冲击加载下液态光学窗口水的热物理性质及疏松金属铁的冲击温度测量问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水不仅是地球的重要的物质组分也是凝聚态炸药的爆轰产物之一,因此它的高温高压物态方程研究受到广泛关注。尽管在冲击加载条件下研究工作取得过一系列重要的进展,但仍存在诸多问题需要解决。主要表现在:(1)在中低压力区(低于50GPa)水的冲击温度测量数据十分稀缺。文献中曾报道过两个数据点,但那是早期的两通道高温计测量结果,其可信度受到普遍质疑。(2)冲击高压下水的比热取值以及其随温度变化特性一直存在争议,不同理论模型(Cv(T))所给出的高温高压物态方程结果相差较大。(3)在冲击高压下水的光学窗口功能还没有被人们比较系统地研究过。事实上,液态光学窗口在解决不透明金属材料的冲击温度测量问题方面具有一定潜力,它被认为是解决疏松金属冲击温度测量问题的最理想光学窗口;(4)在高温高压下水的光学透明性和热导率数据基本是空白,这是液态窗口材料的两个重要特性参量。
     由于在金属/固态光学窗口界面处残余气体的冲击发光干扰,以及光学窗口本身的冲击发光效应的影响,金属的冲击测温问题一直是冲击波物理研究领域的一个难点。尽管采用精密抛光技术人们已基本消除了金属/窗口之间间隙气体的冲击发光干扰,但疏松金属样品的体内存在大量孔洞缺陷,人们通过精密抛光手段无法获得比较理想的抛光表面,来自界面的不稳定辐射干扰也就无法消除。正是这个技术瓶颈的存在,疏松金属冲击温度测量问题至今没有解决。
     为了解决上述两方面问题,本文进行了一系列实验和理论方面的研究,取得结论如下:
     1.利用二级轻气炮加载技术,首次在30-50GPa冲击压力区观测水的光学透明性。结果表明,在低于35GPa冲击加载条件下水在可见光波长范围内仍然保持为光学透明介质,可用作液体光学窗口材料;在35-45GPa冲击压力区,水成为光学半透明介质,作为光学窗口使用时需要考虑水的光学吸收特性。
     2.在35-50GPa冲击条件下,首次获得水的冲击温度数据。结合Lyzenga等在50-80GPa之间的冲击温度测量结果,对冲击高压下水的比热容取值和函数关系给出了限定:(1)在低于50GPa压力区,水的比热容Cv应取为7.07R;(2)在50GPa至80GPa高压缩区间,由于热电子或电离效应的影响,水的比热容与冲击温度相关:Cv=(5.76+3.84×10-4TH)R。
     3.利用测量金属钽/水的界面温度的办法,对冲击高压下水的热导率取值范围进行了限定。结果表明,水的热导率与冲击压力之间存在线性相关性:K=Kw0+2.98PHW/(m·K)。
     4、以液态水为光学窗口测量钽、铜、铁的冲击温度,并首次证明疏松铁体内平均热力学温度值与疏松铁/水界面辐射平衡温度存在关联性。结合金属的三项式物态方程理论和固/液混合相区绝热卸载计算方法,计算获得多孔铁冲击温度和卸载温度。结果表明,对于疏松度不大(α。<1.3)的疏松金属,其冲击温度的测量值与计算结果一致。
As the most important substance in the earth and one of the dominant components of detonation products of CHNO explosives, equation of state of water at high temperature and pressure has been widely studied. A series of significant progress has been achieved under shock loading, but some problems are still not solved:(1) in the low and medium pressures (below50GPa), the experimental data of shock temperature for water are lacked. Only two data points were reported before, and the results may be questioned because of using two channels pyrometer.(2) the values of the specific heat for shocked water and its dependence with temperature were disputed. Very different equations of state of water were given by different Cy(T) models at high temperature and pressure.(3) the optical window properties of shocked water were not been systematically studied before. In fact, liquid optical window had a certain potential in solving the problem of temperature measurement for opaque metals, it was considered to be a good window material for studying the shocked temperature of porous metals.(4) the data of optical transparency and thermal conductivity of shocked water at high pressure and temperature could be hardly found, however, they are two important parameters for a window material.
     Due to the influence of the radiation from the residual gas at metal/window interface, as well as the radiation from the shocked optical window itself, the shock temperature measurement of metal is a long-term unsolved tough problem. The former factor has been basically eliminated by polishing the surface of the metal in recent years, but for the porous metals, we would not get an ideal polished surface from porous metals because the pores are the part of them. So the influence of the radiation from the residual gas at the porous metal/window interface could not be eliminated by polishing the surface of the porous metal. Because of this technical bottleneck, the problem of the temperature measurement of the porous metal has not been solved.
     In order to solve these problems, a series of experimental and theoretical researches were carried on in present thesis, and the conclusions were as follows:
     1. The optical transparency of shocked water were first obtained in the pressure range of30-50GPa by using two stage light gas gun loading technique. The results showed that, the shocked water was still an optically transparent medium in the visible wavelength when shocked below35GPa. In the pressure range of35-45GPa, the shocked water became optically translucent medium. So the optical absorption properties were need to consider when water was used as an optical window in this pressure range.
     2. The shock temperature of water in the pressure range of35-50GPa was first obtained. Combined with the shock temperature of water reported by Lyzenga in the pressure range of35-50GPa, the value range of the specific heat and its temperature dependence of shocked water were restricted:(1) below50GPa, the specific heat of shocked water was equal to7.07R.(2) between50GPa and80GPa, the specific heat was related to shocked temperature (Cv=(5.76+3.84×10-4TH)R) because of the influence of the hot electrons and dissociation effect.
     3. The range of thermal conductivity value for the shocked water was limited by measuring the tantalum metal/water interface temperature. The results showed that the thermal conductivity of shocked water had a linearity relationship with shocked pressure like: Kw=KW0+2.5735pH W/(m·K),(pH<45GPa)
     4. The shock temperatures of tantalum, copper and iron were measured by using liquid water as an optical window, and it is found the relationship between porous body average thermodynamic temperature value and porous iron/water interface equilibrium temperature. Combined with the three terms equation of state and calculation method for the adiabatic release temperature in the solid-liquid phase, the shock temperature and release temperature of porous iron were calculated. It showed that for porous metal with porosity less than1.3(αc<1.3), the experimental results were consistent with the calculated ones.
引文
1. 戴诚达,谭华,金属冲击温度的辐射法测量问题.高压物理学报,2006.20(002):113-121.
    2.汤文辉,张若棋,经福谦,胡金彪,金属冲击温度的测量及存在问题.科学通报,1996.12(002):86-90.
    3.胡金彪,刘吉平,谭华,杨嘉陵,唐志平,冲击波作用下CHBr3/NaCl界面热弛豫特性研究.高压物理学报,2001.15(2):134-140.
    4.周显明,经福谦,黄建彬,簿关层界面热弛豫解及其在冲击温度研究中的意义.高压物理学报,1997.11(1):8-12.
    5.谭华.金属的冲击波温度测量(ⅲ)——“基板/样品”界面间隙对辐射法测量冲击波温度的影响.高压物理学报,1999.13(3):161-168.
    6.周显明,汪小松,李赛男,et al.,强冲击压缩下LiF,Al2O3和LiTaO3单晶的透光性.物理学报,2007.56(008):4965-4970.
    7. P. Urtiew, Effect of shock loading on transparency of sapphire crystals. Journal of Applied Physics,1974.45(8):3490-3493.
    8. A. Dewaele, M. Mezouar, N. Guignot, et al., High Melting Points of Tantalum in a Laser-Heated Diamond Anvil Cell. Physical Review Letters,2010.104(25): 255701.
    9. G. Shen, H. Mao, R. Hemley, et al., Melting and crystal structure of iron at high pressures and temperatures. Geophysical Research Letters,1998. 25(3):373-376.
    10. S. Japel, B. Schwager, R. Boehler, et al., Melting of copper and nickel at high pressure:The role of d electrons. Physical Review Letters,2005.95(16): 167801.
    11. C. Dai, J. Hu, H. Tan, Hugoniot temperatures and melting of tantalum under shock compression determined by optical pyrometry. Journal of Applied Physics,2009.106(4):043519.
    12. H. Tan, C. Dai, L. Zhang, et al., Method to determine the melting temperatures of metals under megabar shock pressures. Applied Physics Letters,2005.87(22):221905.
    13. P. A. Urtiew, R. Grover, The melting temperature of magnesium under shock loading. Journal of Applied Physics,1977.48(3):1122-1126.
    14. C. Dai, H. Tan, H. Geng, Model for assessing the melting on Hugoniots of metals:Al, Pb, Cu, Mo, Fe, and U. Journal of Applied Physics,2002.92(9): 5019-5026.
    15. A. Lazicki, Y. Fei.R. J. Hemley, High-pressure differential thermal analysis measurements of the melting curve of lithium. Solid State Communications, 2010.150(13-14):625-627.
    16. S. Mehta. Theoretical Melt Curves of Al, Cu, Ta and Pb. in Shock Compression of Condensed Matter.2006:American Institude of Physics.258-261.
    17. E. R. Hernandez, A. Rodriguez-Prieto, A. Bergara, et al., First-Principles Simulations of Lithium Melting: Stability of the bcc Phase Close to Melting. Physical Review Letters,2010.104(18):185701.
    18. Y. Wang, R. Ahuja, B. Johansson, Melting of iron and other metals at earth's core conditions:A simplified computational approach. Physical Review B, 2001.65(1):14104.
    19. D. Santamaria-Perez, M. Ross, D. Errandonea, et al., X-ray diffraction measurements of Mo melting to 119 GPa and the high pressure phase diagram. The Journal of chemical physics,2009.130(12):124509.
    20. D. Errandonea, Improving the understanding of the melting behaviour of Mo, Ta, and W at extreme pressures. Physica B:Condensed Matter,2005.357(3-4): 356-364.
    21. C. Yoo, N. Holmes, M. Ross, et al., Shock temperatures and melting of iron at Earth core conditions. Physical Review Letters,1993.70(25):3931-3934.
    22. D. Bradley, S. Prisbrey, R. Page, et al., Measurements of preheat and shock melting in Be ablators during the first few nanoseconds of a National Ignition Facility ignition drive using the Omega laser. Physics of Plasmas, 2009.16 (4):042703.
    23.李西军,铁高压熔化线研究.中国工程物理研究院.博士学位论文,2000.
    24. R. Boade, Compression of Porous Copper by Shock Waves. Journal of Applied Physics,1968.39 (12):5693-5702.
    25. L. Boshof f-Mostert, H. Viljoen, Comparative study of analytical methods for Hugoniot curves of porous materials. Journal of Applied Physics,1999.86 (3):1245-1254.
    26. G. H. Yun, T. Hua, W. Qiang, A new equation of state for porous materials with ultra-low densities. Journal of Physics:Condensed Matter,2002.14: 10855-10859.
    27. A. Resnyansky, Constitutive Modelling of Shock Compression of a Porous Copper. Bulletin of the American Physical Society,2007.52.
    28. R. Linde, L. Seaman, D. Schmidt, Shock response of porous copper, iron, tungsten, and polyurethane. Journal of Applied Physics,1972.43(8): 3367-3375.
    29. Q. Wu, F. Jing, Thermodynamic equation of state and application to Hugoniot predictions for porous materials. Journal of Applied Physics,1996.80(8): 4343-4349.
    30. S. Yu-Huai, H. Hai-Jun, L. Fu-Sheng, et al., A Direct Comparison between Sta tic and Dynamic Mel ting Tempera ture De termina tions below 100 GPa. Chinese Physics Letters,2005.22(8):2002-2004.
    31.孙峪怀,铁的高压物态方程与熔化线研究.西南交通大学.博士学位论文,2009.
    32. Y. Ma, M. Somayazulu, G. Shen, et al., In situ X-ray diffraction studies of iron to Earth-core conditions. Physics of the Earth and Planetary Interiors,2004.143:455-467.
    33. S. Kormer, M. Sinitsyn, G. Kirillov, et al., Experimental determination of temperature in shock-compressed NaCl and KC1 and of their melting curves at pressures up to 700 kbar. Soviet Journal of Experimental and Theoretical Physics,1965.21:689.
    34. S. Kormer, Optical study of the characteristics of shock-compressed condensed dielectrics. Physics-Uspekhi,1968.11(2):229-254.
    35. W. Nell is, C. Yoo, Issues concerning shock temperature measurements of iron and other metals. Journal of Geophysical Research,1990.95(B13): 21749-21752.
    36. B. H. Billings, American Institute of Physics Handbook.1972, New York.
    37. R. McQueen, D. Isaak, Characterizing windows for shock wave radiation studies. Journal of Geophysical Research,1990.95(B13):21753-21765.
    38. K. Kondo. Window problem and complementary method for shock-temperature measurements of iron.1994.1555-1558.
    39.0. Fat yanov, R. Webb, Y. Gupta, Optical transmission through inelastically deformed shocked sapphire:stress and crystal orientation effects. Journal of Applied Physics,2005.97(12):123529.
    40.张岱宇,蓝宝石的冲击光辐及其高压相图.西南交通大学.博士学位论文, 2008.
    41. J. D. Bass, B. Svendsen, T. J. Ahrens, The temperature of shock compressed iron. Geophysical monograph, in High-pressure Research in Mineral Physics, edited by M. H. Manghnani and Y. Syono,1987:393-402.
    42. G. Hao, F. Liu, D. Zhang, et al., Optical emission of directly contacted copper/sapphire interface under shock compression of megabar. Applied Physics Letters,2007.90(26):261914.
    43.郭锦良,刘福生,郝高宇,et al.,块状密实铁/蓝宝石界面的冲击温度测量.高压物理学报,2008.22(4):414-418.
    44.李西军,周显明,经福谦,一种多无铁的高压声速和冲击熔化.高压物理学报,2001.15(002):117-121.
    45. M. Gogulya, A. Dolgoborodov, M. Brazhnikov, Investigation of shock and detonation waves by optical pyrometry. International Journal of Impact Engineering,1999.23(1):283-293.
    46. C. Petersen, J. Rosenberg, Index of refraction of ethanol and glycerol under shock. Journal of Applied Physics,1969.40(7):3044-3046.
    47. M. Rice, J. Walsh, Equation of state of water to 250 kilobars. The Journal of chemical physics,1957.26(4):824-830.
    48. F. Ree, A statistical mechanical theory of chemically reacting multiphase mixtures:Application to the detonation properties of PETN. The Journal of chemical physics,1984.81(3):1251-1263.
    49. M. Cowperthwaite, R. Shaw, Cv (T) Equation of State for Liquids. Calculation of the Shock Temperature of Carbon Tetrachloride, Nitromethane, and Water in the 100-kbar Region. The Journal of chemical physics,1970.53(2): 555-560.
    50. G. Gurtman, J. Kirsch, C. Hastings, Analytical equation of state for water compressed to 300 Kbar. Journal of Applied Physics,1971.42(2):851-857.
    51. G. Lyzenga, T. Ahrens, W. Nellis, et al., The temperature of shock-compressed water. The Journal of chemical physics,1982.76(12): 6282-6286.
    52. F. Ree, Molecular interaction of dense water at high temperature. The Journal of chemical physics,1982.76(12):6287-6302.
    53. N. Goldman, E. Reed, I. Kuo, et al., Ab initio simulation of the equation of state and kinetics of shocked water. The Journal of chemical physics, 2009.130(12):124517.
    54. P. W. Bridgman, The Thermal Conductivity of Liquids under Pressure. Proceeding of the American Academy of Academy of Arts and Sciences,1923. 59(7):10.
    55. F. Dietz, J. De Groot, E. Franck, The Thermal Conductivity of Water to 250'C and350MPa. Berichte der Bunsengesellschaf t fur physikalische Chemie,1981. 85(11):1005-1009.
    56. M. L. V. Ramires, J. M. N. A. Fareleira, C. Nieto de Castro, et al., The thermal conductivity of toluene and water. International journal of thermophysics, 1993.14(6):1119-1130.
    57. M. Brazhnikov, M. Gogulya, Some Aspects of Shock-Induced Radiation from Transparent Media. Combustion, Explosion, and Shock Waves,2004.40(1): 110-118.
    58. D. Di jken, J. T. M. De Hosson, Shock wave equation of state of powder material. Journal of Applied Physics,1994.75(2):809-813.
    59. K. H. Oh, P. A. Persson, Equation of state for extrapolation of high-pressure shock Hugoniot data. Journal of Applied Physics,1989.65(10):3852-3856.
    60. G. A. Simons, H. H. Legner, An analytic model for the shock Hugoniot in porous materials. Journal of Applied Physics,1982.53(2):943-947.
    61. V. Shchetinin, Calculation of the state parameters of condensed substances at high pressures and temperatures. Combustion, Explosion, and Shock Waves, 1991.27(4):426-432.
    62. C. Dai, D. Eakins, N. Thadhani, Dynamic densification behavior of nanoiron powders under shock compression. Journal of Applied Physics,2008.103(9): 093503.
    63. D. zhang, F. Liu, X. Li, et al., Shock Temperatures of Porous Iron from MD Simulations. Chinese Journal of High Pressure Physics,2003.17(001): 16-21.
    64. A. Resnyansky, Hugoniot s of Porous Materials at Non-Equilibrium Conditions. 2008.
    65. A. Resnyansky, N. Bourne, Shock-wave compression of a porous material. Journal of Applied Physics,2004.95(4):1760-1769.
    66. X. Ai-Guo, Z. Guang-Cai, P. Xiao-Fei, et al., Simulation Study of Shock Reaction on Porous Material. Communications in Theoretical Physics,2009. 51(4):691-699.
    67.林华令,黄风雷,胡玉新,et al.,混合物冲击压缩后平衡态的研究.高压物理学报,2004.18(001):59-69.
    68.张世来,在兆巴压力下金属卸载熔化相变的直接观测及其动力学研究.西南交通大学,硕士学位论文,2010.
    69.马小娟,冲击高压下物质粘性的实验与数值研究.西南交通大学,博士学位论文,2010.
    70.郝高宇,无氧铜/蓝宝石界面冲击辐射特性及温度测量研究西南交通大学,硕士学位论文,2007.
    71.汤文辉,张若棋,经福谦,胡金彪,金属冲击温度的测量及存在问题.科学通报,1996.12(2):86-90.
    72.蒙建平,杨经国,谭华,胡绍楼,热辐射谱的多道采集最小二乘法温度解析.光谱学与光谱分析,2002.22(5):721-723.
    73. J. W. Taylor, Residual Temperatures of Shocked Copper. Journal of Applied Physics,1963.34(9):2727-2731.
    74. R. Grover, P. Urtiew, Thermal relaxation at interfaces following shock compression. Journal of Applied Physics,1974.45(1):146-152.
    75. P. Urtiew, R. Grover, Temperature deposition caused by shock interactions with material interfaces. Journal of Applied Physics,1974.45(1):140-145.
    76. W. Tang, F. Jing, R. Zhang, et al., Thermal relaxation phenomena across the metal/window interface and its significance to shock temperature measurements of metals. Journal of Applied Physics,1996.80(6):3248-3253.
    77.谭华,实验冲击波物理导引.2007,北京:国防工业出版社.120.
    78. A. Mitchell, W. Nellis, Equation of state and electrical conductivity of water and ammonia shocked to the 100 GPa (1 Mbar) pressure range. The Journal of chemical physics,1982.76(12):6273-6281.
    79. W. Nellis, N. Holmes, A. Mitchell, et al., Equation of state and electrical conductivity of "synthetic Uranus, "a mixture of water, ammonia, and isopropanol, at shock pressure up to 200 GPa (2 Mbar). The Journal of chemical physics,1997.107(21):9096-9100.
    80.宋萍,蔡灵仓,周显明,et al.,无氧铜等熵卸载路径的实验研究.高压物理学报,2005.19(2):174-178.
    81. A. Mitchell, W. Nellis, Shock compression of aluminum, copper, and tantalum. Journal of Applied Physics,1981.52(5):3363-3374.
    82. K. Katahara, M. Manghnani, E. Fisher, Pressure derivatives of the elastic moduli of BCC Ti-V-Cr, Nb-Mo and Ta-W alloys. Journal of Physics F:Metal Physics,1979.9:773.
    83. K. A. Gschneidner, ed. Solid State Physics. ed. F. Seitz, D. Turnbull. Vol. 16.1964:New York.275.
    84. S. N. Luo, D. C. Swift, On high-pressure melting of tantalum. Physica B: Condensed Matter,2007.388(1-2):139-144.
    85.吴强,经福谦,李欣竹,零温物态方程输入参数Bok,B’ok和ρok的确定.高压物理学报,2005.19(002):97-104.
    86.谭华,金属的冲击波温度测量(Ⅱ)——界面卸载近似.高压物理学报,1996.10(3):161-169.
    87.汤文辉,,张若棋,冲击温度的理论计算及分析.中国空间科学技术,1997.17(004):56-63.
    88.0. L. Anderson, The Gruneisen ratio for the last 30 years. Geophysical Journal International,2000.143(2):279-294.
    89. R. Grover, Liquid metal equation of state based on scaling. The Journal of chemical physics,1971.55(7):3435-3441.
    90. D. H. Hayes, R. S. Hixson, R. G. McQueen, eds. Shock-Compression of Condensed Matter-1999. ed. L. C. C. M. D. Furnish, R. S. Hison.2000, AIP:New York.483.
    91. S. N. Luo, T. J. Ahrens, Shock-induced superheating and melting curves of geophysically important minerals. Physics of the Earth and Planetary Interiors,2004.143(144):369-386.
    92. C. Dai, J. Hu, H. Tan, Hugoniot temperatures and melting of tantalum under shock compression determined by optical pyrometry. Journal of Applied Physics,2009.106(4):043519.
    93. J. Shaner, J. Brown, R. McQueen, Melting of metals above 100 GPa.1983, Los Alamos National Lab., NM (USA); Texas A and M Univ., College Station (USA).
    94. H. Tan, T. J. Ahrens, Shock temperature measurements for metals. International Journal of High Pressure Research,1990.2(3):159-182.
    95. M. B. Bos lough, A model for time dependence in shock-induced thermal radiation of light. Journal of Applied Physics,1985.58(9):3394-3399.
    96. J. Li, X. Zhou, A time-resolved single-pass technique for measuring optical absorption coefficients of window materials under 100 GPa shock pressures. Review of Scientific Instruments,2008.79(12):123107.
    97. F. Williams, S. Varma, S. Hillenius, Liquid water as a lone-pair amorphous semiconductor. The Journal of chemical physics,1976.64(4):1549-1554.
    98. R. Chau, A. Mitchell, R. Minich, et al., Electrical conductivity of water compressed dynamically to pressures of 70-180 GPa (0.7-1.8 Mbar). The Journal of chemical physics,2001.114(3):1361-1365.
    99. N. Holmes, W. Nellis, W. Graham, et al., Spontaneous Raman scattering from shocked water. Physical Review Letters,1985.55(22):2433-2436.
    100. E. Schwegler, G. Galli, F. Gygi, et al., Dissociation of water under pressure. Physical Review Letters,2001.87(26):265501.
    101. P. Celliers, G. Collins, D. Hicks, et al., Electronic conduction in shock-compressed water. Physics of Plasmas,2004.11(8):41-44.
    102. W. W. Anderson, T. J. Ahrens, An equation of state for liquid iron and implications for the Earth's core. J. Geophys. Res,1994.99(B3): 4273-4284.
    103. J. Brown, R. McQueen, Phase transitions, Gruneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa. J. Geophys. Res, 1986.91(B7):7485-7494.
    104. H. K. Mao, W. A. Bassett, T. Takahashi, Effect of pressure on crystal structure and lattice parameters of iron up to 300 kbar. Journal of Applied Physics,1967.38(1):272-276.
    105. A. Belonoshko, P. Dorogokupets, B. Johansson, et al., Ab initio equation of state for the body-centered-cubic phase of iron at high pressure and temperature. Physical Review B,2008.78(10):104107.
    106. J. Nguyen, N. Holmes, Melting of iron at the physical conditions of the Earth'score. Nature,2004.427(6972):339-342.
    107. S. Eliezer, A. Ghatak, H. Hora, Equation of State:Theory and Applications. 1986:Cambridge University Press.
    108. L. Dubrovinsky, S. Saxena, N. Dubrovinskaia, et al., Gruneisen parameter of s-iron up to 300 GPa from insitu X-ray study. American Mineralogist, 2000.85(2):386-389,
    109. 徐锡审,张万箱,实用物态方程理论引导.1986,北京:科学出版社.
    110.0. Anderson, D. Isaak, V. Nelson, The high-pressure melting temperature of hexagonal close-packed iron determined from thermal physics. Journal of Physics and Chemistry of Solids,2003.64(11):2125-2131.
    111. A. Aitta, The identity and quantity of the light matter on each side of the Earth's inner core boundary. Physics of the Earth and Planetary Interiors,2010.181:132-140
    112. A. Aitta. Tricritical Points and Liquid-Solid Critical Lines.2010:World Scientific Pub Co Inc.93.
    113. J. Brown, J. Fritz, R. Hixson, Hugoniot data for iron. Journal of Applied Physics,2000.88:5496-5498.
    114. 谭华,实验冲击波物理引导.2007,国防工业出版社:北京.