3):9-12.
    [11]Project Report (PRJ41/98):Baltimore Aircoil Company,1998. http://www.baltimoreaircoil.com.
    [12]Project Report (PRJ40/99):Baltimore Aircoil Company,1999. http://www.baltimoreaircoil.com.
    [13]Parker RO, Treybal RE. The heat mass transfer characteristics of evaporative coolers coolers[J]. AIChE Chemical Engineering Progress Symposium Series,1962,57(32): 138-149.
    [14]Mizushina T, Ito R, Miyashita H. Experimental study of an evaporative cooler[J]. International Chemical Engineering,1967,7(4):727-732.
    [15]Niitsu Y, Naito K, Anzai T. Studies on characteristics and design procedure of evaporative coolers[J]. Journal of SHASE, Japan,1967,41(12).
    [16]Niitsu Y, Naito K, Anzai T. Studies on characteristics and design procedure of evaporative coolers[J]. Journal of SHASE, Japan,1967,41(13).
    [17]Niitsu Y, Naito K, Anzai T. Studies on characteristics and design procedure of evaporative coolers[J]. Journal of SHASE, Japan,1969,43(7):581-590.
    [18]Leidenfrost W, Korenic B. Analysis of evaporative cooling and enhancement of condenser efficiency and of coefficient of performance[J]. Heat And Mass Transfer, 1979,12(1):5-23.
    [19]Dreyer AA, Erens PJ. Heat and mass transfer coefficient and pressure drop correlations for a crossflow evaporative cooler[C]. Proceedings of the International heat transfer conference, Jerusalem,1990.
    [20]Hasan A, Siren K. Theoretical and computational analysis of closed wet cooling towers and its applications in cooling of buildings[J]. Energy And Buildings,2002,34(5): 477-486.
    [21]Heyns JA, Kroger DG. Experimental investigation into the thermal-flow performance characteristics of an evaporative cooler[J]. Applied Thermal Engineering,2010,30(5): 492-498.
    [22]Gomez EV, Martinez FJR, Gonzalez AT. Experimental characterisation of the operation and comparative study of two semi-indirect evaporative systems[J]. Applied Thermal Engineering,2010,30(11-12):1447-1454.
    [23]Bellagamba B, Dinelli G, Tognotti L, et al. Water distribution in cooling towers: characterization of industrial spray nozzles:proceedings of the Proceedings of the Sixth IAHR Cooling Tower Workshop, Pisa, Italy,1988[C].
    [24]ASHRAE. ASHRAE Fundamentals[M]. USA:American Society of Heating, Refrigeration and Air Conditioning Engineers,1997.
    [25]Poppe M, Rogener H. Evaporative Cooling Systems. VDI-Warmeatlas[M]. Berlin, 1984.
    [26]Merkel F. Verdunstungskuehlung, VDI Forschungsarbeiten No.275[M]. Berlin,1925.
    [27]Osterle F. On the Analysis of Counter-Flow Cooling Towers[J]. International Journal of Heat and Mass Transfer,1991,34(4-5):1313-1316.
    [28]British Standard 4485.2-1988. Water Cooling Towers, Part 2:Methods for Performance Testing[S].
    [29]Cooling Tower Institute Bulletin, ATC-105[S].
    [30]ATC-105-1997. Acceptance Test Code for Water-Cooling Towers[S].
    [31]Jaber H, Webb RL. Design of cooling towers by the effectiveness-NTU method[J]. Journal Name:Journal of Heat Transfer (Transactions of the ASME (American Society of Mechanical Engineers), Series C); (United States); Journal Volume:111:4,1989: Medium:X; Size:Pages:837-843.
    [32]Mizushina T, Ito R, Miyashita H. Characteristics and Methods of Thermal Design of Evaporative Cooler[J]. International Chemical Engineering,1968,8(3):532-538.
    [33]Finlay IC, Grant WD, Air coolers, cooling towers and evaporative coolers, Report No. 534[R]. East Kilbride, Glasgow:National Engineering Laboratory,1972.
    [34]Finlay IC, Grant WD, The accuracy of some simple methods of rating evaporative coolers, Report No.584[R]. East Kilbride, Glasgow:National Engineering Laboratory, 1974.
    [35]Webb RL, Villacres A. Algorithms for performance simulation of cooling towers, evaporative condensers, and fluid coolers[J]. ASHRAE transactions,1984,90(Part 2B): 416-458.
    [36]Leidenfrost W, Korenic B. Evaporative cooling and heat transfer augmentation related to reduced condenser temperatures[J]. Heat Transfer Engineering,1981,3:38-59.
    [37]Bourillot C, On the hypothesis of calculating the water flow rate evaporated in a wet cooling tower, EPRI Report CS-3144-SR,1983.
    [38]Sutherland JW. Analysis of mechanical-draught counterflow air/water cooling towers[J]. Journal of Heat Transfer,1983,105(3):576-583.
    [39]Dreyer AA. Analysis of Evaporative Coolers and Condensers[D]. Republic of South Africa:University of Stellenbosch,1988.
    [40]Alonso JFSJ, Martinez FJR, Gomez EV, et al. Simulation model of an indirect evaporative cooler[J]. Energy And Buildings,1998,29(1):23-27.
    [41]Koschenz M. Model for closed circuit evaporative cooling tower:proceedings of the IBPSA International Building Performance Simulation Association,4th Int Conf Madison, Wisconsin, USA,1995[C].
    [42]Zalewski W, Gryglaszewski PA. Mathematical model of heat and mass transfer processes in evaporative fluid coolers[J]. Chemical Engineering And Processing, 1997,36(4):271-280.
    [43]Zalewski W. Mathematical model of heat and mass transfer processes in evaporative condensers[J]. International Journal of Refrigeration,1993,16(1):23-30.
    [44]Jafari Nasr MR, Behfar R. A novel design for evaporative fluid coolers[J]. Applied Thermal Engineering,2010,30(17-18):2746-2752.
    [45]Nasr MRJ, Polley GT. Should you use enhanced tubes[J]. Chemical Engineering Progress,2002,98(4):44-50.
    [46]Papaefthimiou VD, Rogdakis ED, Koronaki IP, et al. Thermodynamic study of the effects of ambient air conditions on the thermal performance characteristics of a closed wet cooling tower[J]. Applied Thermal Engineering,2012,33-34(0):199-207.
    [47]Xia ZZ, Chen CJ, Wang RZ. Numerical simulation of a closed wet cooling tower with novel design[J]. International Journal of Heat and Mass Transfer,2011,54(11-12): 2367-2374.
    [48]Gan G, Riffat SB, Shao L, et al. Application of CFD to closed-wet cooling towers[J]. Applied Thermal Engineering,2001,21(1):79-92.
    [49]Hasan A, Gan GH. Simplification of analytical models and incorporation with CFD for the performance predication of closed-wet cooling towers[J]. International Journal Of Energy Research,2002,26(13):1161-1174.
    [50]Facao J, Oliveira AC. Heat and Mass Transfer in an Indirect Contact Cooling Tower: CFD Simulation and Experiment[J]. Numerical Heat Transfer Part A-applications, 2008,54(10):933-944.
    [51]蒋翔,朱冬生.蒸发式冷凝器发展和应用[J].制冷,2002,21(004):29-33.
    [52]蒋翔,王长宏,张景卫,等.扭曲管蒸发式冷凝器的性能与工业应用[J].流体机械,2008,36(12):1-6.
    [53]包卫.蒸发式冷凝器用于火电厂冷却系统的可行性分析[J].浙江电力,2004,23(4):46-49.
    [54]许玉忠,柳海鹏.蒸发冷却空调机组在乌鲁瓦提水电厂的应用[J].新疆水利,2008,(5):51-53.
    [55]李荣玲,张天仓.蒸发冷却器在空冷机组辅机系统的应用[J].山西电力,2009,(152): 76-79,112.
    [56]黄翔,徐方成,武俊梅.蒸发冷却空调技术在节能减排中的重要作用[J].制冷与空调,2008,8(4):17-20.
    [57]黄翔,刘鸣,等.蒸发冷却技术在新疆地区纺织行业应用现状分析[J].棉纺织技术,2002,30(4):14-18.
    [58]李银明,黄翔.蒸发冷却与冷却吊顶相结合的半集中式空调系统的探讨[J].流体机械,2005,33(1):56-59.
    [59]朱冬生,涂爱民,李元希,等.蒸发式冷却器/闭式冷却塔的应用前景及其设计计算:proceedings of the中国制冷学会2007年学术年会 浙江杭州 [C].中国制冷学会2007.
    [60]徐方成,黄翔,武俊梅.蒸发冷却在空调系统中的应用分析[J].流体机械,2009,37(1):77-80.
    [61]刘兰群,张建伟,唐建业,et al. TRZL系列蒸发式冷凝器应用浅析[J].化工设计,2005,15(3):47-49.
    [62]蒋翔.蒸发式冷凝器管外流体流动与传热传质性能及机理的研究[D].广州:华南理工大学,2006.
    [63]沈家龙.蒸发式冷凝器传热传质理论分析及实验研究[D]:华南理工大学,2005.
    [64]李永安,李继志,张兆清.空调用封闭式冷却塔空气动力特性的实验研究[J].流体机械,2005,33(7):67-69.
    [65]朱冬生,沈家龙,蒋翔,等.湿空气对蒸发式冷凝器性能的影响[J].制冷技术,2006,(2):17-19.
    [66]朱冬生,沈家龙,蒋翔,等.蒸发式冷凝器管外水膜传热性能实验研究[J].高校化学工程学报,2007,21(1):31-36.
    [67]蒋翔,朱冬生,唐广栋,等.蒸发式冷凝器管外流体流动与传热传质强化[J].工程热物理学报,2008,29(10):1698-1702.
    [68]朱冬生,沈家龙,唐广栋,等.水分布对蒸发式冷凝器传热传质的影响[J].工程热物理学报,2007,28(1):83-85.
    [69]孙荷静,朱冬生,吴治将,et al.波纹管管内降膜流动与传热特性的研究[J].石油炼制与化工,2009,40(10):25-29.
    [70]吴治将,汪南,朱冬生.立式蒸发式冷凝器强化传热实验研究[J].低温工程,2010,(3):26-29,60.
    [71]李雪玲.非饱和蒸发式冷却器设计及强化传热性能研究[D].上海:华东理工大学,2011.
    [72]林琳.盘管加填料混合型闭式冷却塔的性能分析[J].暖通空调,2011,41(8):81-85.
    [73]章立新.湿球温度与闭塔蒸发冷却能力关系的研究:proceedings of the中国工程热物理学会传热传质学2009年学术会议论文集,[C].2009.
    [74]唐伟杰,张旭.蒸发式冷凝器的换热模型与解析解[J].同济大学学报(自然科学版), 2005,33(7):942-946.
    [75]刘乃玲.小型闭式冷却塔的数值计算[J].山东建筑大学学报,2008,23(2):120-124.
    [76]赵顺安,李武全,冯晶.蒸发冷却器(闭式塔)的热力计算方法[J].工业用水与废水,2009,40(3):73-75.
    [77]蒋翔,朱冬生,吴治将,et a1.立式蒸发式冷凝器传热传质的CFD模拟[J].高校化学工程学报,2009,23(4):566-571.
    [78]游江.逆流密闭式冷却塔热力特性数值模拟与优化[D].上海:东华大学,2010.
    [79]Bosnjakovic F. Technische Thermodinamik[M]. Dresden:Theodor Steinkopf,1965.
    [80]Bourillot C, Numerical model for calculating the performance of an evaporative cooling tower, EPRI Report CS-3212-SR,1983.
    [81]Kloppers JC. A critical evaluation and refinement of the performance prediction of wet-cooling towers[D]. Stellenbosch, Republic of South Africa:Mechanical and Mechatronic Engineering, University of Stellenbosch,2003.
    [82]Hasan A. Performance Analysis of Heat Transfer Processes from Wet and Dry Surfaces: Cooling Towers and Heat Exchangers[D]. Espoo, Finland:Helsinki University of Technology,2005.
    [83]Facao J, Oliveira A. Heat and mass transfer correlations for the design of small indirect contact cooling towers[J]. Applied Thermal Engineering,2004,24(14-15):1969-1978.
    [84]Hasan A, Siren K. Comparison of External Surface Heat Transfer Coefficients for Circular and Oval Tubes[J]. Heat Transfer Engineering,2007,28(7):640-644.
    [85]Hasan A, Siren K. Performance investigation of plain circular and oval tube evaporatively cooled heat exchangers[J]. Applied Thermal Engineering,2004,24(5-6): 777-790.
    [86]Hasan A. Thermal-hydraulic performance of oval tubes in a cross-flow of air[J]. Heat And Mass Transfer,2005,41(8):724-733.
    [87]ASHRAE. ASHRAE Fundamentals [M]. USA; American Society of Heating, Refrigeration and Air Conditioning Engineers.1997.
    [88]Kroger DG. Air-cooled heat exchangers and cooling towers:thermal-flow performance evaluation and design[M]. Tulsa. Oklahoma. USA:Pennwell Corp,2004.
    [89]Facao J, Oliveira AC. Thermal behaviour of closed wet cooling towers for use with chilled ceilings [J]. Applied Thermal Engineering,2000,20(13):1225-1236.
    [90]宋进.闭式冷却塔中均匀布水及其对传热传质影响的实验研究[D].上海:华东理工大学,2012.
    [91]Kloppers JC, Kroger DG. A critical investigation into the heat and mass transfer analysis of counterflow wet-cooling towers[J]. International Journal of Heat and Mass Transfer,2005,48(3-4):765-777.
    [92]ANSYS. ANSYS FLUENT 12.1 User' Guide[M].2009.
    [93]Riffat S, Oliveira A, Facao F, et al. Thermal performance of a closed wet cooling tower for chilled ceilings:Measurement and CFD simulation[J]. International Journal Of Energy Research,2000,24(13):1171-1179.
    [94]AcunhaJr IC, Schneider PS. Numerical simulation of air-water flows in an evaporative condenser[J]. Heat Transfer Engineering,2009,8(1):24-30.
    [95]Pulat E, Isman MK, Etemoglu AB, et al. Effect of Turbulence Models and Near-Wall Modeling Approaches on Numerical Results in Impingement Heat Transfer[J]. Numerical Heat Transfer, Part B:Fundamentals,2011,60:486-519.
    [96]Klinzing WP, Sparrow EM. Evaluation of Turbulence Models for External Flows[J]. Numerical Heat Transfer, Part A:Applications,2009,55(3):205-228.
    [97]AN SYS. ANSYS FLUENT 12.0 Theory Guide[M].2009.
    [98]Launder BE, Spalding DB. Lectures in mathematical models of turbulence[M]. London, England Academic Press,1972.
    [99]Shih TH, Liou WW, Shabbir A, et al. A new k-ε eddy viscosity model for high reynolds number turbulent flows[J]. Computers & Fluids,1995,24(3):227-238.
    [100]Launder B, Spalding D. The numerical computation of turbulent flows[J]. Computer Methods In Applied Mechanics And Engineering,1974,3(2):269-289.
    [101]Jayatillaka C. The influence of Prandtl number and surface roughness on the resistance of the laminar sublayer to momentum and heat transfer[J]. Progress in Heat and Mass Transfer,1969,1:193-321.
    [102]Kim SE, Choudhury D. A near-wall treatment using wall functions sensitized to pressure gradient[J]. Separated and complex flows,1995:273-280.
    [103]Hyland RW, Wexler A. Formulation for thermodynamic properties of the saturated phases of H2O from 173.15 K to 473.15 K[J]. ASHRAE transactions,1983,89(2A): 500-519.
    [104]Zheng WY, Zhu DS, Zhou GY, et al. Thermal performance analysis of closed wet cooling towers under both unsaturated and supersaturated conditions[J]. International Journal of Heat and Mass Transfer,2012,55(25-26):7803-7811.
    [105]Tinker T. Shell-side Heat Transfer Characteristics of Segmentally Baffled Shell-and-tube Exchangers, Parts Ⅰ, Ⅱ and Ⅲ:proceedings of the Proceedings of the General Discussion on Heat Transfer, London,1951[C]. Institute of Mechanical Engineers.
    [106]Tinker T. Shell-side characteristics of shell-and-tube heat exchangers-a simplified rating system for commercial heat exchangers[J]. Transactions of the American Society of Mechanical Engineers,1958,80:36-52.
    [107]Palen JW, Taborek J. Solution of Shell-Side Flow Pressure Drop and Heat Transfer by Stream Analysis Method[J]. Chemical Engineering Progress Symposium Series, 1969,(65).
    [108]Lewis WK. The evaporation of a liquid into a gas[J]. ASME Transactions,1922,44: 325-332.
    [109]Lewis WK. The evaporation of a liquid into a gas-A correction[J]. Mechanical Engineering,1933,55:567-573.
    [110]Hong KT, Webb RL. Calculation of fin efficiency for wet and dry fins[J]. Hvac&r Research,1996,2(1):27-41.
    [111]Seshimo Y, Ogawa K, Marumoto K, et al. Heat and mass transfer performances on plate fin and tube heat exchangers with dehumidification[J]. Heat Transfer-Japanese Research;(USA),1990,18(5):79-81.
    [112]Eckels PW, Rabas TJ. Dehumidification:On the Correlation of Wet and Dry Transport Processes in Plate Finned-Tube Heat Exchangers[J]. Journal of Heat Transfer, 1987,109(3):575-582.
    [113]Pirompugd W, Wongwises S, Wang CC. Simultaneous heat and mass transfer characteristics for wavy fin-and-tube heat exchangers under dehumidifying conditions [J]. International Journal of Heat and Mass Transfer,2006,49(1):132-143.
    [114]Feltzin AE, Benton D. A more exact representation of cooling tower theory[J]. Cooling Tower Institute, Journal,1991,12(2):8-26.
    [115]Wang CC. On the heat and mass analogy of fin-and-tube heat exchanger[J]. International Journal of Heat and Mass Transfer,2008,51(7-8):2055-2059.
    [116]Xia Y, Jacobi AM. Air-side data interpretation and performance analysis for heat exchangers with simultaneous heat and mass transfer:Wet and frosted surfaces [J]. International Journal of Heat and Mass Transfer,2005,48(25-26):5089-5102.
    [117]Xia L, Chan M, Deng S, et al. A modified logarithmic mean enthalpy difference (LMED) method for evaluating the total heat transfer rate of a wet cooling coil under both unit and non-unit Lewis Factors[J]. International Journal Of Thermal Sciences, 2009,48(11):2159-2164.
    [118]Zheng WY, Zhu DS, Song J, et al. Experimental and computational analysis of thermal performance of the oval tube closed wet cooling tower[J]. Applied Thermal Engineering,2012,35:233-239.
    [119]Mills AF. Basic heat and mass transfer[M]. Upper Saddle River, NJ:Prentice Hall, 1999.
    [120]ASHRAE.2009 ASHRAE Handbook-Fundamentals[M]. Atlanta:American Society of Heating,Refrigerating and Air-Conditioning Engineers, Inc.,2009.
    [121]Electric G. Heat transfer and fluid flow data book[M]. New York:General Electric Co., 1982.
    [122]Goff JA. Saturation pressure of water on the new kelvin scale, Humidity and moisture measurement and control in science and industry, ed., A. Wexler and W.H. Wildhack,[M]. New York:Reinhold publishing Co.,1965.
    [123]steam Ukcotpo. U.K. steam tables in SI units 1970[M]. London:Edward Arnold Ltd., 1970.
    [124]ASHRAE. Handbook of Fundamentals[M]. New York:American Society of Heating, Refrigeration and Air Conditioning Engineering, Inc.,1972.
    [125]Godridge AM. British coal utilization research association monthly,1954,18(1).
    [126]Hirschfelder JO, Curtiss CF, Bird RB. Molecular theory of gases and liquids[M]. New York:Wiley,1954.
    [127]Asano K. Mass transfer:from fundamentals to modern industrial applications[M]. Weinheim:Wiley-VGH,2006.
    [128]Marrero T, Mason E. Gaseous diffusion coefficients[J]. Journal Of Physical And Chemical Reference Data,1972,1(1):3-118.