淫羊藿苷促进兔颅骨缺损修复愈合的影响和机制的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:由于感染,外伤,肿瘤,先后天畸形,内分泌系统疾病造成的骨缺损,畸形,功能障碍,给患者的生活质量带来很大的影响,尤其是对于口腔颌面部。因此寻找一种简便、快捷、有效的方法促进骨创的修复,成为外科领域研究的热点和难点。
     目前对如何促进骨愈合的研究很多。一些高分子生物材料植入,人工替代物植入,自体骨移植,组织工程化骨移植,低强度脉冲电磁场治疗等均有一定疗效,由于都存在或多或少的缺点,未能在临床上广泛应用。
     多年以来,国内外学者借助组织学、组织化学,组织形态计量学,生物力学等手段对骨创愈合进行了大量的实验观察,对骨创愈合机制也进行了广泛的探讨。近年来,由于基因技术的发展应用,人们对骨创愈合的认识已从细胞生物学向分子生物学水平深化,并随着分子生物学的不断发展,己经认识到骨创愈合与多种生长因子有关,除内分泌、代谢因子等全身因子外,骨创局部尚有大量的生长因子,对骨创愈合起着重要的调节作用,如:TGF-β(转化生长因子),VEGF(血管内皮细胞生长因子),FGF(成纤维细胞生长因子),BMP(骨形态发生蛋白),神经生长因子(nerve growthfactor, NGF)等。
     中药对加速骨折愈合机理的实验研究始自上世纪60年代,大致有如下几个方面的成果:中药改善骨折部的血液供应,促进血肿的吸收与机化;促进矿物质的沉积;增加成骨细胞的数量和活性,提高微量元素等。淫羊藿(Herba epimedii)是一种传统的补益中药,临床上用来治疗骨折及与骨代谢有关的许多疾病,并取得了良好的效果。研究结果表明,淫羊藿具有增强机体免疫功能,抗肿瘤,影响内分泌加强性腺功能、延缓衰老和影响心血管系统等多种重要的药理活性。淫羊藿的有效活性成分淫羊藿苷(icariin,C33H40O15,分子量:676.67),属黄酮类化合物。李芳芳等将淫羊藿苷与大鼠卵泡颗粒细胞和肾上腺皮质细胞共同培养,显示一定浓度的淫羊藿苷可促使卵泡颗粒细胞分泌雌二醇,高浓度时还可促进肾上腺皮质细胞分泌皮质类固醇,提示淫羊藿补肾壮阳功效:作用下丘脑垂体-性腺轴及肾上腺轴,可有效调节体内激素的水平,改善骨代谢,促进蛋白质合成。由于淫羊藿苷在骨创愈合,修复中起到积极的作用,淫羊藿在促进骨愈合方面的研究成为研究热点,淫羊藿提取物:淫羊藿苷对成骨细胞增殖代谢的影响,体外实验董福生课题组已经完成。
     本研究通过制作新西兰大白兔颅骨模型,术后采用淫羊藿苷灌胃,应用组织学和骨计量学方法,观察在骨缺损不同的愈合阶段,颅骨缺损区新生骨量,骨愈合速度和成骨质量。
     同时提取颅骨缺损修复区新生骨组织mRNA,采用RT-PCR(realtime-polymerase chain reaction)方法,检测成骨细胞促进骨生成的基因变化情况,进一步研究在新骨形成的过程中和应用淫羊藿苷治疗后,相关基因的变化,相互联系,寻找成骨的分子信号传导通路。
     在以上研究的基础上,通免疫组化方法,观察新骨形成区骨钙素和骨桥素的表达,初步探讨淫羊藿苷促进骨形成的机制。为淫羊藿苷在促进骨愈合的临床应用提供理论依据,奠定基础。
     方法:
     1淫羊藿苷对兔颅骨缺损修复愈合质量的影响
     选用12周龄雌性新西兰大白兔36只,随机分为用药组和对照组,制作颅骨缺损动物模型,用药组术后给予淫羊藿苷灌胃,分别于术后4周、8周、12周处死动物,留取标本,拍射X线片观察;制作组织切片,HE染色,观察颅骨缺损区愈合情况;骨计量学观察新骨形成区骨小梁平均宽度(Traberculae Width,Tb·Wi μm),骨小梁面积比(Trabercular AreaTb.Ar%),成骨细胞个数(Osteoblast Number, OB·N),破骨细胞个数(Osteoclast Number, OC·N),观察新骨形成区骨量的变化,研究淫羊藿苷对兔颅骨缺损愈合的影响。
     2淫羊藿苷促进兔颅骨缺损修复RANKL基因、RUNX2基因表达的影响
     选用12周龄雌性新西兰大白兔36只,动物分组,动物模型制作,动物给药方法和剂量同第一部分,分别于术后4周、8周、12周留取标本后,提取颅骨缺损修复区新生骨组织mRNA,采用RT-PCR(realtime-polymerase chain reaction)方法,检测成骨细胞促进骨生成的基因变化情况,本部分实验所研究差异表达基因的重点:是关于成骨细胞增殖分化调节、成骨细胞功能调节和骨代谢调节等方面。
     3淫羊藿苷促进兔颅骨缺损修复区成骨相关蛋白骨钙素、骨桥素的表达
     选用12周龄雌性新西兰大白兔36只,动物分组,动物模型制作,动物给药方法和剂量同第一部分,分别于术后4周、8周、12周留取标本后,通过免疫组化方法,观察新骨形成区成骨细胞骨基质蛋白的表达情况:骨钙蛋白和骨桥蛋白的表达。
     结果:
     1淫羊藿苷对兔颅骨缺损修复愈合质量的影响
     1.1一般观察
     术后4周,对照组骨缺损区微凹陷,为纤维组织覆盖,边界清晰可辩,周边未见明显新骨形成。实验组颅骨缺损区中央局部凹陷,边界模糊不清,周围可见少量薄、半透明新骨生长。
     术后8周,对照组骨缺损区表面及周边部骨痂形成,中央部略凹陷,较边缘为薄。实验组骨缺损区被均匀的硬组织覆盖,与周边骨质有明显骨融合。
     术后12周,对照组骨缺损区表面及周边部骨痂形成,形态基本接近正常颅骨外形。实验组骨缺损区可见新形成的骨组织覆盖,与边缘无明显界限。
     1.2X线观察
     术后4周,对照组骨缺损处为低密度影,骨缺损边清晰。实验组缺损处为低密度影,骨缺损边缘模糊。
     术后8周,对照组骨缺损区域密度低于缺损周围骨质,与正常组织间界限明显。实验组骨缺损区域内密度略高于对照组,界限模糊,缺损范围明显缩小。
     术后12周,对照骨组缺损区域呈骨性低密度区,与正常组织间界限明显。实验组缺损区域与周围骨质无明显界限,密度基本一致。
     1.3组织学观察
     术后4周,对照组可见缺损边缘有少量类骨质和新骨形成,中央为纤维组织,大量的炎性细胞广泛浸润。实验组缺损区中央为纤维结缔组织充填,可见粗大的胶原纤维,中间散在少量炎性细胞,部分区域出现纤维骨样结构,大量新生骨质,成骨细胞较多成栅栏状排列在骨小梁周围。
     术后8周,对照组缺损区存在大量结构疏松的纤维结缔组织,且炎症细胞仍广泛存在,缺损区边界有部分骨样和纤维骨样组织生成,其内有一定量的成骨细胞存在。实验组缺损区内有大量骨质形成,骨小梁连续,增厚,形成板层结构,部分成网织状,为较成熟骨,部分区域内骨质致密,形成板层状骨,中央为骨髓腔。
     术后12周,对照组新生骨向中央逐渐充填骨缺损,缺损内可见较多新生的编织骨及板层骨。骨小梁连续,细胞成分较少,纤维成分较实验组多。实验组骨缺损处为成熟骨质,骨细胞丰富,骨小梁粗大,排列整齐,较明显的骨髓腔出现并连续。
     1.4骨计量学观察
     术后4周,用药组与对照组比较:用药组的松质区骨量(Tb·Ar%),骨小梁宽度(Tb·Wi μm),成骨细胞个数(OB·N)均明显大于对照组(P<0.01);破骨细胞个数(CB·N)明显低于对照组(P<0.01)。术后8周,用药组与对照组比较:用药组的松质区骨量(Tb·Ar%),骨小梁宽度(Tb·Wi μm),成骨细胞个数(OB·N)均明显大于对照。组(P<0.01);破骨细胞个数(CB·N)明显低于对照组(P<0.01)。术后12周,用药组与对照组比较:用药组的松质区骨量(Tb·Ar%),骨小梁宽度(Tb·Wi μm),成骨细胞个数(OB·N)均明显大于对照组(P<0.01);破骨细胞个数(CB·N)两组之间无显著性差异(P>0.05)。
     2淫羊藿苷促进兔颅骨缺损修复RANKL基因、RUNX2基因表达的影响
     2.1mRNA纯度及完整性鉴定
     分光光度法测定结果显示:对照组及用药组总RNA的OD260/OD280比值在1.8~2.0之间,纯度及浓度符合实验要求。
     琼脂糖凝胶电泳结果显示:对照组及用药组总RNA经变性凝胶电泳后可见明显的28S及18S条带出现,28S条带亮度约为18S条带的两倍,各组提取的RNA完整性良好,符合实验要求。
     2.2Real-time PCR定量分析结果
     在术后4周,8周,12周时用药组和对照组Rankl、Runx2基因的mRNA表达结果:在术后4周,8周,12周时Rankl基因表达水平用药组均明显低于对照组,Runx2基因的表达水平用药组均明显高于对照组。
     3淫羊藿苷促进兔颅骨缺损修区成骨相关蛋白骨钙素,骨桥素的表达
     3.1骨钙素OC在新骨形成区的表达
     用药后4周,实验组骨钙素OC的表达呈强阳性;对照组,OC在成骨细胞的胞浆和骨基质中阴性表达。8周时实验组OC的表达呈强阳性,对照组呈弱阳性表达。12时周实验组OC的表达呈强阳性,对照组呈弱阳性表达。
     3.2骨桥素OPN在新骨形成区的表达
     用药后4周实验组骨桥素OPN在成骨细胞的胞浆中呈强阳性表达,在骨基质中呈强阳性表达,对照组呈阴性表达。8周时实验组OPN的表达为强阳性;对照组呈弱阳性表达。12周时实验组OPN在呈强阳性表达;对照组呈弱阳性表达。
     结论:
     1淫羊藿苷能够增加兔颅骨缺损区成骨骨量,提高愈合质量。
     2淫羊藿苷能够促进兔颅骨缺损愈合,加快颅骨缺损的愈合速度。
     3淫羊藿苷在成骨过程中,发挥雌激素样作用,通过下调Rankl基因,减少破骨细胞的活化,抑制破骨细胞的功能,增加成骨。
     4淫羊藿苷能上调成骨基因Runx2,通过经典Wnt/β-catenin途径,有效地促进骨愈合。
     5淫羊藿苷促进颅骨缺损区成骨细胞成骨蛋白骨钙素的分泌,增加新骨形成的骨量,促进骨组织的愈合。
     6淫羊藿苷促进颅骨缺损区成骨细胞成骨蛋白骨桥素的分泌,抑制破骨细胞的活性,增加缺损区骨量,加速骨组织愈合。
Objectives:Bone defects and bone deformity may occur by reason ofinflammation, trauma, tumor, endocrine diseases. The abnormal formations inparticular oral and maxillofacial region influence the patient’s quality of life. Itbecomes a research focus in the plastic surgery field to find a simple andeffective method to improve the repairmen of bone defects.
     Nowadays there are a lot of techniques of promoting bone healing,including polymer biomaterial implants, artificial implants, autogenous bonegraft, tissue engineered bone graft, low intensity pulsed electromagnetictherapy. These techniques have not been widely applied in the clinical fielddue to some disadvantages.
     Over the years, some scholars have done a large number of experimentson bone healing by means of histology, histochemistry, histomorphometry andhave discussed the mechanism of bone repair. In recent years, bone woundhealing has been probed from cell biology to molecular biology level due tothe development of application of gene technology. With the development ofmolecular biology, it has been recognized that bone wound healing is relatedwith various growth factors. A lot of bone growth factors play an importantrole in bone wound healing besides the endocrine and systemic factors. Thesegrowth factors include TGF-β (TGF), VEGF (vascular endothelial growthfactor), FGF (fibroblast growth factor), BMP (bone morphogenetic protein),and nerve growth factor (nerve growth factor, NGF), and so on.
     Since the60's of the last century, Experimental research of TraditionalChinese medicine on accelerating fracture healing has been reported. Thereare several achievements as follows: the traditional Chinese medicine toimprove the blood supply of fracture area; to promote absorption of hematomaand deposits of mineral; to increase osteoblasts number and enhance theirs activity. Epimedium (Herba Epimedii) is a kind of traditional Chinesemedicines and is used clinically for the treatment of fracture and manydiseases of bone metabolism. Some research results have shown thatEpimedium can improve the immune function, resist to tumor, strengthengonadal, delay aging, and influence cardiovascular system. Icariin, the activecomponent of Herba Epimedii(C33H40O15, molecular weight:676.67), is aflavonoid compound. Li Fangfang has co-cultured rat granulosa cells andadrenocortical cells with icariin and found that icariin can increase estradiolsecreted by follicular granulosa cells, that high concentration can promote thesecretion of corticosterone and adrenal cortical cells. So conclusion aboveresults suggested that Epimedium kidney play a role on hypothalamicpituitary-gonadal axis and adrenal axis, which can effectively regulate bodyhormone level, improve the bone metabolism, promote protein synthesis.Icariin play an important role in the repair of bone wound healing. Theexperiment of Icariin on osteoblastic proliferation and metabolism in vitro hasbeen completed by group of Dong Fusheng.
     This study set up New Zealand white rabbit skull defect models andobserves new bone mass, bone healing and bone quality of the defect area ofthe skull in different healing stages by gavage with icariin, by means ofhistology and histomorphometry method. In addition, mRNA of the bone ofskull defect areas was extracted and RT-PCR (real time-polymerase chainreaction) method was used to detect the gene change of bone formation and tofind the molecular signaling pathway of the bone.
     On the basis of the above research, immunohistochemical method wasused to study the expression of osteocalcin and Osteopontin in new bone area.The objective is to probe the mechanism of icariin in promoting formation ofthe bone and provide the theory basis for the clinical application of icariin inpromoting bone healing.
     Methods:
     1The effects of Icariin on healing quality of the repair of rabbit skull defectThirty-six female New Zealand white rabbits (12weeks age) were randomly divided into two groups, treatment group and control group.Animals model of skull defect were established. One day after the operation,icariin was given orally at the dose of100mg/1Kg/day in the treatment groupand normal saline was given to the rabbits of the control group. After the4weeks,8weeks,12weeks postoperation the rabbits were killed respectively.The tissue samples of the rabbits were taken X-ray photograph. The sectionsof skull tissue were stained to observe bone trabecula width (Tb-Wi μ m),trabecula area ratio (Tb.Ar%), osteoblast number (OB·N), and osteoclastnumber (OC·N) of new bone by histomorphometry.
     2The expression of the gene RANKL, RUNX2of icariin on repair of skulldefect of rabbits
     Thirty-six female New Zealand white rabbits (12weeks age) wererandomly divided into two groups, treatment group and control group.Animals model of skull defect were established. One day after the operation,icariin was given orally at the dose of100mg/1Kg/day in the treatment groupand normal saline was given to the rabbits of the control group. After the4weeks,8weeks,12weeks postoperation the rabbits were killed respectively.The total mRNA of two groups was extracted respectively and purified afteridentification of the purity and integrity. RT-PCR method was used to detectthe osteoblast proliferation, differentiation, osteoblasts function and bonemetabolism.
     3The expression of osteocalcin and osteopontin related to osteogenic ofIcariin on promoting repair of rabbit skull defect
     Thirty-six female New Zealand white rabbits (12weeks age) wererandomly divided into two groups, treatment group and control group.Animals model of skull defect were established. One day after the operation,icariin was given orally at the dose of100mg/1Kg/day in the treatment groupand normal saline was given to the rabbits of the control group. After the4weeks,8weeks,12weeks postoperation the rabbits were killed respectively.The tissue samples were embedded in paraffin and were sectioned with athickness of4μm and were stained by using immunohistochemical method to observe the new bone, observed the expression of osteocalcin and osteopontin.
     Results:
     1The effects of Icariin on healing of the repair of rabbit skull defect
     1.1General observations
     At the4th week after surgery, the defect areas of the control group were alittle hollow, covered with fibrous tissue. The boundary was clear and therewas no obvious new bone formation around. The defect areas of theexperimental group were local depressions. The boundary was blurred andaround the boundary there were a lots of new bone.
     At the8th week after surgery, the defect areas of the control group weresurrounded by calluses and the bone of the center was thinner than that of theedge. The bone defects in the experimental group were evenly covered andthere were fusion with the surrounding.
     At the12th week after surgery, the surface of the defect of the controlgroup were surrounding by callus. The defect of the experimental group wascovered by mature bone tissue and boundary edge was not observed.
     1.2X-ray observation
     At the4th week after surgery, the density of the defect in the controlgroup was low and the defect edges are clear. The density of the defect in theexperimental group was low and the defect edge was blurred.
     At the8th week after surgery, the density of the defect in the controlgroup was lower than that of the surrounding, and the boundaries between thedefect and normal tissues were distinct. The density of the defect in theexperimental group was slightly higher than that of control group.
     At the12th week after surgery, the density of the defect in the controlgroup was lower than that of the experimental group. The density of the defectin the experimental group was similar to normal tissues.
     1.3Histological observation
     At the4th week after surgery, the control group showed that the defectedge had a small amount of osteoid formation and the central was fibroustissue and a lot of inflammatory cell. The defect of the experimental group was filling with thick collagen fiber and a few inflammatory cells. The trabeculaswere concentrated and there were a lot of osteoblasts with larger cell nucleolus.The osteoclasts were scarce.
     At the8th week after surgery, the control group showed trabeculas werethin and was not contacted. There were a lot of osteoblasts (OB) andosteoclasts (OC). Fibrous tissue connective and inflammatory cells stillexisted in the center part of the defect. In the boundary part, osteoid, fibrousbone tissue and a certain amount of osteoblasts could be seen. In theexperimental group, bone trabeculas were continuous, thickening, formedlamellar, and reticular, marrow cavity was obviously.
     At the12th week after surgery, the defects were filled with new bone inthe control group and woven bone and lamellar bone could be seen in themany newborn. Trabecular cells were less than those in the experimentalgroup. In experimental group, the newborn of the defect was mature andtrabeculae were thick and arranged in row. The marrow cavity was obviouslyand continuously.
     1.4Bone histomorphometry
     At the4th week after surgery, Traberculae Area (Tb·Ar%), TraberculaeWidth (Tb·Wi), Osteoblast Number (OB·N) of experimental group wassignificantly higher than that of control group (P<0.01). Osteoclast Number(OC·N) of experimental group was significantly lower than that of controlgroup (P<0.01).
     At the8th week after surgery, Traberculae Area (Tb·Ar%), TraberculaeWidth (Tb·Wi), Osteoblast Number (OB·N) of experimental group wassignificantly higher than that of control group (P<0.01). Osteoclast Number(OC·N) of experimental group was significantly lower than that of controlgroup (P<0.01).
     At the12th week after surgery, Traberculae Area (Tb·Ar%), TraberculaeWidth (Tb·Wi), Osteoblast Number (OB·N) of experimental group weresignificantly higher than that of control group (P<0.01), Osteoclast Number(OC·N) were no significant in experimental group compared with control group (P>0.05).
     2The gene RANKL, RUNX2expression of icariin on repair of skull defect ofrabbits
     2.1Purity and integrity of the total mRNA
     The ratio of OD260/OD280of all the total RNA was between1.9and2.0.The28S and18S strip could be obviously appeared, and the brightness of28Sstrip was approximately twice compared with18S strip.
     2.2quantitative analysis of Real-time PCR
     The expression of Rankl of experimental group was significantly lowerthan that of control group. The expression of Runx2gene in experimentalgroup was obviously higher than that of control group at different times.
     3Expression of osteocalcin and osteopontin related to osteogenic of icariin onpromoting repair of rabbit skull defect
     3.1The expression of osteocalcin
     At the4th week after treatment, the expression of osteocalcin (OC) inosteoblasts and matrix of experimental group showed strong positive whileexpression of OC in osteoblasts and matrix in control group showed negative.
     At the8th week after treatment, the expression of osteocalcin (OC) inosteoblasts and matrix of experimental group showed strong positive whileexpression of OC in osteoblasts and matrix of control group showed weakpositive.
     At the12th week after treatment, the expression of osteocalcin (OC) inosteoblasts and matrix of experimental group showed strong positive whileexpression of OC in osteoblasts and matrix of control group showed weakpositive.
     3.2The expression of osteopontin
     At the4th week after treatment, the expression of osteopontin (OPN) inosteoblasts and matrix of experimental group showed strong positive whileexpression of OC in osteoblasts and matrix of control group showed negative.
     At the8th week after treatment, the expression of osteopontin (OPN) inosteoblasts and matrix of experimental group showed strong positive while expression of OC in osteoblasts and matrix of control group showed weakpositive.
     At the12th week after treatment, the expression of osteopontin (OPN) inosteoblasts and matrix of experimental group showed strong positive whileexpression of OC in osteoblasts and matrix of control group showed weakpositive.
     Conclusions:
     1Icariin can increase the quantity of the repair area about skull defects onrabbit and improve the quality of bone healing.
     2Icariin can speed up the rate of repair about skull defects on rabbit.
     3Icariin can provide estrogen-like function and promote osteogenesis byreducing expression of gene Rankl, lessening the number of osteoclasts,inhibiting the differentiation, activation and maturity of osteoclast.
     4Icariin can up-regulate gene Runx2and promote the repair of defectthrough the Wnt/β-catenin pathway.
     5Icariin can increase the quality of osteogenesis by augment secretion ofosteocalcin in osteoblasts.
     6Icariin can increase the quality of osteogenesis by augment secretion ofosteopontin in osteoblasts.
引文
1王银喜,王金熙,徐智敏等.局部植入接骨中药提取物促进骨愈合的实验研究.中国骨伤,2003,16(6):346-348
    2李恩,孔德娟,杨学辉等.补肾方药对骨质疏松防治的实验研究.中国骨质疏松杂志,2002;8(2):166-170
    3李芳芳,李思,吕占军等.淫羊藿苷对大鼠卵泡颗粒细胞和肾上腺皮质细胞分泌功能的影响.中国中药杂志,1997,22(8):4991-4994
    4马慧萍,贾正平,白孟海等.淫羊蕾总黄酮对大鼠实验性骨质疏松生化学指标的影响.中国药理学通报,2003,19(2):187-190
    5陈克明,葛宝丰,马慧萍等.淫羊藿昔对体外培养骨髓基质干细胞成骨性分化的影响.中国骨质疏松杂志,2005,14(9):642-646
    6杨月琴,王松,沈霖.淫羊藿对骨髓间充质干细胞向成骨细胞方向分化以及FN表达的影响.中西医结合研究,2009,1(3):121-125
    7Ekam EC, Ravarti L, Kaharl V, et al. Expression of extraceluler matrixgenes transforming growth fractor(TGF)-betal and ras in tibial fracturehealing of athynitic rat. Bone,2000;27(4):551-557
    8康献刚,王志强.骨折愈合过程中细胞因子的作用.中国修复重建外科杂志,2008,22(7):877-879
    9Park Y J, Kim K H, Lee J Y, et al. Immobilization of bone morphogeneticprotein-2on a nanofibrous chitosan membrane for enhanced guided boneregeneration. Biotechnol Appl Biochem,2006,43(1):17-24
    10吴涛,徐俊昌,南开辉等.淫羊藿苷促进羊骨髓间充质干细胞的增殖和成骨分化.中国组织工程研究与临床康复,2009,13(19):3725-3729
    11刘亦恒,张海英,臧洪敏等.淫羊藿总黄酮对大鼠成骨细胞代谢调控的机制研究.中国中药杂志,2006,(31)6:487-492
    12Sheu SY, Tsai CC, Sun JS, et al. Stimulatory effect of puerarin on boneformation through co-activation of nitric oxide and bone morphogeneticprotein-2/mitogen-activated protein kinases pathways in mice. Chin Med J(Engl).2012,125(20):3646-3653
    13Fan JJ, Cao LG, Wu T, et al. The dose-effect of icariin on the proliferationand osteogenic differentiation of human bonemesenchymal stem cells.Molecules.2011,16(12):10123-10133
    14Ming LG, Chen KM, Xian CJ, et al. Functions and action mechanisms offlavonoids genistein and icariin in regulating bone remodeling. J CellPhysiol.2013,228(3):513-521
    15Wang XL, Xie XH, Zhang G, et al. Exogenous phytoestrogenic moleculeicaritin incorporated into a porousscaffold for enhancing bone defect repair.J Orthop Res.2013,31(1):164-172
    16张丹,张勤仓.中药外敷对促进骨折愈合中的作用.中医药导报,2012,18(10):43-44
    17闫宝勇,董福生,董玉英等.补肾壮骨中药对成骨质量和骨钙蛋白的影响,国际口腔医学杂志,2011;38(2):159-164
    18闫宝勇,董福生,董玉英等.补肾壮骨中药对成骨细胞OPG、RANKLmRNA表达的影响.现代口腔医学杂志,2011;25(3):194-198
    19Xin D, Wang H, Yang J, Su YF, Fan GW, Wang YF, Zhu Y, Gao XM.Phytoestrogens from Psoralea corylifolia reveal estrogen receptor-subtypeselectivity. Phytomedicine.2010;17(2):126-131
    20Wang JH, Wang Y, Pan YM. Effects of psoralen on proliferation anddifferentiation of cultured osteoblasts in vitro. Tian Ran Chan Wu Yan JiuYu Kai Fa.2007;19(5):844-846
    21Yang L, Lu D, Guo J, et al. Icariin from Epimedium brevicornum Maximpromotes the biosynthesis of estrogen byaromatase (CYP19). J Ethnopharmacol.2013;145(3):715-721
    22Yao D, Xie XH, Wang XL, et al. Icaritin, an exogenous phytomolecule,enhances osteogenesis but not angiogenesis--an in vitro efficacy study.PLoS One.2012;7(8):41264
    23盛华刚,李娜,朱立俏等.三七总皂苷和淫羊藿苷组分配对成骨细胞的增殖和钙化作用研究.中国实验方剂学杂志,2012;18(19):183-185
    24高毅.淫羊藿苷对成骨细胞增殖分化的影响及成骨机制的研究.河北医科大学博士学位论文.2013
    25匡祖锋,李良栋.活血补肾法对骨折大鼠模型骨修复的影响.贵阳中医学院学报,2012;34(1):130-131
    26王羿,党兴.补肾活血法对SD大鼠骨折模型愈合影响的实验研究.时珍国医国药,2012;23(12):3150-3151
    27刘继平,程玥.中药促进成骨细胞功能和ALP活性影响研究的意义.陕西中医学院学报,2010;33(1):7-8
    28I wamoto J, Sato Y, Takeda T, et al. Bone quality and vitamin K2in type2diabetes: review of preclinical and clinical studies.Nutr Rev,2011;69(3):162-167
    29张晓玮,郑洪新,林庶茹等.补肾中药血清对成骨细胞中骨形态发生蛋白2、7活性的影响.中国组织工程研究与临床康复,2011;15(28):5253-5257
    30黄宏兴,李颖,刘庆思等.补肾方对骨质疏松模型大鼠骨密度及胰岛素样生长因子Ⅰ和肿瘤坏死因子α的影响.中国组织工程研究与临床康复,2008;12(37):7219-7222
    31陈虹,张秀珍.淫羊藿甙对大鼠成骨细胞分泌细胞因子的影响.同济大学学报(医学版),2005;26(2):5-7
    32Huang J, Yuan L, Wang X, et al. Icaritin and its glycosides enhanceosteoblastic, but suppress osteoclastic, differentiationand activity in vitro.Life Sci.2007;81(10):832-840
    33Chen KM, Ge BF, Liu XY, et al. Icariin inhibits the osteoclast formationinduced by RANKL and macrophage-colony stimulating factor in mousebone marrow culture. Pharmazie,2006;62(5):388-391
    34Fang Xie, Chun-Fu Wu, Wan-Ping Lai, et al. The osteoprotective effect ofHerba epimedii (HEP) extract in vivo and in vitro. Evid BasedComplement Alternat Med.2005;2(3):353-361
    35王晶,于世凤,庞淑珍.淫羊藿抑制领骨骨吸收的体外实验研究.中国骨质疏松杂志,2004;10(3):277-279
    36李晶晶,于世凤,李铁军等.淫羊藿对口腔各矿化组织破骨细胞性骨吸收的体外实验研究.中华口腔医学杂志,2002;37(5):391-393
    37Xue L, Jiao L, Wang Y, et al. Effects and interaction of icariin,curculigoside, and berberine in er-xian decoction, a traditional chinesemedicinal formula, on osteoclastic bone resorption. Evid BasedComplement Alternat Med.2012;1:490843
    38Hui-Ping Ma, Lei-Guo Ming, Bao-Feng Ge. Icariin is More Potent ThanGenistein in Promoting Osteoblast Differentiation and Mineralization Invitro. J. Cell. Biochem,2011;112:916-923
    39宋敏,罗晓,李宁等.淫羊藿总黄酮含药血清对成骨细胞增殖、分化的影响.中国中医骨伤科杂志,2010;2(18):3-5
    40肖强兵,邹季.淫羊藿甙对体外培养大鼠成骨细胞Ⅰ型胶原表达和BGP影响的实验研究.中国中医骨伤科杂志,2007;15(9):36-38
    1Tang DZ, Yang F, Yang Z, et al. Psoralen stimulates osteoblastdifferentiation through activation of BMP signaling. Biochem Biophys ResCommun,2011,405(2):256-261
    2Ma HP, Ming LG, Ge BF, et al. Icariin is more potent thangenistein inpromoting osteoblast differentiation and mineralizationin vitro. J CellBiochem,2011,112(3):916-23
    3Hsieh TP, Sheu SY, Sun JS, et al. Icariin isolated from Epimediumpubescens regulates osteoblasts anabolism through BMP-2, SMAD4, andCbfa1expression. Phytomedicine,2010,17(6):414-23
    4Bian Q, Huang JH, Liu SF, et al. Different molecular targets of Icariin onbMSCs in CORT and OVX-rat. Front Biosci,2012,4:1224-1236
    5Hui-Ping Ma, Lei-Guo Ming, Bao-Feng Ge, et al. Icariin is More Potentthan Genistein in Promoting Osteoblast Differentiation and MineralizationIn vitro. Journal of Cellular. Biochemistry,2011,112:916-923
    6Wai-Jiao Cai, Jian-Hua Huang, Su-Qin Zhang, et al. Icariin and itsDerivative Icariside II Extend Healthspan via Insulin/IGF-1Pathway in C.elegans. PLo S ONE,2011,6(12):28835
    7Bian Q, Huang JH, Liu SF, et al. Different molecular targets of Icariin onbMSCs in CORT and OVX-rats. Front Biosci (Elite Ed).2012,4:1224-36
    8宋鹏,姚娟,马慧萍等.脱水淫羊藿素与山柰素对体外培养成骨细胞成熟矿化影响的比较研究.药学学报,2012,47(7):890896
    9Zhang JF, Li G, Meng CL, et al. Total flavonoids of Herba Epimediiimproves osteogenesis and inhibits osteoclastogenesis of humanmesenchymal stem cells. Phytomedicine,2009,16(6-7):521-529
    10Hsieh TP, Sheu SY, Sun JS, et al. Icariin isolated from Epimediumpubescens regulates osteoblasts anabolism through BMP-2, SMAD4, andCbfa1expression. Phytomedicine.2010,17(6):414-423
    11Mok SK, Chen WF, Lai WPI, et al. cariin protects against bone lossinduced by oestrogen deficiency and activates oestrogen receptor-dependent osteoblastic functions in UMR106cells. Br J Pharmacol,2010,159(4):939-949
    12Zhang DW, Cheng Y, Wang NL, et al. Effects of total flavonoids andflavonol glycosides from Epimedium koreanum Nakai on theproliferationand differentiation of primary osteoblasts. Phytomedicine,2008;15(1-2):55-61
    13Hyun Ku Kang, Yun-Ho Choi, Hyosuk Kwon et al. Estrogenic/antiestrogenic activities of a Epimedium koreanum extract and itsmajorcomponents: in vitro and in vivo studies. Food and ChemicalToxicology,2012,50(8):2751-2759
    14Theoleyre S, Wittrant Y, TatSK, et al. The molecula rtriad OPG/RANK/RANKL: involvement in the orchestration of PathoPhysiological boneremodeling. Cytokine Growth Factor Rev,2004,15(6):457-475
    15Wittrant Y, Theoleyre S, Chipoy C, et al. RANKL/RANK/OpG: newtherapeutic targets inBone tumours and associated osteolysis. BiochimBioPhys Acta,2004,1704(2):49-57
    16Mok SK, Chen WF, Lai WP. Icariin protects against bone loss induced byoestrogen deficiency and activates oestrogenreceptor-dependentosteoblastic functions in UMR106cells. Br J Pharmacol.2010,159(4):939-949
    17闫宝勇,董福生,董玉英等.补肾壮骨中药对成骨细胞OPG、RANKLmRNA表达的影响,现代口腔医学杂志,2011,25(3):194-198
    18Chen KM, Ge BF, Liu XY, et al. Icariin inhibits the osteoclast formationinduced by RANKL and macrophage-colony stimulating factor in mousebone marrow culture. Pharmazie,2006,62(5):388-391
    19Huang J, Yuan L, Wang X, et al. Icaritin and its glycosides enhanceosteoblastic, but suppress osteoclastic, differentiation and activity in vitro.Life Sciences,2007,81:832-840
    20Xie F, Wu CF, Lai WP, et al. The osteoprotective effect of Herba epimediiextract in vivo and in vitro. Evidence-Based Complementary andAlternative Medicine,2005,2:353-361
    21Sao-Keng Mok, Wen-Fang Chen, Wan-Ping Lai, et al. Icariin protectsagainst bone loss induced by oestrogen deficiency and activates oestrogenreceptor-dependent osteoblastic functions in UMR106cells. Br JPharmacol,2010,159(4):939-949
    22Komori T. Regulation of osteoblast differentiation by transcription faetors.J Cell Bioehem,2006,99(5):1233-9
    23Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfal results ina complete lack of Bone formation owing to maturational arrest ofosteoblasts. Cell,1997,89:755-64
    24NishioY, Dong Y, Paris M, et al. Runx2-mediated regulation of the zincFinger Osterix/Sp7gene. Gene,2006,10:62-70
    25Fang Xie, Chun-Fu Wu, Wan-Ping Lai, et al. The osteoprotective effect ofHerba epimedii (HEP) extract in vivo and in vitro. Evid BasedComplement Alternat Med,2005,2(3):353-361
    26Nakamura A, Dohi Y, Akahane M, et al. Osteocalcin secretion as an earlyMarker of in vitro osteogenie differentiation of rat mesenchymal stem cells.Tissue Eng Part C Methods,2009,15(2):169-180
    27Zhao J, Ohba S, Shinkai M, et al. Icariin induces osteogenic differentiationin vitro in a BMP-and Runx2-dependent manner. Biochem Biophys ResCommun,2008,369(2):444-448
    28Yao D, Xie XH, Wang XL, et al. Icaritin, an exogenous phytomolecule,enhances osteogenesis but not angiogenesis--an in vitro efficacy study.PLoS One,2012,7(8):41264
    29Tu Q, Valverde P, Chen J. Osterix enhances Proliferation and osteogenicPotential of bone marrow stromal cells. Bioehem biophys Res Commun,2006,341(4):1257-1265
    30Thomas L, McCarthy, Caleb B. Kallen, Michael Centrella, et al. β-Cateninindependent cross-control between the estradiol and Wnt pathways inosteoblasts. Gene,2011,15(479):16-28
    31Kanit Bhukhai, Kanoknetr Suksen, Narumol Bhummaphan, et al. Aphytoestrogen diarylheptanoid mediates estrogen receptor/Akt/glycogensynthase kinase3β protein-dependent activation of the Wnt/β-cateninsignaling pathway. J Biol Chem,2012,287(43):36168-78
    32Troen BR. Molecular mechanisms underlying osteoclast formation andactivation. Exp Gerontol,2003,38(6):605-614
    33YIN Xiao-xue, CHEN Zhong-qiang, LIU Zhong-jun, et al. Icariinestimulates proliferation and differentiation of human osteoblasts byincreasing production of bone morphogenetic protein2. Chin Med J (Engl),2007,120(3):204-210
    34Jeon EJ, Lee KY, Choi NS, et al. Bone morphogenetic protein-2stimulatesRunx2acetylation. J Biol Chem,2006,281(24):16502-16511
    35Geoffroy V, Kneissel M, Fournier B, et al. High bone resorption in adultaging transgenic mice overexpressing cbfa1/runx2in cells of theosteoblastic lineage. Mol Cell Biol,2002,22(17):6222-6233
    36Gaur T, Lengner CJ, Hovhannisyan H, et al. Canonical WNT SignalingPromotes Osteogenesis by Directly Stimulating Runx2Gene Expression. JBio Chem,2005,280(39):33132-33140
    37Yang F, Tang W, So S, et al. Sclerostin is a direct target of osteoblastspecific transcription factor osterix. Biochem Biophys Res Commun,2010,400(4):684-688
    1李淑梅,宋利格,张秀珍等.淫羊藿苷对大鼠成骨细胞功能及Osterix表达的影响.同济大学学报(医学版),2005,26(6):8-11
    2Wang X, Goh CH, Li B,et al. p38mitogen-activated protein kinaseregulates osteoblast Differentiation through osterix. Endocrinology,2007,148(4):1629-37
    3Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfal results ina complete lack of Bone formation owing to maturational arrest ofosteoblasts. Cell,1997,89:755-764
    4Nishio Y, Dong Y, Paris M, et al. Runx2-mediated regulation of thezincFinger Osterix/Sp7gene. Gene,2006,10(372):62-70
    5Tu Q, Valverde P, Chen J, et al. Osterix enhances Proliferation andosteogenic Potential of bone marrow stromal cells. Bioehem biophys ResCommun,2006,341(4):1257-1267
    6H. Nian, M.-H. Ma, S.-S. Nian, et al. Antiosteoporotic activity of icariin inovariectomized rats. Phytomedicine,2009,16(4):320-332
    7Jin-fang Zhang, Guo Li, Chu-yan, et al. Flavonoids of Herba Epimediiregulate osteogenesis of human mesenchymal stem cells through BMP andWnt/-catenin signaling pathway. Mol Cell Endocrinol,2010,314(1):70-74
    8Stein GS, Lian JB. Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of theosteoblast phenotype. Endocr Rev,1993,14(4):424-442
    9马慧萍,贾正平,陈克明等.含淫羊藿总黄酮大鼠血清对成骨细胞发育的影响.中国中药杂志,2010,33(8):928-930
    10Gecilia MG, Steitz S. Osteopontin: a versatile regulator of inflammationand biomineralization. Matrix Biol,2000,19(7):615-622
    11Tani-Ishii N, Tsunoda A, Umemoto T, et al. Osteopontin antisensedeoxyoligonucleotides inhibit bone resorption by mouse osteoclasts invitro. J Periodontal Res,1997,32:480-486
    12Spcetor JA, Greenwald JA, Warren SM, et al. Dura mater biology:autocrine and Paracrine effects of Fibroblast growth factor2. PlastReconstr Surg,2002,109(2):645-654
    13Nakamura A, Dohi Y, Akahane M, et al. Osteocalcin secretion as an earlyMarker of in vitro osteogenic differentiation of rat mesenchymal stem cells.Tissue Eng part C Methods,2009,15(2):169-180
    14Ivaska KK, Hentunen TA, Vaaran iemi J, et al. Release of intact andfragmented Osteocalcin molecules from bone matrix during boneresorption in vitro. J Biol Chem,2004,279(18):18361-18369
    15Bodine PV, Komm BS. Evidence that conditionally imrnortalized humanosteoblasts express an osteocalcin receptor. Bone,1999,25:535-543
    16肖强兵,邹季.淫羊藿甙对体外培养大鼠成骨细胞Ⅰ型胶原表达和BGP影响的实验研究.中国中医骨伤科杂志,2007,15(9):36-38
    17明磊国,陈克明,葛宝丰等.淫羊藿苷与染料木黄酮对体外培养成骨细胞增殖及矿化成熟影响的对比研究.中国中药杂志,2011,36(16):2240-2245
    18Dacic S, Kalajzic L, Visnjic D, et al. Collal-driven transgenic markers ofosteoblast lineage progression. J Bone Miner Res,2001,16(7):1228
    19Minenna G, D’Amore S, Maggiolini P, et al. RANKL/RANK, OPG andOPT in a group of patients affected by chronic arthritis. Preliminary report.Recenti ProgMed,2005,96(9):431-432
    20Dehnardt D, T Noda M, O Regan AW, et al. Osteopontin as a menas tocope with Environmental insults: regulation of inflammation, tissueermodeling, and cellsuvrival. J Clin Invest,2001,107:1055-1061
    21Ashkar S, weber GF, Pnaontsakopoulou V, et al. Eta-1(OPN): an earlycomponent of type1(cell-mediated) immunity. Sciece,2000,287:860-864
    22Ming Cai, Guo dong Li, Kun Tao, et al. Maohuoside A Acts in aBMP-dependent Mannerduring Osteogenesis. Phytother Research,2012,25(9):1002-1007
    23Hsieh TP, Sheu SY, Sun JS, et al. Icariin isolated from Epimediumpubescens regulates osteoblasts anabolism through BMP-2, SMAD4, andCbfa1expression. Phytomedicine,2010,17(6):414-423
    24Beyeler M, Schild C, Lutz R, et al. Identification of a fibronectininteraction site in the extracellular matrix protein ameloblastin. Exp CellRes,2010,316(7):1202-1212
    25El-Tanani MK, Campbell FC, Kurisetty V, et al. The regulation and role ofOsteopontin in malignant transformation and cancer. Cytokine GrowthFactorRev,2006,17(6):463-474
    26Jeon EJ, Lee KY, Choi NS, et al. Bone morphogenetic protein-2stimulatesRunx2acetylation. J Biol Chem,2006,281(24):16502-16511
    27Geoffroy V, Kneissel M, Fournier B, et al. High bone resorption in adultaging transgenic mice overexpressing cbfa1/runx2in cells of theosteoblastic lineage. Mol Cell Biol,2002,22(17):6222-6233
    28Gaur T, Lengner CJ, Hovhannisyan H, et al. Canonical WNT SignalingPromotes Osteogenesis by Directly Stimulating Runx2Gene Expression. JBio Chem,2005,280(39):33132-33140
    29Yang F, Tang W, So S, et al. Sclerostin is a direct target of osteoblastspecific transcription factor osterix. Biochem Biophys Res Commun,2010,400(4):684-688
    30Noda M, Tsuji K, Nifuji A. OsteoPontin: a topic from the point of bonemorphology. Clin Calcium,2003,13(4):464-466
    31王立平,党耕盯.骨桥蛋白在骨愈合中的基因表达.北京医科大学学报,1998,30(4):355-357
    32Ihara H, Denhardt DT, Furuya K, et al. Parathyroid hormone-indueedbone resorption does not occur in the absence of osteopontin. J Biol Chem.2001,276:13065-13071
    33Chellaiah MA, Hruska KA. The integrin alpha (v) beta (3) and CD44regulate the actions of osteopontin on osteoclast motility. Calcif Tissue Int,2003,72(3):197-205
    34Vietor I, Kurzbauer R, Brosch G, et al. TIS7regulation of the Beta-catenin/Tcf-4target gene osteopontin(OPN) is histone Deacetylase-dependent. J Biol Chem,2005,280(48):39795-39880
    35Zhu M, Tang D, Wu Q, et al. Activation of β-catenin signaling in articularchondrocytes leads to osteoarthritis-like phenotype in adult β-cateninconditional activation mice. J Bone Miner Res,2009,24(1):12-21
    36Geoffroy V, Kneissel M, Fournier B, et al. High bone resorption in adultaging transgenic mice overexpressing cbfa1/runx2in cells of theosteoblastic lineage. Mol Cell Biol2002,22(17):6222-6233
    37Gaur T, Lengner CJ, Hovhannisyan H, et al. Canonical WNT SignalingPromotes Osteogenesis by Directly Stimulating Runx2Gene Expression. JBio Chem,2005,280(39):33132-33140
    38Yang F, Tang W, So S, et al. Sclerostin is a direct target of osteoblast-specific transcription factor osterix. Biochem Biophys Res Commun,2010,400(4):684-688
    1李波,陈静,阙祥勇,陈文瑶等.大块异体骨联合自体骨髓移植修复股骨上段肿瘤切除后缺损.中国组织工研究,2012,16(5):831-834
    2李永清,徐速,王冬英等. Bio-Oss骨粉和自体碎骨在颌骨囊肿术后骨缺损中的联合应用.医学理论与实践,2010,23(2):184-185
    3吕军,王培吉.血管内皮生长因子复合人工骨材料修复骨缺损.中国组织工研究,2011,15(11):3929-3923
    4刘润田.中药接骨丹对骨折愈合作用的研究.天津医药,1962,4:457
    5沈钦荣.古代医学家对接骨药的认识.浙江中医学报,2000,24:12
    6王银喜,王金熙,徐智等.局部植入接骨中药提取物促进骨愈合的实验研究.中华骨科,2003,16(6):346-348
    7张小斌,王坤正.低强度超声在骨折愈合中的作用.中华物理医学与康复杂志,2003,25(11):701-702
    8杨红,高波,闾坚强等.低频超声药物透入实验研究.中华理疗杂志,1994,17(4):206-207
    9Clinton Rubin, Mark Bolander, John P. Ryaby, et al. The Uge of lowintensity ultrasound to accelerate the healing of fracture. J Bone int SurgAm,2001,83(2):259-270
    10Notle PA, Klein NJ, Alberts GH, et al. Low-intensity ultrasound stimulatesendechondral ossification in vitro. J Orthop Res,2001,19(2):301-307
    11Nishikori T, Ochi M, Uchio Y, et al. Effects of low-intensity pulsedultrasound on proliferation and ehondroitin sulfate synthesis of culturedehondrocytes embedded in Atelocollagen gel. J Biomed Mater Res,2002,59(2):201-206
    12黄训,张伟,刘麒麟等.低强度脉冲超声促进兔下颌骨缺损早期愈合的实验研究.实用口腔医学杂志,2008,24(1):61-64
    13邵高海,邱宇,高仕长等.中药接骨Ⅰ号超声透入对骨折愈合过程中BMP-7表达影响的实验研究.重庆医科大学学报,2011,36(2)141-144
    14李基民,王晓峰,薛建波等.超声中药透入促进骨折愈合的研究进展.临床医学工程,2010,17(9):135-136
    15吴镇林.中药外敷配合三维牵引治疗腰椎间盘突出症63例临床观察.右江医学杂志,2011,39(5):607-608
    16张丹,张勤仓.中药外敷对促进骨折愈合中的作用.中医药导报,2012,18(10):43-44
    17吕思宁,周玲,何强等.纳米技术与纳米中草药.中国科技论文在线,2009,4(12):905-906
    18曾庆,黄国志,梁东辉等.微米中药功能衬材对家兔骨折愈合的影响.中国组织工程研究与临床康复,13(8):1336-1340
    19孙富文,杨玉宝.活血化瘀药在骨缺损修复中的作用.山东医学高等专科学校学报,2012,34(4):297-299
    20汤群珍,邹来勇,何忠锅等.丹参杜仲混合液SD大鼠闭合性骨折修复的影响.河南中医,2010,30(5):449-450
    21董福慧,金宗濂,郑军等.四种中药对骨愈合过程中相关基因表达的影响.中国骨伤,2006,19(10):595-597
    22徐爱贤,高学媛.磁与自然铜促进骨折愈合的实验研究.山东中医杂志,2008,27(8):558-560
    23盛华刚,李娜,朱立俏等.三七总皂苷和淫羊藿苷组分配对成骨细胞的增殖和钙化作用研究.中国实验方剂学杂志,2012,18(19):183-185
    24王欣文,何爱咏,蔡羽中等.淫羊藿及骨形态发生蛋白2与家兔的骨折愈合.中国组织工程研究与临床康复,2011,15(11):2031-2033
    25周忠明,邓阿黎,姜惠中.中药复方对去卵巢骨质疏松模型大鼠E2、FSH、LH及骨组织形态学的实验研究.湖北省中医中药学会首届学术大会论文.2011
    1Marshall A, Hodgsod J. DNA chips. An array of possibilities. NatureBioteehnology,1998,16:273-278
    2Carulli JP, Artinger M, Swain PM, et al. High throughput analysis ofdifferential gene expression. J Cell Biochem,1998,120(30-31):286-288
    3Shiu-Ru Lin, Ming-Yi Huang, Hui-Jen Chang.et al. Molecular Detectionof Circulating Tumor Cells With Multiple mRNA Markers by Genechipfor Colorectal Cancer Early Diagnosis and Prognosis Prediction. GenomicMed Biomark Health Sci,2011,3(1):9-16
    4祁震宇,惠国桢,李瑶等.人脑胶质瘤中全长新基因PPIL3的生物信息学研究.中华实验外科杂志,2005,7(22):849-851
    5Dash PK, Zhao J, Orsi SA, et al. Differential gene expression inHippocampus following experimental brain trauma reveals distinctfeatures of moderate and severe injuries. Neurosci Lett,2009,460(2):103-107
    6Rongrong Zhang, Babatunde O, Oyajobi. et al. Wnt/β-catenin signalingactivates bone morphogenetic protein2expression in osteoblasts. SciVerse Science Direct,2013,(52):145-156
    7高莺,李继华,韩立赤等.张应力诱导大鼠骨髓间充质干细胞骨向分化及其差异基因表达分析.华西口腔医志,2009,27(2):213-216
    8王琳芳等.葡萄糖对人骨髓间充质干细胞增殖的影响及调控机制.华中科技大学学报,2011,40(5):562-566
    9Potter EG, Cheng Y, Natale JE, et al. Deleterious effects of minocy-clineafter in vivo target deprivation of thatamocortical neurons in the immature,metallothionein-deficient mouse brain. Neurosci Res,2001,87(6):1356-1368
    10王敏,程政,姚天华等.人骨形态发生蛋白2基因治疗大鼠牙槽骨缺损的实验研究.陕西医学杂志,2010,39(2):133-139
    11Long J, Li P, Du HM, et al. Efects of bone morphogenetic protein2genetherapy on new bone formation during mandibular distraction osteogenesisat rapid rate in rabbits. Oral Surgery Oral Medicine Oral Pathology OralRadiology&Endodontics,2011,112(1):50-57
    12S.J.E. Matthews. Biological activity of bone morphogenetie proteins(BMPs) injury. J Care Injured,2005,36:34-37
    13Yan.MN, Ke-Rong D, Tang TT, et al. Reconstruction of peri-im-plantbone defects using impacted bone allograft and BMP-2gene-modifiedbone marrow stromal cells. J Biomed Mater Res A,2010,93(1):304-313
    14Ishihara A, Zekas LJ, Weisbrode SE, et al. Comparative efficacy of dermalfibroblast-mediated and direct adenoviral bone morphogenetic protein-2gene therapy for bone regeneration in an equine rib model. Gene Ther,2010,17(6):733-744
    15张艳,黄云鹏. BMP-12联合自体骨髓间充质干细胞(BMSCs)藻酸钙载体复合物移植修复兔软骨缺损.实用手外科杂志,2011,25(3):259
    16朱立新,李奇,林荔军等. BMP-2改良纤维蛋白原支架修复软骨缺损的实验研究.中国临床解剖学杂志,2003,21(4):355-358
    17孟国林,胡蕴玉. BMP-4基因在成纤维细胞内的表达.中国矫形外科杂志,2000,7(8):783-785
    18Kimelman Bleich N, Pelled G, Zilberman Y, et al. Targeted gene and hostprogenitor cell therapy for nonunion bone fracture repair. The Journal ofthe American Society of Gene Therapy,2011,19(1):53-59
    19Gospodarowicz D. Loealisation of a fibroblast growth factor and itseffectalone and with hydrocortisone on T3cell growth. Nature,1974,249(8):123-127
    20Garcia M aya M, Anderson AA, Kendal CE, et al. Ligan d concentration isa driver of divergent signaling and pleiotropic eel1ular responses to FGF JCell Physiol,2006,206(2):386-393
    21贺维,倪小兵,解龙川等. bFGF基因修饰的BMSCs促进大鼠下颌牵引成骨的研究.临床口腔医学杂志,2010,26(11):655-657
    22Mara CS, Sartori AR, Duarte AS, et al. Periosteum as a source ofmesenchymal stem cells: the effects of TGF-beta3on chondrogenesis.Clinics(San eaulo),2011,66(3):487-492
    23荆立忠胡跃林.兔胫骨骨膜下注射转化生长因子TGF-β1和TGF-β2促进骨膜生发层细胞增殖的研究.中国微创外科杂志,2012,12(9):848-851
    24代飞,吴军,许建中等.基因修饰人骨髓间充质干细胞作为骨组织工程种子细异种移植的实验研究.中华创伤杂志,2005,11(22):838-844
    25Gebouer M, Sans J, SobJer F, et al. Comparisonof the chondresareoma cellline SW1353with primary human adult articular chondrecytes withregard to their gene expresion profilean d reactivity to IL-beta.Osteoarthritis Cartilage,2005,13:697-708
    26冯亚,翟立杰,王志强等.基因芯片筛选大鼠骨髓间充质干细胞及软骨细胞的差异表达基因.中国组织工程研究与临床康复,2009,13(10):1886-1890
    27Watanabe TK, Katagiri T, Suzuki M, et al. Cloning and characterization oftwo novel human cDNAs(NEI工1and NEIJ,2) encoding proteins with sixEGF-like repeats. Genomics,1996,38(3):273-276
    28刘琦,李祖兵. Nell-1型基因成骨及其在骨组织工程中的应用.国际口腔医学杂志,2011,38(3):364-366