糖尿病冠脉造影阴性与糖化低密度脂蛋白关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:糖尿病是动脉粥样硬化的主要危险因素,糖尿病病人由于高血糖的作用,与体内大分子物质发生一系列反应,从而导致糖化低密度脂蛋白(G-LDL)在体内的生成与沉积,对动脉粥样硬化的发生与发展起到了促进的作用。血清中LDL与葡萄糖经非酶糖基化作用生成的G-LDL是评价糖尿病控制水平的长期指标,并且对糖尿病的动脉粥样硬化形成具有重要的诊断价值。既往将无冠心病的糖尿病归为冠心病的危险因子,目前已经升级为冠心病的等危症。目前如高血压、高血脂、肥胖和吸烟等冠心病的危险因素,均不足以解释糖尿病病人为什么有如此高的动脉粥样硬化发病率。但是临床上仍发现一部分糖尿病病人,即使有糖尿病病史5年以上,经冠脉造影检查仍未发现任何粥样斑块。
     研究目的:本实验采用氯化硝基四氮唑蓝法比色法测定DM-NCHD组与DM-CHD组的G-LDL水平,探讨G-LDL与冠脉造影阴性的关系。同时使用自动生化分析仪(Sapphire600)测定总胆固醇(CHOL)、高密度脂蛋白胆固醇(HDL)和低密度脂蛋白胆固醇(LDL)、甘油三酯(TG)。TG采用磷酸甘油氧化酶法、HDL、LDL均使用化学修饰酶法。糖化血红蛋白(HbA1C)采用微柱层析法测定。研究G-LDL与冠脉造影阴性的关系,与冠脉粥样硬化程度的关系,G-LDL与TG、HbA1c、LDL、HDL、CHOL的相关性。
     研究方法:根据糖尿病诊断标准(1999年WHO标准),选择济宁医学院附属医院心内科2011年6月到2012年9月心内科住院的全部糖尿病冠脉造影阴性患者49例,通过随机抽样的方法选择糖尿病冠脉造影阳性患者50例,正常对照组50例。所有入选者年龄均在55岁-75岁之间,有糖尿病的病例组糖尿病病史均超过5年,均排除肝肾功能不全、激素替代治疗、甲亢、合并肿瘤、凝血机制障碍等患者以及不同意参加本研究的患者,均签署知情同意书。所有受试者均于清晨空腹肘静脉采血,采用氯化硝基四氮唑蓝比色法。测定原理:用沉淀法分离出血清G-LDL,在碱性条件下,G-LDL使NBT还原生成紫色的化合物,其颜色的深浅与G-LDL的含量成正比,在分光光度计上测定530nm处吸光度(A)值,计算G-LDL指数=A×500,测定结果为指数,无单位。使用自动生化分析仪(Sapphire600)测定甘油三酯(TG)、总胆固醇(CHOL).高密度脂蛋白胆固醇(HDL)和低密度脂蛋白胆固醇(LDL)。TG采用磷酸甘油氧化酶法、HDLLDL均使用化学修饰酶法。糖化血红蛋白(HbA1C)采用微柱层析法测定。采用SPSS13.0统计分析软件,计量资料以均数±标准差(x±s)表示,2组间比较采用t检验,单因素组间比较采用方差分析。相关性分析应用Pearson相关分析。多因素分析采用多元线性逐步回归分析,入选标准0.05,剔除标准0.10。以P<0.05为差异有统计学意义。使用SPSS的ROC曲线过程,以血清G-LDL水平为检验变量,以冠脉造影结果为状态变量,作ROC曲线分析,并求出诊断点。
     研究结果1.DM-NCHD组血清G-LDL水平低于DM-CHD组(P<0.05),高于NC组(P<0.05)。
     2.血清G-LDL水平与冠脉粥样硬化程度(以Gensini评分表示)成正相关。
     3.多元逐步回归显示:以G-LDL为因变量,以TG、LDL、HDL、CHOL、 HbA1c为自变量进行多元线性回归分析,结果显示G-LDL与TG呈正相关,与HbA1c.LDL、HDL、CHOL无关。
     4.横轴为1-特异度,纵轴为灵敏度,ROC曲线下面积为0.805,面积标准误为0.044,血清G-LDL水平用于诊断冠脉粥样硬化有显著意义(P=0.000)。血清G-LDL为50.45时,灵敏度为0.80,特异度为0.84。研究结论糖尿病冠脉造影阴性患者血清G-LDL水平明显低于糖尿病冠脉造影阳性组,并且血清G-LDL水平与冠脉粥样硬化程度呈正相关,G-LDL有望成为评价糖尿病患者冠脉粥样硬化风险的有效指标。
Research background Diabetes is a major risk factor for atherosclerosis, diabetic patients with high blood sugar, a series of reactions and in vivo macromolecules, resulting in glycosylated low density lipoprotein (G-LDL) in the generation and deposition in vivo, occurrence and development of atherosclerosis plays a promoting role. In the past diabetes with no coronary heart disease as risk factor for coronary heart disease, at present has been upgraded to a CHD risk equivalent. At present, such as the risk of hypertension, hyperlipidemia, obesity and smoking factor of coronary heart disease, are not enough to explain why diabetic patients have such a high rate of incidence of atherosclerosis. But the clinical still found part of the diabetic patients, even had diabetes for5years, after coronary angiography has not yet found any plaque.
     Research objective the experimental determination of DM-NCHD group and DM-CHD group with nitro blue tetrazolium chloride method at the G-LDL level, to explore the relationship between coronary angiography negative and G-LDL. At the same time, the use of automatic biochemical analyzer (Sapphire600) determination of total cholesterol (CHOL), high density lipoprotein cholesterol (HDL) and low density lipoprotein cholesterol (LDL), triglyceride (TG). TG using glycerol phosphate oxidase method, HDL, LDL are the use of chemical modification of enzyme method. Glycosylated hemoglobin (HbA1C) were measured by the micro column chromatography. Study on the relationship between coronary angiography negative and the correlation between G-LDL and G-LDL, TG, HbAlc, LDL, HDL, CHOL
     Research methods According to the diagnostic criteria for diabetes (1999WHO),49of all diabetic patients with angiographically normal coronary arteries from2011June to2012September in Department of Cardiology of Affiliated Hospital of Jining Medical College Department of Cardiology in hospital patients, through random sampling method to select50cases of patients with positive diabetic coronary angiography,50cases of normal control group. All subjects were aged between55-75years of age, history of diabetes mellitus diabetic patients were over5years, were excluded from the liver and kidney dysfunction, hormone replacement therapy, patients with hyperthyroidism, tumor, disturbances of blood coagulation and do not agree with the patients involved in the study, informed consent. All subjects were in the early morning fasting venous blood, using nitro blue tetrazolium chloride method. Determination of principle:using isolated serum G-LDL precipitation method, under alkaline conditions, compound G-LDL the NBT reduction generation purple, content depth and G-LDL whose color is proportional to the measured absorbance at530nm, spectrophotometer (A) values, calculated index of G-LDL=A x500, determination the results for the index, no unit. The use of automatic biochemical analyzer (Sapphire600) determination of triglycerides (TG), total cholesterol (CHOL), high density lipoprotein cholesterol (HDL) and low density lipoprotein cholesterol (LDL). TG using glycerol phosphate oxidase method, HDL, LDL are the use of chemical modification of enzyme method. Glycosylated hemoglobin (HbA1C) were measured by the micro column chromatography. Using SPSS13.0statistical analysis software, the measurement data with the mean±standard deviation (x±s), between the two groups using t test, single factor between the groups was compared using analysis of variance. Multiple factors were analyzed by multiple linear stepwise regression analysis, the inclusion criteria0.05, excluding the standard0.10. With P<0.05for the difference was statistically significant. The ROC curve using SPSS, the serum G-LDL level was tested with variable, using the result of coronary artery angiography as state variables, for the analysis of ROC curve, and find out the breakpoint.
     research results1.Group DM-NCHD G-LDL levels were lower in the DM-CHD group (P<0.05), higher than that of NC group (P<0.05).
     2The G-LDL levels in the DM-CHD Group were positively correlated with the degree of coronary atherosclerosis.
     3Multiple linear stepwise regression analysis showed that:the G-LDL as the dependent variable, TG, LDL, HDL, CHOL, HbA1c to make a multiple linear regression analysis showed that G-LDL was positively correlated with the dependent variable, TG, has nothing to do with the HbA1c, LDL, HDL CHOL.
     4horizontal1-axis for the sensitivity, specificity, and area under ROC curve0.805, area of standard error is0.044, the level of serum G-LDL for diagnosis of coronary atherosclerosis was significant (P=0.000). Serum G-LDL was50.45, the sensitivity was0.80, specificity was0.84.
     Research result G-LDL levels in the DM-NCHD group was significantly lower than those in the DM-CHD group, and the G-LDL levels in the DM-CHD Group were positively correlated with the degree of coronary atherosclerosis, G-LDL is expected to be the effective indicator to evaluate the risk of coronary atherosclerotic in patients with diabetes mellitus.
引文
[1]Kannel WB, McGee DL. Diabetes and cardiovasculardisease:The Framingham study[J]. JA M A,1979,241:2035-2038.
    [2]Miettinen H, Lehto S, Salomaa V, et al.Impact of diabetes on mortality after the first myocardial infarction. The FINMONICA Myocardial Infarction Register Study Group. Diabetes Care,1998,21(1):69-75.
    [3]Jose A, Silva MD, Alvaro Escobar, MD et al.A Comparison of Angioscopic Findings Between Diabetic and Nondiabetic Patients. Circulation,1995,92:1731-1736.
    [4]Kortlandt W, vanRijn HJM, Erkelens DW. Glycation and lipoproteins. Diab Nutr Metab,1993,6:231-9.
    [5]Schleicher E, Deufel T, Wiel and OH. Non- enzymatic glycosylation of human seru mlipoproteins. FEBS Lett,1981,129:1-4.
    [6]Tames FJ, Mackness MI, Arrol S, Laing I, et al.Non- enzymaticglycation of apolipoprotein B in the sera of diabetic and non -diabetic subjects. Athero sclerosis,1992,93:237-44.
    [7]Stitt AW, He C, Friedman S, et. al. Elevated AGE-modified Apo B in sera of euglycemic, normolipidemic patients with atherosclerosis:relationship to tissue AGEs. Mol Med,1997,3:617-27.
    [8]Cai W, He JC, Zhu L, et al.High levels of dietary advanced glycation end products transform low-density lipoprotein into apotent redox-sensitive mitogen-activated protein kinase stimulant in diabetic patients. Circulation,2004,110:285-291.
    [9]Klein RL, Laimins M, Lopes -Virella MF. Isolation, characterization, and metabolism of the glycated and nonglycated subfractions of low-density lipoproteins isolated from type Ⅰ diabetic patients and non diabetic subjects. Diabetes,1995,44:1093-1098.
    [10]Misciagna G, Logroscino G, De Michele G,et al.Glycated apolipoprotein B and myocardial infarction.Nutr Metab Cadiovasc Dis,2007,17:6-12.
    [11]Misciagna, G. Logroscino, G. De Michele Glycated apolipoprotein B and myocardial infarction.Nutrition, Metabolism & Cardiovascular Diseases,2007,17:6-12.
    [12]Artwohl M, Graier WF, Roden M, et al. Diabetic LDL triggers apoptosis invascular endothelial cells. Diabetes,2003,52:1240-1247.
    [13]Khan BV, Parthasarathy SS, Alexander RW, et al. Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion mo- lecule -1 gene expression in human vascular endothelial cells. Clinnvest,1995,95:1262-1270.
    [14]Bucala R, Makita Z, Vega G, et al. Modification of low density lipoprote in by advanced glycation end products contributes to the dyslipidemia of diabetes and renalinsufficiency. Proc Natl Acad Sci USA,1994,91:9441-9445.
    [15]Ferretti G, Rabini RA, Bacchetti T, et al. Glycated low density lipoproteins modify platelet properties:a compositional and function al study. Clin Endocrinol Metab,2002,87:2 180-2184.
    [16]Expert Panel on Detecti on. Evaluati on, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of The National Cholesterol Education Program (NCEP) Expert Panel on Detect i on, Evaluation, and Treatment of High B lood Cholestero 1 In Adults (Adult Treatment Panel Ⅲ). JAMA,2001,285:2486-2497.
    [17]Brawnlee M. Gly-cation products and the pathogenesis of complications. Diabets Care,1992,15:1835-1843.
    [18]M.P. Cohen, Y. Jin, G.T. Lautenslager, Increased plasma glycated low-density lipoprotein concentrations in diabetes:a marker of atherogenic risk, Diab. Technol. Ther,2004,6:348-356.
    [19]G. Virella, S.R. Thorpe, N.L. Alderson, et al.Autoimmune response to advanced glycosylation end-products of human LDL,Lipid. Res,2003,44:487-493.
    [20]J.L. Wautier, A.M. Schmidt.Protein glycation:a firm link to endothelial cell dysfunction, Circ. Res,2004,95:233-238.
    [21]N. Younis, R. Sharma, H. Soran, et al.Glycation as an atherogenic modification of LDL, Curr. Opin. Lipidol,2008,19:378-384.
    [22]A.W. Stitt, C. He, S. Friedman, et al.Elevated AGE-modified ApoB in sera of euglycemic, normolipidemic patients with atherosclerosis:relationship to tissue AGEs. Mol. Med,1997,3:617-627.
    [23]A. Sima, C. Stancu, Modified lipoproteins accumulate in human coronary atheroma. Cell. Mol. Med,2002,6:110-111.
    [24]C.P. Hodgkinson, R.C. Laxton, K. Patel, et al.Advanced glycation end-product of low density lipoprotein activates the toll-like 4 receptor pathway implications for diabetic atherosclerosis, Arterioscler. Thromb. Vasc. Biol,2008,28:2275-2281.
    [25]王振清. 氯化硝基四氮唑蓝还原法检测血清糖化低密度脂蛋白及极低密度脂蛋白的方法学研究及应用[J].卫生职业教育,2006,24(11):105-106.
    [26]Nahla Younis, Valentine Charlton-Menys, Reena Sharma, et al.Glycation of LDL in non-diabetic people:Small dense LDL is preferentially glycated both in vivo and in vitro.Atherosclerosis,2009,202:162-168.
    [27]Kikuo Isoda, Eduardo Folco, M.Reza Marwali,et al.Glycated LDL increases monocyte CC chemokine receptor 2 expression and monocyte chemoattractant protein-1-mediated. Chemotaxis. Atherosclerosis,2008 June,198(2):307-312.
    [28]韩萍,郭津津, 郭阳,等.2型糖尿病大血管病变与血清糖基化低密度脂蛋白及循环免疫复合物的关系[J].中国医科大学学报,1999,49(4):52-53.
    [29]Menzel EJ, sobal G, Staudinger A.The role of oxidative stress in the long-term glycation of LDL[J],Biofactor,1997,6(2);96-105.
    [30]Lyons T J. Lipoprotein glycation and its metabolic consequence. Diabetes, 1992,41(suppl 2):67.
    [31]Bucaka R. Site- specific modification of apolipoprotein B by advanced glucosylation end- products:implication f or lipoprotein clearance and atherogenesis [J]. Ep hrol Dial Transplant,1996,11(Supp 1):517-519.
    [32]Klein RL, Laimins M, Lopes- Virell a MF (?) Isolation, characterization,and metabolism of the glycated and nonglycated subfractions of low-density lipoproteins isolated from type Ⅰ diabetic patient s and nondiabetic subject Diabetes,1995,44:1093-1098.
    [33]Lyons TJ Γ Li poprot ein glycation and its metabolic consequences Diabetes,1992,41 (Suppl 2):67-73
    [34]Schleicher E, Nerlich A.The role of hyperglycemia in the development of diabetic complications.HormMetab Res,1996,28:367-373.
    [35]Nigris,Tajana G, condorelli M,et al.Glycoxidation of low-density-lipprotein increase Tunel prositivity and CPP32 activation in human coronary cells [J]. Ann N Y Avad Sci,2003,1010:710.
    [36]刘爱华,谢淑萍,王拥军.G-LDL与颈动脉粥样硬化的关系研究.中华老年心脑血管病杂志,1999,1(1):23-26.
    [37]Iassaro H. Nonenzymatic glycation:a role in pathogenesis of diabet Γ ic complications. Clin Chem,1986,32:37.
    [38]Brownlee M, Cerami A. The biochemistry of the complications of diabets mellitus. Ann Rev Biochem,1981,50:385.
    [39]赵勤,李建端,文世林,等.2型糖尿病患者非酶促糖化低密度脂蛋白与血糖和血脂的关系.河南医科大学学报,1999,34(1):77-78.
    [40]Yoshifumi, Fukushima, Hiroyuki Daida,et al. Relationship between Advanced Glycation End Products and Plaque Progression in Patients with Acute Coronary Syndrome:The JAPAN-ACS Sub-study.Cardiovascular Diabetology,2013,12:5 doi:10.1186/1475-2840-12-5.
    [41]龙健,曾智等.糖化低密度脂蛋白与动脉粥样氧化.心脏杂志,2003,15 (1):84-85.
    [42]Lindsey JB, Delemos JA, Cipollon. Association between circulating soluble for advanced glycation end-products and atherosclerosis:observations from the Dall as Heart Study[J]. Diabetes Care,2009,32(7):1218-1220.
    [43]Oz Gul o O, Tuncel E, Yilmaz Y, et al. Comparative effects of pioglitazone and rosiglitazone on plasma levels of soluble receptor for advanced glycation end products in type 2 diabetes mellitus patients[J] Metabolism,2010,59(1):64-69.
    [44]Tam H L, Shiu SW, Wong Y, et al. Effects of atorvast at in on serum soluble receptors for advanced glycation end-products in type 2 diabetes [J].Atherosclerosis,2010,209(1):173-177.
    [45]Bucala R, Makita Z, Koschinsky T, et al. Lipid advanced glycosylatio n: Pathway for lipid oxidat ion in vivo. Proc Natl Acad Sci.1993,90:6434-6438.
    [46]Bucala R, Makita Z, Vega G, et al. Modification o f low density lipo protein by advanced glycation end products contributes to the dyslipidemia of diabetes and renal insufficiency. Proc Natl Acad Sci,1994,91:9441-9445.
    [47]Wang X, Bucala R, Milne R. Epitopes close to the apolipoprotein B low density lipoprotein receptor- binding site ar e modified by advanced glycation end products. Proc Natl Acad Sci,1998,95:7643-7647.
    [1]Libby P. Inflammation in atherosclerosis. Nature,2002,420:868-874.
    [2]Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol:a meta-analysis of data from 170 000 participants in 26 randomised trials. Lancet,2010,376:1670-1681.
    [3]Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in ather-ogenesis. Clin Invest,1991,88:1785-1792.
    [4]Younis N, Sharma R, Soran H, et al. Glycation as an atherogenic modification of LDL. Curr Opin Lipidol,2008,19:378-384.
    [5]Younis N, Charlton-Menys V, Sharma R, et al.Glycation of LDL in nondiabetic people:small dense LDL is preferentially glycated both in vivo and in vitro.Atherosclerosis,2009,202:162-168.
    [6]Steinbrecher UP, Lougheed M, Kwan WC, et al. Recognition of oxidized low density lipoprotein by the scavenger receptor of macrophages results from derivatization of apolipoprotein B by products of fatty acid peroxidation. Biol Chem,1989,264:15216-15223.
    [7]Yla-Herttuala S, Palinski W, Butler SW, et al. Rabbit and human athero-sclerotic lesions contain IgG that recognizes epitopes of oxidized LDL Arterioscler Thromb,1994,14:32-40.
    [8]Yla-Herttuala S, PalinskiW, RosenfeldME, et al. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest,1989,84:1086-1095.
    [9]Vivekananthan DP, Penn MS, Sapp SK, et al. Use of antioxidant vitamins for the prevention of cardiovascular disease:meta-analysis of randomised trials.Lancet,2003,361:2017-2023.
    [10]Kris-Etherton PM, Lichtenstein AH, Howard BV, et al. Antioxidant vitamin supplements and cardiovascular disease. Circulation,2004 110:637-641.
    [11]Mackness MI, Arrol S, Durrington PN. Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS Lett,1991, 286:152-154.
    [12]Bhattacharyya T, Nicholls SJ, Topol EJ, et al.Relationship of paraoxonase 1(PON1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk. JAMA 2008,299:1265-1276.
    [13]Shih DM, Gu L, Xia YR, et al. Mice lacking serum paraoxonase are suscep-tible to organophosphate toxicity and atherosclerosis.Nature, 1998,394:284-287.
    [14]Teiber JF, Draganov DI, La Du BN. Purified human serum PON1 does not protect LDL against oxidation in the in vitro assays initiated with copper or AAPH. Lipid Res,2004,45:2260-2268.
    [15]Wautier JL, Guillausseau PJ. Advanced glycation end products, their recep-tors and diabetic angiopathy. Diabetes Metab,2001,27:535-542.
    [16]Beisswenger PJ, Howell SK, Nelson RG, et al. Alpha-oxoaldehyde metabolism and diabetic complications.Biochem Soc Trans 2003, 31:1358-1363.
    [17]Thornalley PJ, Langborg A, Minhas HS. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem,1999,344:109-116.
    [18]Akanji AO, Abdella N, Mojiminiyi OA. Determinants of glycated LDL levels in nondiabetic and diabetic hyperlipidaemic patients in Kuwait. Clin Chim Acta,2002,317:171-176.
    [19]Tomkin GH, Owens D. Abnormalities in apo B-containing lipoproteins in diabetes and atherosclerosis. Diabetes Metab Res Rev,2001,17:27-43.
    [20]Wang X, Bucala R, Milne R. Epitopes close to the apolipoprotein B low density lipoprotein receptor-binding site are modified by advanced glycation end products. Proc Natl Acad Sci U S A,1998,95:7643-7647.
    [21]Brown BE, Rashid I, van Reyk DM, Davies MJ. Glycation of low-density lipoprotein results in the time-dependent accumulation of cholesteryl esters and apolipoprotein B-100 protein in primary human monocyte-derived macrophages. FEBS J,2007,274:1530-1541.
    [22]LamMC, Tan KC, Lam KS.Glycoxidized low-density lipoprotein regulates the expression of scavenger receptors in THP-1 macrophages. Atherosclerosis,2004,177:313-320.
    [23]Brown BE, Mahroof FM, Cook NL, et al. Hydrazine compounds inhibit glycation of low-density lipoproteins and prevent the in vitro formation of model foam cells from glycolaldehyde-modified low-density lipoproteins. Diabetologia,2006,49:775-783.
    [24]Artwohl M, Graier WF, Roden M, et al. Diabetic LDL triggers apoptosis in vascular endothelial cells. Diabetes,2003,52:1240-1247.
    [25]Ferretti G, Rabini RA, Bacchetti T, et al.Glycated low density lipoproteins modify platelet properties:a compositional and functional study. Clin Endocrinol Metab,2002,87:2180-2184.
    [26]Voziyan PA, Khalifah RG, Thibaudeau C, et al. Modification of proteins in vitro by physiological levels of glucose:pyridoxamine inhibits conversion of Amadori intermediate to advanced glycation end-products through binding of redox metalions. Biol Chem 2003,278:46616-46624.
    [27]Singh R, Barden A, Mori T, et al. Advanced glycation end-products:a review. Diabetologia,2001,44:129-146.
    [28]Beisswenger PJ, Moore LL, Brinck-Johnsen T, et al. Increased col-lagen-linked pentosidine levels and advanced glycosylation end products in early diabetic nephropathy. Clin Invest,1993,92:212-217.
    [29]Miyata T, Ueda Y, Yoshida A, et al. Clearance of pentosidine, an advanced glycation end product, by different modalities of renal replacement therapy.Kidney Int,1997,51:880-887.
    [30]Koyama H, Yamamoto H, Nishizawa Y. RAGE and soluble RAGE: potential therapeutic targets for cardiovascular diseases. Mol Med,2007,13:625-635.
    [31]Koyama H, Shoji T, Fukumoto S, et al. Low circulating endogenous secretory receptor for AGEs predicts cardiovascular mortality in patients with end-stage renal disease. Arterioscler Thromb Vasc Biol,2007,27:147-153.
    [32]Brownlee M. Biochemistry and molecular cell biology of diabetic complica-tions. Nature,2001,414:813-820.
    [33]Ahmed KA, Muniandy S, Ismail IS. Role of N-(carboxymethyl)lysine in the development of ischemic heart disease in type 2 diabetes mellitus. Clin Biochem Nutr,2007,41:97-105.
    [34]Jenkins AJ, Best JD, Klein RL, et al. Lipoproteins, glycoxidation and diabetic angiopathy. Diabetes Metab Res Rev,2004,20:349-368.
    [35]Wolff SP, Dean RT. Glucose autoxidation and protein modification. The potential role of autoxidative glycosylation'in diabetes. Biochem J,1987, 245:243-250.
    [36]Imanaga Y, Sakata N, Takebayashi S, et al. In vivo and in vitro evidence for the glycoxidation of low density lipoprotein in human atherosclerotic plaques.Atherosclerosis,2000,150:343-355.
    [37]Shoji T, Nishizawa Y, Fukumoto M, et al. Inverse relationship between circulating oxidized low density lipoprotein (oxLDL) and antioxLDL antibody levels in healthy subjects. Atherosclerosis,2000,148:171-177.
    [38]Cohen MP, Lautenslager G, Shea E. Glycated LDL concentrations in non-diabetic and diabetic subjectsmeasured withmonoclonal antibodies reactive with glycated apolipoprotein B epitopes. Eur J Clin Chem Clin Biochem,1993,31:707-713.
    [39]Tames FJ, Mackness MI, Arrol S, et al. Nonenzymatic glycation of apolipo-protein B in the sera of diabetic and nondiabetic subjects. Atherosclerosis,1992,93:237-244.
    [40]Younis NN, Soran H, Sharma R, et al. Small-dense LDL and LDL glycation in metabolic syndrome and in statin-treated and nonstatin-treated type 2 diabetes. Diab Vasc Dis Res,2010,7:289-295.
    [41]Shoji T, Nishizawa Y, Fukumoto M, et al. Inverse relationship between circulating oxidized low density lipoprotein (oxLDL) and antioxLDL antibody levels in healthy subjects. Atherosclerosis,2000,148:171-177.
    [42]Cohen MP, Lautenslager G, Shea E. Glycated LDL concentrations in non-diabetic and diabetic subjectsmeasured withmonoclonal antibodies reactive with glycated apolipoprotein B epitopes. Eur J Clin Chem Clin Biochem,1993,31:707-713.
    [43]Esterbauer H, Gebicki J, Puhl H, et al. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med,1992,13:341-390.
    [44]Matsui H, Okumura K, Toki Y, et al. Low-density lipoprotein particle size as an independent predictor of glycated low-density lipoprotein level. Diabetes Care,1999,22:1220-1221.
    [45]Schleicher E, Deufel T, Wieland OH.Nonenzymatic glycosylation of human serum lipoproteins. Elevated epsilon-lysine glycosylated low density lipoprotein in diabetic patients. FEBS Lett,1981,129:1-4.
    [46]Sanguinetti SM, Schreier LE, Elbert A, et al. Detection of structural alterations in LDL isolated from type 2 diabetic patients:application of the fructosamine assay to evaluate the extent of LDL glycation. Atherosclerosis,1999,143:213-215.
    [47]Cohen MP, Lautenslager G, Shea E. Glycated LDL concentrations in non-diabetic and diabetic subjectsmeasured withmonoclonal antibodies reactive with glycated apolipoprotein B epitopes. Eur J Clin Chem Clin Biochem,1993,31:707-713.
    [48]Cohen MP, Jin Y, Lautenslager GT. Increased plasma glycated low-density lipoprotein concentrations in diabetes:a marker of atherogenic risk. Diabetes Technol Ther,2004,6:348-356.
    [49]Durrington P. Hyperlipidaemia diagnosis and management.3rd ed. London:Hodder Arnold; 2007.
    [50]Chait A, Brazg RL, Tribble DL, Krauss RM. Susceptibility of small, dense, low-density lipoproteins to oxidative modification in subjects with the atherogenic lipoprotein phenotype, pattern B. Am J Med,1993,94:350-356.
    [51]Chen SH, Yang CY, Chen PF, et al. The complete cDNA and amino acid sequence of human apolipoprotein B-100.Biol Chem 1986,261:12918-12921.
    [52]Nigon F, Lesnik P, Rouis M, et al. Discrete subspecies of human low density lipoproteins are heterogeneous in their interaction with the cellularLDL receptor. Lipid Res,1991,32:1741-1753.
    [53]Younis NNSH, Sharma R, Charlton-Menys V, Durrington P. Lipoprotein glycation in atherogenesis. Clin Lipidol,2009,4:781-790.
    [54]Ou CC, Tsao SM, Lin MC, et al. Protective action on human LDL against oxidation and glycation by four organosulfur compounds derived from garlic.Lipids,2003,38:219-224.
    [55]Huang CN, Horng JS, Yin MC. Antioxidative and antiglycative effects of six organosulfur compounds in low-density lipoprotein and plasma. Agric Food Chem,2004,52:3674-3678.
    [56]Ou CC, Tsao SM, Lin MC, Yin MC. Protective action on human LDL againstoxidation and glycation by four organosulfur compounds derived from garlic.Lipids,2003,38:219-224.
    [57]Ghaffari MA, Mojab S. Glucose influence on copper ion-dependent oxidation of low density lipoprotein. Iran Biomed,2009,13:59-64.
    [58]Deegan P, Owens D, Collins P, et al. Association between low-density lipoprotein composition and its metabolism in noninsulin-dependent diabetes mellitus. Metabolism,1999,48:118-124.
    [59]Kearney PM, Blackwell L, Collins R, et al.Efficacy of cholesterol-lowering therapy in 18686 people with diabetes in 14 randomised trials of statins:a meta-analysis. Lancet,2008,371:117-125.
    [60]Younis N, Soran H, Hassanein M. Cardiovascular disease and intensive glucose lowering in type 2 diabetes. QJM,2009,102:293-296.