含能破片作用机制及其毁伤效应实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用理论分析、数值仿真和实验研究相结合的方法,根据含能破片作用机理及其毁伤目标效应的不同,将含能破片分为了爆炸型和燃烧型两种类型分别进行了研究,重点围绕含能破片受冲击加载后的动态响应行为、释能响应时间、反应物到生成物的转换过程、放热温度及其对易燃易爆类典型目标的毁伤效应进行了研究。
     全文开展的主要工作和主要结论如下:
     1对爆炸型含能破片冲击起爆过程进行了研究。基于冲击波和炸药起爆动力学理论,通过理论分析和数值模拟得到了破片内炸药的压力、能量随冲击速度、壳体材料、直径等参数变化关系,为定量研究含能破片的冲击起爆行为提供了理论模型;结合实验研究以及国内外学者研究成果新建立了考虑靶板、破片壳体、炸药材料、头部厚度、长径比和头部形状等影响因素的冲击起爆临界速度经验公式,并验证了其有效性。研究结果显示,增大破片的长径比、提高破片壳体材料阻抗以及降低破片壳体头部厚度均可降低爆炸型含能破片临界起爆速度。
     2对爆炸型含能破片冲击薄靶目标的释能毁伤时间进行了研究。基于冲击波传播理论、炸药冲击起爆响应时间、反应速率模型以及流阻运动模式理论提出了含能破片侵彻薄靶板过程中侵彻历程与释能时间的理论计算模型,并对影响爆炸型含能破片释能时间的几个关键因素进行了分析,根据理论和数值模拟结果给出了含能破片应对不同目标靶板时实现靶后反应的释能时间的控制方法。
     3对爆炸型含能破片对屏蔽炸药的毁伤效应进行了研究,并与普通惰性破片进行了对比。研究了破片头部形状、直径以及材料等因素对冲击引爆屏蔽炸药过程的影响结果,利用有限元软件对爆炸型含能破片冲击引爆屏蔽炸药过程进行了仿真研究、阐明了其毁伤作用机理。进行了爆炸型含能破片冲击引爆屏蔽炸药实验研究,验证了理论分析和数值模拟所得结论:爆炸型含能破片与同质量惰性破片相比,能够在更低速度下引爆屏蔽炸药,这是由于爆炸型含能破片主要是利用冲击波能量引发含能物质的反应,再由化学反应能与冲击波能量叠加对目标进行毁伤,其能量输出方式主要为化学反应能。
     4对燃烧型含能破片材料的冲击压缩特性以及冲击温度进行了研究。基于描述固体物质冷能、冷压的Morse势,利用材料等熵线与绝热冲击压缩线二阶相切特性对已有的疏松混合材料冲击压缩曲线计算方法进行了改进和简化,并通过计算及与实验结果的对比验证了此模型的合理性。在此基础上结合密实材料的冲击温度曲线,利用等容外推法推导出了燃烧型含能破片材料冲击温度计算模型,并与已有计算模型以及实验结果进行了对比分析,结果显示本模型较其它模型能更好的描述疏松材料的冲击温度,误差在8%以内。进一步对疏松材料冲击温度的影响因素进行分析发现,电子比容系数、多孔度是影响疏松材料冲击温度的主要因素。
     5对燃烧型含能破片冲击诱发化学反应过程及其对油箱的毁伤效应进行了研究。在Arrhenius反应率模型的基础上加入了压力控制因子,得到了同时受时间、体系温度以及冲击压力控制的完整的反应率模型;并在此基础上结合初始反应物和最终生成物冲击压缩方程,通过等压法推导出了包含反应率、反应物、生成物物态方程以及反应能量的多功能含能结构材料(MESMs)材料冲击压缩模型。本模型综合考虑了反应物到生成物各物理参量的转变过程以及受时间、体系温度、冲击压力控制的化学反应率,是描述MESMs材料冲击诱发化学反应过程新的SICR理论计算模型。基于此模型的计算结果与已有实验测量曲线吻合较好,说明本模型可较好的展现MESMs材料冲击诱发化学反应整个过程中材料的动态响应行为及其化学反应进程。计算结果显示,压力、疏松度以及化学反应速率对反应的进行和反应的温度有很大影响,并且以上各影响因素之间亦是互相关联和制约的;进行了油箱类目标的冲击毁伤实验研究,比较了燃烧型含能破片和普通惰性破片毁伤效应的区别。定量的描述了毁伤不同的主要原因,并定性的给出了达到燃点未引燃或引燃后熄灭的可能原因以及战斗部优化设计方法。
In this dissertation, the explosive energetic fragment and combustion energetic fragment were studied accounting for the different damage mechanism and terminal effect, by using the analytical model, numerical simulation and experimental research. The dynamic response of energetic fragment under the shock loading, the time of reactive release, the transformation process between the react and product, the temperature of reactive release and the damage effort of the representative target were studied emphatically.
     1. The process of shock initiation of the explosive energetic fragment was studied. Based on the theory of shock wave and the dynamic of shock initiation in Solid Heterogonous Explosives, the P-v, E-v, E-d, etal curve of the explosive in fragment were obtained, by using the analytical model and numerical simulation. It provides a theoretical basis for quantitative researched the shock initiation behavior of energetic fragment. By combining the experimental research, the empirical formula of the critical velocity of explosive energetic fragment shock initiation was established. The new empirical formula considers the material of target, explosive, the head thickness of fragment, the ratio of length to diameter, the diameter of fragment and other parameters. The research results show that the ratio of length to diameter of fragment and shell material affect the initiation threshold velocity. While designing the explosive energetic fragment, it is beneficial to increase the ratio of length to diameter and choose the material with high density and high performance.
     2. The reaction release time of explosive energetic fragment impacted thin target was studied. Based on the theory of shock wave propagation, the response time of shock initiation, the model of reaction rate and the pattern of flow resistance movement, the theoretical calculated model of the reaction release time corresponding penetration depth of explosive energetic fragment impacted thin target was proposed for the first time. Several key factors of influence reaction release time was analyzed, by this calculated model. The controlled release time of design method was given for explosive energetic fragment shock to different target according to the research conclusion.
     3. The damage effect of explosive energetic fragment was studied. Several key factors including head shape, diameter of fragment which influence shielded explosive shock initiation process were studied. By combing the numerical simulation and experimental research, the physical image that the explosive energetic fragment shock initiation the shielded explosive was shown, and the damage mechanism of explosive energetic fragment was clarified. The different damage mechanism of explosive energetic fragments and inert fragments is found. The damage mechanism of inert fragments is a kinetic energy of impact, but the explosive energetic fragment is an explosive chemical reaction energy. The explosive chemical reaction energy is caused by impacted shock wave.
     4. The material of the combustible energetic fragment of shock compression properties and schok temperature was studied. Besed on the MORSE potential function of the solid material of cold energy and cold pressure, the calculated method of porous mixture of shock compression curve was improved and simplified. The calculated and analytic results by the new method presented are more agree with the corresponding experiments results than the existing methods. In addition, the shock temperature of the material of combustible energetic fragment was theoretically analyzed for the Hugoniot adiabat, state parameters and isovolumic extrapolation of solid materials. By combining the calculated cold energy, cold pressure and the Hugoniot equation of solid metal and porous metal, a new method for the shock temperature of porous metal was presented. The influence of several thermal physics parameters includeing the temperature of solid materials, Gruneisen coefficient, electronic Gruneisen coefficient and electronic specific heat coefficient on the calculated the value of new method was discussed. The calculated results according to the new method presented are agree well with the corresponding experiments results. The shock temperature of porous metal can be little influenced by Griineisen coefficient and electronic Gruneisen coefficient, but it can be influenced evidently by material compactness, shock pressure and electronic specific heat coefficient.
     5. The SICR model of the combustible energetic fragment and the damage to the diesel oil tank were studied. The pressure controlled factor was considered for the Arrhenius reaction rate model. The new reaction extent is a comprehensive reaction extent model that the influence of reaction time, system temperature and pressure was considered. By combing the shock compression equation react and product, the new shock compression calculation model of MESMs was presented. This model included the reaction extent, the react, product EOS and the reaction energy. From the physical essence, this model considered the transformation of react EOS to product EOS and the new reaction extent, comprehensive. So it can better reflect SICR process, while the calculated results by the new model presented arc more in agreement with the corresponding experiments results than the existing models. In addition, The research results show that the shock temperature of MESMs and the released reaction energy are influenced by pressure, porous and reaction rate, and the foregoing factors are interaction. The damage experiment of the diesel oil tank was also studied. The damage of combustible energetic fragment was compared to the damage of the inert fragment. The main influence paremeters of the different damage were given by quantitative. Further more, the possible influence paremeters of un-ignition and an optimum design method of energetic fragment's warhead was presented.
引文
[1]金永德,崔乃刚.导弹与航天技术概论[M].哈尔滨工业大学出社,2002,8
    [2]王毓兰,杨存富等.世界导弹大全[M].北京:军事科学出版社,1998
    [3]KelnPlon M L. Selectivelyaimablewarhead[P]. United States Patent:4026213,1977
    [4]Hugh E. Reactive fragment[P]. United States Patent:3961576,1976
    [5]张志鸿,周申生.防空导弹引信与战斗部配合效率和战斗部设计[M].北京:中国宇航出版社,2006,6
    [6]Douglas D. Reactive material enhanced warhead[C]. Peo Perspective of Manufacturing, Defense Manufacturing Conference. Las Vagas:[s.n.],2001
    [7]赵国志,张运法编译.战术导弹战斗部毁伤作用机理[M].南京理工大学,2000
    [8]James C Talley. Operation of fragment core warhead[P]. United States Patent:949, 674.1965.
    [9]李旭峰.含能破片对模拟战斗部的引爆机理[D].南京:南京理工大学机械工程学院,2005.6
    [10]李杰.可爆破片式反导技术研究[D].南京:南京理工大学机械工程学院,2006.6
    [11]杨华楠,廖雪松,王绍慧等.含能破片技术与应用[J].四川兵工学报,2010.31(12):4-7
    [12]黄亨建,黄辉,阳世清,等.毁伤增强型破片探索研究[J].含能材料,2007,15(6):566-569
    [13]刘智华.燃烧式含能破片的配方与性能研究[D].南京:南京理工大学机械工程学院,2010.6
    [14]Ames R G. Vented chamber calorimetry for impact-initiated energetic materials[R]. 43rd AIAA Aerospace Sciences Meeting and Exhibit. AIAA2005-279:2005.
    [15]第五机械工业部204研究所.火炸药手册[M],北京:第五机械工业部204研究所,1981
    [16]黄文尧,颜事龙.炸药化学与制造[M].北京:冶金工业出版社,2010
    [17]孙业斌,惠君明,曹欣茂.军用混合炸药[M].北京:兵器工业出版社,1995
    [18]The National Academy of Sciences. Committee on Advanced Energetic Materials and Manufacturing Technologies. Advanced Energetics Materials[M]. Washington: The National Academies Press,2004,20-23
    [19]Michael T R, Daniel W Doll, James R H, etal. Reactive material enhanced projectilesand related methods[P]. US:20060011086.
    [20]张先锋,赵晓宁.多功能含能结构材料研究进展[J].含能材料,2009,17(6):731-739
    [21]王毅.纳米及纳米复合材料在铝热剂中的应用研究[D].南京:南京理工大学材料科学与工程学院,2008.8
    [22]Ciurowa K W, Gamrat K, Z.Sawlowicz. Characteristics of CuAl2-Cu9Al4/Al2O3 nanocom-posites synthesized by mechanical treatment[J]. Journal of Thermal Analysis and Calorimetry,2005,80:619-623.
    [23]Zhe Xiao-li, Dioka C A, A. Hendry. Aluminothermic reduction of zirconia[J]. Journal of the European Ceramic Society,2005,25:695-702.
    [24]Ge C L, Ye R C. Research on self-propagating eutectic boriding[J]. Journal of Materials Processing Technology,2002,124:14-18.
    [25]Ames R G. Energy Release Characteristics of Impact-Initiated Energetic Materials[A].2006 Materials Research Society[C].2006
    [26]Eakins D E, Thadhani N N. Discrete Particle Simulation of Shock Wave Propagation in a Binary Ni+Al Powder Mixture, Journal of Applied Physics,2007,101 (200):043508-18.
    [27]杨光成.纳米TATB制备和表征[J].含能材料,2005,13:354.
    [28]池钰.纳米复合含能材料的制备与性能表征[D].绵阳:中国工程物理研究院,2006.5
    [29]McQueen R G, Marsh S P. Equation of State for Nineteen Metallic Elements from Shock-Wave Measurements to Two Megabars[J]. J.Appl.Phys,1960,31:1253-1269
    [30]Herrmann W. Constitutive Equation for the Dynamic Compaction of Ductile Porous Materials [J]. Journal of Applied Physics,1969.40(6):2490-2499.
    [31]Carroll M M, Holt A C. Static and dynamic pore-collapse relations for ductile porous materials[J]. J. Appl. Phys,1972,43(4):759-761
    [32]Carroll M M, Kim K T, Nesterenko V F. The effect of temperature on viscoplastic pore collapse[J]. J. Appl. Phys,1986,59(6):1962-1967
    [33]Grady D E, Winfree N A. Fundamental issues and applications of shock-wave and high-strain rate phenomena[M]. Amsterdam:Elservier-Science,2001.
    [34]Grady D E, Winfree N A, Kerley G. I, etal. Computational modeling and wave propagation in media with inelastic deforming microstructure[J]. J. Phys,2000,6: 15-20
    [35]Reding D J, Lu X, Narayanan V N. Constitutive modeling of multi-functional structural energetic materials:plasticity effects. AIAA-2006-1950 [R],2006
    [36]Benson D J. An analysis by direct numerical simulation of the effects of particle morphology on the shock compaction of copper powder[J]. Modelling Simul. Mater. Sci.Eng,1994,2:535-550
    [37]经福谦.实验物态方程导引[M].北京:科学出版社,1999
    [38]Meyers M A, Dynamic Behavior of Materials[M]. New York:John Wiley and Sons Inc,1994
    [39]Bennett L S, Horie Y, Shock-induced inorganic reactions and condensed phase detonations [J], Shock Waves,1994,4:127-136
    [40]McQueen G, Marsh S P, Taylor J W, etal. High Velocity Impact Phenomena[M]. New York:Academic Press,1970
    [41]Thadhani N N. Mechanisms of Shock-Assisted and Shock-Induced Chemical Reactions in Elemental Powder Mixtures [J]. J. of Applied Physics,1994,76 (4): 2129-2138
    [42]陈鼎,陈振华.机械力化学[M].化学工业出版社,2008
    [43]Dremin A N, Breusov O N. Processes Occurring in Solids Under the Action of Powerful Shock Waves[J]. Russian Chemical Reviews,1968,37(5):392-402
    [44]Batsanov S S, Doronin G S, Klochkov S V, etal. Synthesis Reactions Behind Shock Fronts[J]. Combustion, Explosions, and Shock Waves,1987,22(6):765-768
    [45]Thadhani N N. Shock-Induced Chemical Reactions and Synthesis of Materials [J]. Progress In Material Science,1993,37:117
    [46]Gur'ev D L, Gordopolov Y A, Batsanov, S S. Solid-state synthesis of znte in shock waves [J]. Combustion, Explosion, and Shock Waves,2006,42(1):116-123
    [47]Reding D J. Shock Induced Chemical Reactions in Energetic Structural Materials[D]. Georgia:Georgia Institute of Technology,2008
    [48]Yu L H, Meyers M A. Shock Synthesis and Synthesis-Assisted Shock Consolidation of Silicides[J]. J Material Science,1991,26:601-611
    [49]Bennett L S, Horie Y, Hwang M M. Constitutive model of shock-induced chemical reactions in inorganic powder mixtures[J]. J. Appl. Phys, 1994,76(6):3394-3402
    [50]L.Ferranti, N.N.Thadhani. Dynamic Impact Characterization of Al+Fe2O3+30% Epoxy Composites Using Time Synchronized High-Speed Camera and VISAR Measurements[A]. Materials Research Society[C],2006,588-610
    [51]Eakins D E, Thadhani N N. The Shock Compression of Reactive Powder Mixtures[J], International Materials Reviews,2009,54(4),181-213
    [52]Bohl D G, Lee R J, Palmero E, Break-Up and Performance of Reactive Materials[J]. JANNAF Journal,2008,1
    [53]叶小军.含能破片对带壳炸药的引燃机理及抛射强度研究[D].南京:南京理工大学机械工程学院,2008
    [54]Lee R J, Mock W, Bohl D G, etc. Reactive Materials Studies[A], Proceedings of the 14th APS Topical Conference on Shock Compression of Condensed Matter[C], Baltimore, Maryland,2005:169-174.
    [55]Ames R G, Brennan B P. Measurements of the effects of target skin thickness on the impact-initiated energy release from PTFE-A1 projectiles [A].9th Warheads and Ballistics Classified Symposium[C]. Monterey, Calif America, June 2003.
    [56]张先锋,赵晓宁,乔良.反应金属冲击反应过程的理论分析[J].爆炸与冲击,2010,30(2):145-151
    [57]David J B, Ian Do,Meyers M A. Computational modeling of shock compression of power[J]. Shock compression ofcondensed matter,2001,23:1087-1092
    [58]蒋建伟,王树有,等.复合反应破片对钢靶侵彻的实验研究[J].含能材料,2009,17(6):722-725.
    [59]王海福,刘宗伟,俞为民,等.活性破片能量输出特性实验研究[J].北京理工大学学报,2009,29(8):663-666
    [60]Grudza M E, Jann D, Forsyth C, etal. Explosive launch studies for reactivematerial fragments[C].4th jointClassified Bombs/Warheads and Ballistics Symposium. Newport,2001:110-118.
    [61]Myriski B. Shear-driven reactive material combustion at high-speed impact [C]. 2005 Joint Classified Warheads and Ballistics Symposium, Colorado, America, 2005.
    [62]谢长友,蒋建伟,帅俊峰,等.复合式反应破片对柴油油箱的毁伤效应试验研究[J].高压物理学报,2009,23(6):447-452.
    [63]Walker F E, Wasley R J. Critical Energy for Shock Initiation of heterogeneous Explosives. Explosive Stoffe,1969,17(1):9
    [64]Held M. Initiation phenomena with shaped charge jets [A]. Proc of 9th Symp on Detonation[C]. Arlington Va:OCNR,1989.1416-1420
    [65]Roslund L A, Watt J M, Coleburn N L. Initiation of warhead explosives by the impact of controlled fragments in normal impact[R]. Naval Ordnance Laboratory, White Oak, MA, USA,1975:NOLTR 73-124.
    [66]方青,卫玉章,张克明,等.射弹斜撞击带盖板炸药引发爆轰条件[J].爆炸与冲击, 1997,17(2):153-157
    [67]赵峰,孙承纬,卫玉章.非均质固体炸药的冲击引爆临界能量判据研究[J].爆炸与冲击,1993,13(1):41-48
    [68]李小笠,赵国志,李文彬.长杆体垂直冲击带盖板炸药的临界起爆准则[J].弹道学报,2004,16(2):51-55
    [69]蔡振华.含能破片对巡航导弹燃料舱毁伤研究[D].南京理工大学机械工程学院,2005,6
    [70]张守中.爆炸与冲击动力学[M].北京:兵器工业出版社,1993:399-414
    [71]王海福,冯顺山.密实介质中冲击波衰减特性的近似计算[J].兵工学报,1996,17(1):79-81
    [72]洪听,王声波,郭大浩,等.激光冲击波在铝靶中衰减特性研究[J].量子力学学报,1998,15(5):474-478
    [73]Green L. Shock Initiation of Explosives by the Impact of Small Diameter Cylindrical Projectiles [A].7th Symposium (International) on Detonation[C]. White Oak, Silver Spring, Maryland:Naval Surface Weapons Center,1982:273-276.
    [74]李小笠,赵国志,李文彬,等.平面加层炸药反射冲击起爆[J].弹道学报,2002,14(2):29-32
    [75]董小瑞,隋树元.破片对屏蔽炸药的撞击起爆研究[J].华北工学院学报,1999,20(3):236-238
    [76]北京工业学院《爆炸及其作用》编写组.爆炸及其作用[M].北京:国防工业出版社,1979
    [77]王树山,李朝君.钨合金破片对屏蔽装药冲击起爆试验研究[J].兵工学报,2001,22(2):189-191.
    [78]张宝坪,张庆明,黄风雷.爆轰物理学[M].北京:兵器工业出版社,2001.
    [79]Johnson GR, Cook W H. Fracture characteristics of three metals subjected to various strains, strains rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985,21(1):31-48.
    [80]慈明森,顾余铨.金属在大变形、高应变率和高温条件下的本构模型和数据[J].弹箭技术,1998,9(3):32-44
    [81]胡昌明,贺红亮,胡时胜.45号钢的动态力学性能研究[J].爆炸与冲击,2003,23(2):188-192
    [82]Jobnson G R, Cook W H, A constitutive model and data form metals subjected to large strain, high strain rates and high temperatures [A]. In:Proe.7th int. Symp Ballistics[C]. the Netherlands:the Hague,1983
    [83]尚晓江,苏建宇.LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社,2006
    [84]LSTC. LS-DYNA Keyword user's manual[M]. Califonia:Livemore Software Technology Corporation,2003.4
    [85]Wackerle J, Rabie R L,Ginsberg M J, et al. Proceedings of Symposium on High Dense Physics[A]. Behaviour of dense media under high dynamic Pressure[C]. Paris, 1978,127
    [86]Wackerle J, Johnson J O, Halleck P M. Shock Initiation of High Density PETN[A]. 6th Symposium on Detotonation[C]. Coronado, California:Office of Naval Research-Department of the Navy,1976,20
    [87]Lee E L, Tarver C M. Phenomenological model of shock initiation in heteregeneous explosives[J]. Physics of Fluids,1980,23(12):2362
    [88]Murphy M J, Lee E L. Modeling Shock Initiation in Composition B[A].10th Symp(Int) on Detonation[C]. Boston, Mass,1992:965-970
    [89]章冠人,陈大年.凝聚炸药起爆动力学[M].北京:国防工业出版社,1991.9
    [90]李小笠.长杆体对夹层装药的冲击起爆研究[D].南京:南京理工大学机械工程学院,2003
    [91]James H R, Haskins P J, Cook M D. Prompt Shock Initiation of Cased Explosives by Projectile Impact[J]. Propellants, Explosives, Pyrotechnics.1996,21:251-257
    [92]Held M. Initiation criteria of high explosives attacked with projectiles of different densities [A].27th Int. Annual Conference of ICT[C]. Karlsruhe, Germany: DEStech Pulication,1996:231-238
    [93]Rindner R M. Response of Explosive to Fragment Impact. Annals of New York Academy of Sience,1962,152(1):250
    [94]Quidot M, Hamaide S, Groux J. Fragment impact initiation of cast PBXs in relation with shock sensitivity tests[A]. Proceedings Tenth International Detonation Symposium[C], Boston:Office of Naval Research,1993:113-120.
    [95]Zhang xian-feng, Huang zheng-xiang. Study on Shelled Explosive Initiated by Explosive Formed Projectile [A].23th International Symposium Ballistics[C]. Spain: Universidad Politecnica de Madrid,2007:1197-1204
    [96]方青,卫玉章,张克明,等.射弹斜撞击带盖板炸药引发爆轰条件.爆炸与冲击,1997,17(2):153-158
    [97]张先锋.聚能射弹引爆带壳炸药研究[D].南京:南京理工大学机械工程学院,2005.
    [98]James H R, Grixti M A. The dependence of the response of heavily-confined explosive on the degree of projectile penetration[A].10th Symp(Int) on Detonation[C]. Boston, Mass,1993:89-93
    [99]徐锦仁,何保国.含能反应式破片材料用于舰船反(高)超音速导弹的设想[J].水雷战与舰船防护,2006,4:69-72
    [100]李志勇,朱文辉,程经毅.铜中强激光冲击波衰减规律的实验研究[J].科学通报.1996,41(19):1747-1749
    [101]王远飞.接触爆炸作用金属材料中冲击波的衰减[J].南京理工大学化学工程学院,2007
    [102]王海福,冯顺山.密实介质中冲击波衰减特性的近似计算[J].兵工学报,1996,17(1):79-81
    [103]李银成.非均匀炸药冲击起爆和起爆后行为[J].高压物理学报,2006,20(1)
    [104]钱伟长.穿甲工程力学[M].北京:国防工业出版社,1984
    [105]Umbrajkar S M. Schoenitz M, Dreizin E L. Exothermic reactions in Al-CuO nanocomposites[J]. Thermo -chimica Acta,2006,451:34
    [106]徐新春,焦清介.小尺寸装药爆轰在有机玻璃隔板中的衰减规律[J].含能材料,2009,17(4):431-434.
    [107]James H R. An Extension to the Critical Energy Criterion Used to Predict Shock Initiation Thresholds. Propellants, Explosives, Pyrotechnics[J],2006,4:69-72
    [108]Cook M D, Haskins P J, and James H R. Projectile Impact Initiation of Explosive Charges[A].9th Symposium (Int) on Detonation [C]. Portland OR,1989,1441-1450
    [109]汤文辉.固体材料中的高压声速[J].国防科技大学学报,2005,27(4):1-3
    [110]Meyers M A. Dynamic Behavior of Materials[M]. Beijing:National Defense Industry Press,2006
    [111]李小笠,屈明,路中华.三种破片对带壳炸药冲击起爆能力的数值分析[J].弹道学报,2009,21(4):72-75
    [112]张先锋,陈惠武,赵有守.爆炸成型弹丸引爆带壳炸药临界条件[J].兵工学报,2003,24(增):157-159
    [113]Hyunho Shin, Woong Lee. Anumerical study on the detonation behaviour of double reactive cassettes by impacts of projectiles with different nose shapes[J]. International Journal of Impact Engineering,2003,28:349-362
    [114]James H R, Hewitt D. B, Critical Energy Criterion for the Initiation of Explosives by Spherical Projectiles[J], Propellants, Explosive, Pyrotech,1989,14:223-233
    [115]James H R, Grixti M A. The dependence of response of heavily-confined explosive on the degree of projectile penetration [A].10th Symp(Int) on Detonation[C]. Boston, Mass,1992:89-93
    [116]郑孟菊,俞统昌.炸药的性能及测试技术[M].北京:兵器工业出版社,1990.
    [117]Rankine W J M, On the thermodynamic theory of waves of finite longitudinal disturbances[J]. Phil Trans Roy Soc,1870,160:277-288
    [118]Hugoniot H, Propagation des Mouvements dans les Corps et specialement dans les Gaz Parfaits (French) [J]. Journal del1 Ecole Polytechnique,1877,57:3-98.
    [119]汤文辉,张若棋.物态方程理论及计算(第二版)[M].北京:高等教育出版社,2007
    [120]冉宪文,汤文辉,谭华,等.含电子影响的冲击温度计算[J].高压物理学报,2006,20(2):153-156
    [121]Anderson O L. The Power Balance at the Core-Mantle Boundary[J]. Physics of the Earth and Planetary Interiors,2002,131:1-17
    [122]Zel'dovich Y B, Raiser Yu P. Physics of shock waves and high-temperature hydrodynamic phenomena[M]. New York:Academic Press,1967
    [123]Knopoff L. High Pressure Physics and Chemistry[M]. New York and London:Academic Press,1963
    [124]MacDonald J R. Review of Some Experimental and Analytical Equations of State [J].Rev.Mod.Phys,1969,41:316-349.
    [125]冉宪文,汤文辉.一种计算固体冷能、冷压和结合能的新方法[J].高压物理学报,2003,17(1):50-55.
    [126]孙怀,刘福生,张岱宇.用Hugoniot参数和Morse势确定金属铁的物态[J].四川师范大学学报:自然科学版,2006,29(5):580-583.
    [127]Morse P M, Diatomic molecules according to the wave mechanics Ⅱ[J]. Vibrational levels. Phys. Rev,1929,34,57-64.
    [128]Zhang X F, Qiao L, Shi A S, etal. A cold energy mixture theory for the equation of state in solid and porous metal mixtures[J]. Journal of Applied Physics, 2011,110,013506.
    [129]Barry R K, Thad V J. A Hugoniot theory for solid and powder mixtures [J]. Journal of Applied Physics,1991.69(2):710-716.
    [130]徐锡申,张万箱.实用物态方程导引[M],北京:科学出版社,1986
    [131]Reding D, Hanagud S, Equation of State for Multi-functional Energetic Structural Materials, AIAA2007-2034[R],2007
    [132]Marsh S P. Laser shock Hugoniot data[M]. Los Angeles:University of California Press,1980
    [133]林华令,黄风雷,胡玉新,等.混合物冲击压缩后平衡态的研究[JJ.高压物理学报,2004,18(1):60-69
    [134]王金贵,施卫丰100-500GPa 4.2Ni2.45Fe0.35W合金的冲击压缩性和物态方程[J].高压物理学报,1995,9(3):195-202
    [135]林华令,黄风雷,于万瑞.混合物冲击温度的数值模拟[J].高压物理学报,2002,16(1):46-56
    [136]李西军.铁高压熔化线研究[D].四川绵阳:中国工程物理研究院,2000.
    [137]Herrmann W, Constitutive equation for the dynamic compaction of ductile porous materials. Journal of Applied Physics,1968,40(6):2490-2499
    [138]Carroll M M, Holt A C. Static and Dynamic Pore-Collapse Relations for Ductile Porous Materials [J]. Journal of Applied Physics,1972.43(4):1626-1636.
    [139]Wu Q, Jing Fu-qian. Thermodynamic Equation of State and Application to Hugoniot Predictions for Porous Materials[J]. Journal of Applied Physics, 1996.80(8):4343-4349.
    [140]Eakins D.E, Thadhani N.N. Shock-induced reaction in a flake nickel + spherical aluminium powder mixture [J]. Journal of Applied Physics,2006,100:113521.
    [141]Eakins D.E, Thadhani N.N. Mechanistic aspects of shock-induced reactions in Ni-Al powder mixtures[J]. AIP conference proceedings,2007,955(1):1025-1028
    [142]汤文辉,张若棋,胡金彪,等.冲击温度的近似计算方法[J].力学进展,1998,27(4):479-487
    [143]Ahrens T J. Shock induced optical radiation from solids [A]. The 2nd Internal Symposium on Intense Dynamic Loading and Its Effeets[C]. Chengdu,1992, 815-823
    [144]张凌云.无氧铜冲击熔化特性的实验研究[D].四川绵阳:中国工程物理研究院,2004.
    [145]McQueen R G, Marsh S P, Taylor J W, etal. The Equation of State of Solids From Shock Wave Studies. High Veloeity Impact Phenomena[M]. New York:Academic, 1970:294-419.
    [146]张岱宇,刘福生,李西军.多孔铁冲击温度的分子动力学模拟.高压物理学报[J],2003,17(1):16-21.
    [147]杨美霞.疏松铁冲击卸载声速与铁的高压融化线研究[D].成都:西南交通大学,2005:39.
    [148]李西军.铁高压熔化线研究[D].四川绵阳:中国工程物理研究院,2000.
    [149]林华令,张若棋.利用冲击压缩数据计算物态方程的新方法-Gruneisen系数最优[J].高压物理学报,1991,5(1):61-710.
    [150]Boslough M G. A Thermochemical Model for Shock-Induced Reactions (Heat Detonations) in Solids. J. Chem Phys,1990,92(3):1839-1848
    [151]Oh K H, Persson P A. Equation of State of Extrapolation of High-Pressure Shock Hugoniot Data[J]. J. Appl. Phys,1989,65(10):3852-3856
    [152]Bennett L S, Horie Y. Shock-induced inorganic reactions and condensed phase detonations[J]. Shock Waves,1994,4:127-136
    [153]Graham R A, Anderson M U, Horie Y, etal. Holman GT:Pressure measurements in Chemically Reacting Powder Mixtures with the Bauer Piezoelectric Polymer Gauge[J]. Shock Waves,1993,3:79-82
    [154]莫建军.金属等嫡压缩线计算及爆轰加载等嫡压缩实验研究[D].四川绵阳:中国工程物理研究院,2006
    [155]Eakins D E, Thadhani N N. Mechanistic Aspects of Shock-induced Reactions in Ni+Al Powder Mixtures[A], Shock Compression of Condensed Matter AIP Conference Proceedings[C],2007,955:1025-1028
    [156]Specht P E, Thadhani N N, Stover A K, etal. Meso-Scale Computational Study of the Dynamic Behavior of Co-Rolled Ni-Al Laminates[A].16th APS Topical Conference on Shock Compression of Condensed Matter[C], Nashville, Tennessee. 2009,54(8):57-60
    [157]Ferranti L. Mechanochemical Reactions and Strengthening in Epoxy-Cast Aluminum Iron-Oxide Mixtures. [D]. Georgia:Georgia Institute of Technology, 2007
    [158]Ferranti L. and Thadhani N N. Dynamic mechanical behavior characterization of epoxy-cast Al+Fe2O3 thermite mixture composites [A]. Symposium on Dynamic Behavior of Materials[C]. Orlando, Florida,2007,38(11):2697-2715
    [159]Jordan J L, Dick R D, Ferranti L, etal. Equation of State of Aluminum-Iron Oxide (Fe2O3)-Epoxy Composite:Modeling and Experiment[A]. Shock Compression of Condensed Matter[C]. Baltimore, MD,2005:157-160
    [160]Austin R A. Numerical Simulation of the Shock Compression of Microscale Reactive Particle Systems[D]. Georgia:Georgia Institute of Technology,2005
    [161]Kissinger H E. Reaction Kinetics in Differential Thermal Analysis[J]. Anal. Chem, 1957,29(11):1702-1706
    [162]Vorthman J, Wakerle J. Multiple wave effects on explosive decomposition rates[M]. Amsterdam:North-Holl and Publishers,1984
    [163]王毅,姜炜.纳米Cu/A1-W03亚稳态符合材料热反应机理分析[J].物理化学学报,2007,23(11):1753-1759
    [164]Umbrajkar S M, Schoenitz M, Dreizin E L. Exothermic reactions in Al-CuO nanocomposites[J] Thermo-chimica Acta,2006,451:34-43