基于ARM-Cortex单片机的光纤布拉格光栅位移传感器的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤布拉格光栅传感器是目前光纤光栅传感领域的主要研究热点之一,被广泛应用于检测桥梁、大坝等大型建筑的质量安全;监测高速公路车辆的超载超限;检测航空航天器以及潜艇、船舶的结构质量等领域。目前国内外不少部门和研究单位在对物体位移的精确检测方面进行了大量的研究,以光纤光栅技术作为检测的方法就是目前研究方向当中备受瞩目的一种。
     目前,大多数光纤布拉格光栅位移传感器在测量物体位移变化时,或多或少都受到周围温度变化的影响,使实验结果和理论值偏差较大。本文主要介绍了光纤布拉格光栅传感信号解调原理,设计了一种基于等悬臂梁调谐和匹配光栅解调技术的光纤布拉格光栅传感信号解调技术方案;推导了光纤光栅对的布拉格波长峰值差与悬臂梁自由端位移之间的关系式,并利用双光纤布拉格光栅和适当尺寸的等悬臂梁进行了实验平台的搭建;本文设计了光学部分的调制解调光路,包括光源部分和耦合部分,在优化的光纤光栅匹配解调法的基础上,针对半导体激光器作为光源的特点作出了调整;设计了光电信号转换及电压信号放大电路,利用ARM-Cortex单片机对信号采集和编程运算,并在液晶屏上实时显示出电压变化。
     最后对粘贴其上的两个光纤光栅的反射波长峰值差实现线性调谐,并可对调谐范围、灵敏度等指标进行灵活控制。这样就可以有效的消除环境温度变化对位移传感的影响。并推导出试验中光纤光栅波长变化与悬臂梁自由端位移大小的关系,并进行了数据处理和误差分析。
FBG (Fiber Bragg Grating) sensor is one of the hot pots in the field of fiber grating sensors research. FBG has been widely used for quality and safety detecting in bridges, dams and other large construction, and it has been used for highway vehicle overloading or overspeed monitoring, detecting structural quality of aerospace and submarine areas. Currently many departments and research institutions in nature and abroad carried out a lot of research on displacement detected, and taking the fiber grating technology as a method of measurement is one of the most highest-profile research methods.
     At present, the most of the fiber bragg grating displacement sensors for measuring displacement, more or less subjects to the changes of ambient temperature, making the experimental results and theoretical values deviate too much. This paper mainly analysis the principle of fiber Bragg grating sensor signal demodulation, and design a cantilever which tuning and matching based on grating demodulation technique of fiber bragg grating sensor signal demodulation technology programs. This paper derive the relationship between the difference of the peak wavelengths of fiber bragg grating and the cantilever free end displacement. In accordance, using pairs of fiber Bragg grating and an appropriate size to design the cantilever experiment. This paper designed part of the modem optical light path, including the light source and the coupling aspect. Based on the optimized fiber grating demodulation method, this paper uses semiconductor laser as light source and aim at its characteristics and make the necessary adjustment, and then designed the photoelectric signal converter and the voltage signal amplification circuit. Using ARM-Cortex Microcontroller to collect signal figures and program operation, the LCD real-time displays voltage.
     Finally, the two fiber grating which paste on the cantilever free end reflect wavelength peak achieves a linear tuning, and it may also make tuning range, sensitivity, and other indicators of flexibility under control. So that It effectively eliminates the effort of the surrounding temperature change on the impact of displacement sensor. It is derived the relationship between the size of FBG wavelength and the displacement of the cantilever free end, and carried out data processing and error analysis.
引文
[1] VASILIEV S A. Photo induced Fiber Gratings [J]. SPIE, 2001, 4357: 1-12.
    [2] Martin Bernier, SHENG Y L and REAL Vallée. Ultra broadband fiber Bragg gratings written with a highly chirped phase mask and Infrared femtosecond pulses [J]. Opt. Express, 2009, 17(5): 3285-3290.
    [3] M BERNIRR, D FAUCHER, S L CHIN. Bragg gratings photo induced in ZBLAN fibers by femtosecond pulses at 800 nm [J]. Opt. Lett, 2007, 32(5): 454-456.
    [4] Y Liu, K S Chiang. CO2 laser writing of long-period fiber gratings in optical fibers under tension [J]. Opt. Lett. 2008, 33(17): 1933-1935.
    [5]饶云江,义平,朱涛.光纤光栅原理及应用[M].北京:科学出版社,2006:21-53.
    [6]赵勇.光纤传感原理与应用技术[M].北京:清华大学出版社,2007:5-50.
    [7]钱颖.光纤光栅传感技术基础研究[D].吉林长春:吉林大学,2009:3-6.
    [8]李爱群,周广东.光纤Bragg光栅传感器测试技术研究进展与展望:应变、温度测试[J].东南大学学报:自然科学版,2009,17(1):5-43.
    [9] Canning J. Grating Confinement in a Photonic Crystal Fiber [J]. Optics Communications, 2000, 176(1): 121-124.
    [10] Bhatia V. Properties and Applications of Fiber Grating [J]. SPIE, 2001, 4417: 154-160.
    [11] Y J RAO, Y P Wang, Z L Ran. Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses [J]. Light wave Technol, 2003, 21: 1320-1322.
    [12] H W Lee, Y Liu,K S Chiang. IEEE Photon [J]. Technol Lett, 2008, 20: 132-134.
    [13] JENS Thomas, JENS WIKSZAK. Continuously chirped fiber Bragg gratings by femtosecond laser structuring [J]. Opt Lett, 2008, 33(14): 1560-1562.
    [14] T T ALKESKJOLD, S T Wu. All-optical modulation in dye-doped nomadic liquid crystal photonic band gap fibers [J] . Opt Express, 2004, 12: 5857-5871.
    [15] T R WOLINSKI,K SZANIAWSKA, S ERTMAN. Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibers[J]. Mesa Sic Technol, 2006, 17: 985-991.
    [16] P LESIAK, T R WOLINSKI, R DABROWSKI. Temperature tuning of polarization mode dispersion in single-core and two-core photonic liquid crystal fibers [J]. Opt Electronics Review, 2007, 15: 27-31.
    [17] M D Nielsen, G Vienne. Investigation of micro deformation-induced attenuation spectra in a photonic crystal fiber [J]. Opt Lett, 2003, 28: 236-238.
    [18] P STEINVURZEL, E D Moore, E C Magi. Tuning properties of long period gratings in photonic band gap fibers [J]. Opt Lett, 2006, 31: 2103-2105.
    [19] J Li, S T Wu. Extended Cauchy equations for the refractive indices of liquid crystals [J]. Applied Physics, 2004, 95: 896-901.
    [20]赵岭,李琳.基于莫尔光纤光栅的带通滤波器[J].半导体光电,2002,23(6):408-411.
    [21]于秀丽,尤晓玲.应用光纤高温传感器测量温度[J].甘肃科技,2005,21(11):100-130.
    [22]曹辉,孙军强.60km色散补偿8×50GHz光纤光栅梳状滤波器设计[J].光电子·激光,2004,15(3):307-311.
    [23]王惠文.光纤传感技术与应用[M].北京:国防工业出版社,2001:10-60.
    [24]李坚.光敏掺铒光纤和光纤布拉格光栅辅助耦合器型上下话路滤波器的研制[D].北京:北京交通大学,2009:3-15.
    [25]鲁韶华.特殊结构光纤光栅的研究和应用[D].北京:北京交通大学,2009:4-24.
    [26]张健.菲波纳契准周期超结构光纤光栅制备与特性研究[D].吉林长春:吉林大学,2009:2-22.
    [27]许鸥.基于光纤光栅的光纤激光器、滤波器和倾斜光纤光栅的研究[D].北京:北京交通大学,2009:6-33.
    [28]何杏芳.光纤光栅在非均匀温度场中光谱特性的研究[D].河北秦皇岛:燕山大学,2009:11-32.
    [29]何晓颖.新型Bragg光栅及其在可调谐半导体激光器中的应用[D].湖北武汉:华中科技大学,2009:47-56.
    [30]赵勇.光纤光栅及其传感技术[M].北京:国防工业出版社,2007:168-194.
    [31]李秋顺.基于消失波的长周期光纤光栅化学传感[D].吉林长春:吉林大学,2009:13-38.
    [32]黄雪峰.光纤Bragg光栅测量理论及其在动力工程中应用的研究[D].浙江杭州:浙江大学,2008:11-35.
    [33]周金龙.新型光纤光栅技术及其在光通信与光纤传感方面应用的研究[D].福建厦门:厦门大学,2008:17-38.
    [34]王月珠,王巍,张云军.近红外飞秒脉冲激光制作光纤光栅的研究[J].中国激光,2009,19(12):22-32.
    [35]赵德新,王葵如,李成.新型光纤光栅传感网络及其MAC协议设计[J].半导体光电,2009,44(2):12-30.
    [36]阮义,裴丽,宁提纲.光纤光栅的V-I传输矩阵法研究[J].光学学报,2009,18(4):5-25.
    [37]李传起,周谞,宋标.光纤光栅阵列编解码器反射谱性能研究[J].光学学报,2009,14(3):12-33.
    [38]张自嘉.光纤光栅理论基础与传感技术[M].北京:科学出版社,2009:118-121.
    [39]于思瑶.半导体激光器低频噪声的混沌特性研究[D].吉林长春:吉林大学,2009:2-33.
    [40]范燕.光注入下外光反馈半导体激光器输出自相关特性[D].重庆:西南大学,2009:5-20.
    [41]朱琳.高精度温控半导体激光器驱动系统[D].陕西西安:电子科技大学, 2009:3-19.
    [42]谢海鹤.半导体激光器的解耦控制理论及方法研究[D].江西南昌:南昌航空大学,2009:7-32.
    [43]漆晓琼.基于光注入半导体激光器技术的光纤无线电系统研究[D].甘肃兰州:兰州大学,2009:10-25.
    [44]黄德修,刘雪峰.半导体激光器及其应用[M].国防工业出版社,1999:229-243.
    [45]姚文详,宋岩.ARM Cortex-M3权威指南[M].北京:北京航空航天大学出版社,2009:1-20.
    [46]刘同法,肖志刚.ARM Cortex-M3内核微控制器快带入门与应用[M].北京:北京航空航天大学出版社,2009:4-29.
    [47]李宁.基于MDK的STM32处理器开发应用[M].北京:北京航空航天大学出版社,2008:304-322.
    [48]王永虹,郝立平.STM32系列ARM CORTEXM3微控制器原理与实践[M].北京:北京航空航天大学出版社,2008:366-390.