小RNA诱导INTS6基因激活对去势抵抗性前列腺癌的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     前列腺癌是全世界男性面临的重要的公共卫生问题。前列腺癌由激素依赖性进展为去势抵抗性,是导致肿瘤治疗失败、患者死亡的重要原因。小RNA诱导的基因激活是分子生物学领域新兴的话题,一系列研究显示特殊设计的小RNA能够在转录水平上调靶基因的表达。该方法为去势抵抗性前列腺癌(CRPC)的基因靶向治疗提供了全新的策略。
     目的:
     利用小激活RNA (saRNA)上调CRPC中缺陷基因INTS6的表达,在体内和体外两个水平研究INTS6对CRPC的生物学作用及机制。
     方法:
     1.利用免疫组化方法检测组织芯片中28对前列腺癌和瘤旁组织INTS6蛋白的表达情况。
     2.针对INTS6基因启动子区,按照一定的原则设计saRNA.利用定量PCR、蛋白印迹以及细胞活力测定等方法,在CRPC细胞和正常上皮来源的细胞中挑选既能够上调INTS6表达,又对肿瘤细胞的活力具有一定专一性抑制作用的小RNA,并对RNA激活的时间、剂量、表遗传学和双链选择等特征进行鉴定。
     3.利用流式细胞技术和Transewell实验,检测saRNA处理后CRPC细胞周期、凋亡、迁移和侵袭能力的变化。通过定量PCR、蛋白印迹和细胞免疫荧光等技术手段,评价saRNA诱导INTS6基因激活对Wnt信号通路的影响。
     4.构建裸鼠的皮下荷PC3肿瘤模型,瘤内注射saRNA,观察在体水平saRNA对CRPC的抑制作用。
     结果:
     1.与瘤旁组织相比,前列腺癌组织中INTS6蛋白表达水平下降。
     2.设计并筛选得到INTS6saRNA-915,该小RNA能够在转录水平上调CRPC细胞中INTS6基因的表达,并且表现出一定的肿瘤特异性抑制作用。saRNA对靶基因的激活作用出现于处理后第2天,在第4--5天达到高峰,20nM的处理浓度激活效果较强。saRNA作用后,靶基因启动子区出现相应的表遗传学修饰改变。saRNA任何一条单链结构或功能的丧失都会影响其对INTS6基因的激活作用。
     3. saRNA作用于CRPC细胞后,抑制细胞的增殖能力,诱导细胞发生G0/G1期周期阻滞,同时抑制细胞的迁移和侵袭能力。saRNA在发挥上述作用的同时,细胞中P-catenin、cyclin D1、Fra-1和MET等Wrnt关键信号蛋白受到抑制,这种抑制作用依赖INTS6的正常表达。
     4.成功构建裸鼠的皮下荷PC3肿瘤模型。瘤内给予脂质体包裹的INTS6saRNA,观察到移植瘤的生长受到明显抑制,同时检测到瘤组织中INTS6蛋白表达升高,增殖相关蛋白Ki67和PCNA表达下调。
     结论:
     针对前列腺癌中缺陷的抑癌基因基INTS6设计并导入激活RNA能够有效上调基因的表达,同时抑制肿瘤的增殖和运动能力。该方法为去势抵抗性前列腺癌的基因靶向治疗提供了新的实验依据。
Background
     Prostate cancer becomes one of the most important public-health issue for male population in modern world. The progression of hormone dependent prostate cancer into castration resistant prostate cancer (CRPC) is the main cause of the treatment failure and the cancer related patient death. Small RNA induced gene activation is a notable topic in molecular biology field recently. A serial of researches demonstrated that specially designed small RNAs were potent to activate the targeted gene transcriptionally. This technique provides a notable strategy for the treatment of CRPC.
     Objectives To activate the inefficient gene of INTS6in CRPC by small activating RNA(saRNA), and to study the function of INTS6in CRPC both in vitro and in vivo.
     Method
     1. INTS6protein level was assessed in28paired prostate cancer and adjacent prostate tissue groups by immunohistochemical staining.
     2. SaRNAs, which target the INTS6promoter region, were designed according to the recent reports and our experience. Quantitative PCR, protein blot assay and cell viability assessment were used to identify the potency and specialty of designed saRNA in activating INTS6gene in CRPC cells and normal epithelial cells. The appropriate course and dose, the epigenetic modulation and the strand selection of saRNA were also assessed.
     3. The cell cycle distribution, apoptosis, migration and invasion ability of CRPC cells after saRNA treatment were assessed by flow cytometry and transwell exam. The effect of saRNA induced INTS6activation in Wnt signal pathway was also assessed by quantitative PCR, protein blot assay and cyto-immunoflourescence assay.
     4. Intratumoral injection of saRNA was performed on nude mice with PC3xenograft, and the tumor growth was assessed.
     Results
     1. The protein level of INTS6decreased in prostate cancer, when compared with adjacent prostate tissue.
     2. One of designed saRNAs, INTS6saRNA-915, up-regulated the expression of INTS6in CRPC cells on the transcriptional level, with the inhibition ability specialized on cancer cells. The activation by saRNA appeared at the2nd day after treatment, and achieved its maximum effect around the4th to5th day. The treatment with the dose of20nM showed the strongest targeted gene activation. Epigenetic modulation was detected on the targeted promoter region after asRNA treatment. Structural or functional loss of either single strand would diminish the potency of targeted gene activation by saRNA.
     3. Decrease of cell proliferation, migration and invasion ability was observed in saRNA treated CRPC cells, with a significant G0/G1phase arrest. The suppression of Wnt signal, such as β-catenin, cyclin D1, Fra-1and MET, were also observed in saRNA treated cells. This kind of suppression probably depended on the normal expression of INTS6.
     4. Subcutaneous PC3xenograft was successfully establish in nude mice. Tumor growth was suppressed in INTS6saRNA treating group. Up-regulation of INTS6and down-regulation of Ki67and PCNA (proliferation related proteins) were detected in saRNA treating group.
     Conclusions
     Design and import of saRNA, which targets the inefficient gene INTS6in prostate cancer, is an effective way to active the gene expression and to inhibit the tumor proliferation ability and motility. All these evidences demonstrate a potential technique for the treatment of castration resistant prostate cancer.
引文
[1]Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011,61(2):69-90.
    [2]Boyle P, Ferlay J. Cancer incidence and mortality in Europe,2004. Ann Oncol 2005,16(3):481-488.
    [3]Jemal A, Siegel R, Xu J, Ward E. Cancer statistics,2010. CA Cancer J Clin 2010, 60(5):277-300.
    [4]赵平,陈万青(eds.):中国肿瘤登记年报.北京:中国协和医科大学;2004.
    [5]韩苏军,李长岭,张思维,陈万青:中国前列腺癌死亡现状及流行趋势分析.In:中华医学会十九届全国泌尿外科学术会议.广州;2012:1.
    [6]Sonpavde G, Hutson TE. New approaches in hormone refractory prostate cancer. Am J Clin Oncol 2006,29(2):196-201.
    [7]McVey GP, Parker C. Adjuvant vs. salvage radiotherapy for pathologically advanced prostate cancer. Curr Opin Urol 2010,20(3):229-233.
    [8]Petrylak DP, Tangen CM, Hussain MH, Lara PN, Jr., Jones JA, Taplin ME, Burch PA, Berry D, Moinpour C, Kohli M et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 2004,351(15):1513-1520.
    [9]Berthold DR, Pond GR, Soban F, de Wit R, Eisenberger M, Tannock IF. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer:updated survival in the TAX 327 study. J Clin Oncol 2008, 26(2):242-245.
    [10]Zhang HL, Ye DW, Yao XD, Dai B, Zhang SL, Shen YJ, Zhu Y, Zhang W. Docetaxel plus prednisone versus mitoxantrone plus prednisone for metastatic hormone-refractory prostate cancer in Chinese patients:experience of a single center. Urol Int 2007,79(4):307-311.
    [11]Kawalec P, Paszulewicz A, Holko P, Pile A. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. A systematic review and meta-analysis. Arch Med Sci 2012,8(5):767-775.
    [12]Logothetis CJ, Basch E, Molina A, Fizazi K, North SA, Chi KN, Jones RJ, Goodman OB, Mainwaring PN, Sternberg CN et al. Effect of abiraterone acetate and prednisone compared with placebo and prednisone on pain control and skeletal-related events in patients with metastatic castration-resistant prostate cancer:exploratory analysis of data from the COU-AA-301 randomised trial. Lancet Oncol 2012,13(12):1210-1217.
    [13]Ross RW, Kantoff PW. Hormone-refractory prostate cancer:choosing the appropriate treatment option. Oncology (Williston Park) 2007,21(2):185-193; discussion 194,199-200.
    [14]Fujita T, Timme TL, Tabata K, Naruishi K, Kusaka N, Watanabe M, Abdelfattah E, Zhu JX, Ren C, Yang G et al. Cooperative effects of adenoviral vector-mediated interleukin 12 gene therapy with radiotherapy in a preclinical model of metastatic prostate cancer. Gene Ther 2007,14(3):227-236.
    [15]Hattori Y, Maitani Y. Two-step transcriptional amplification-lipid-based nanoparticles using PSMA or midkine promoter for suicide gene therapy in prostate cancer. Cancer Sci 2006,97(8):787-798.
    [16]Fire A,Xu S,Montagomery ,al e.Potent and specific genetic interference bydouble-stranded RNA in Caenorhabditis elegans.Nature 1998,391(6669):801-811.
    [17]Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, Enokida H, Dahiya R. Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci USA 2006,103(46):17337-17342.
    [18]Janowski BA, Younger ST, Hardy DB, Ram R, Huffman KE, Corey DR. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol 2007,3(3):166-173.
    [19]Huang V, Qin Y, Wang J, Wang X, Place RF, Lin G, Lue TF, Li LC. RNAa is conserved in mammalian cells. PLoS One 2010,5(1):e8848.
    [20]Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA 2008,105(5):1608-1613.
    [21]Turunen MP, Lehtola T, Heinonen SE, Assefa GS, Korpisalo P, Girnary R, Glass CK, Vaisanen S, Yla-Herttuala S. Efficient regulation of VEGF expression by promoter-targeted lentiviral shRNAs based on epigenetic mechanism:a novel example of epigenetherapy. Circ Res 2009,105(6):604-609.
    [22]Weinberg MS, Barichievy S, Schaffer L, Han J, Morris KV. An RNA targeted to the HIV-1 LTR promoter modulates indiscriminate off-target gene activation. Nucleic Acids Res 2007,35(21):7303-7312.
    [23]Li L, Steven T, Zhao H, al e. Small dsRNAs induce transcriptional activation in human cells. PNAS 2006,103(46):17337-17342.
    [24]Place RF, Noonan EJ, Foldes-Papp Z, Li LC. Defining features and exploring chemical modifications to manipulate RNAa activity. Curr Pharm Biotechnol 2010,11(5):518-526.
    [25]Schwartz JC,Younger ST,Nguyen NB, Hardy DB,Monia BP,Corey DR,Janowski BA. Antisense transcripts are targets for activating small RNAs.Nat Struct Mol Biol 2008,15(8):842-848.
    [26]Morris KV,Santoso S,Turner AM,Pastori C,Hawkins PG. Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet 2008,4(11):e1000258.
    [27]Chen Z, Place RF, Jia ZJ, Pookot D, Dahiya R, Li LC. Antitumor effect of dsRNA-induced p21(WAFl/CIP1) gene activation in human bladder cancer cells. Molecular cancer therapeutics 2008,7(3):698-703.
    [28]Yang K, Zheng XY, Qin J, Wang YB, Bai Y, Mao QQ, Wan Q, Wu ZM, Xie LP. Up-regulation of p21WAF1/Cipl by saRNA induces G1-phase arrest and apoptosis in T24 human bladder cancer cells. Cancer Lett 2008, 265(2):206-214.
    [29]Wei J, Zhao J, Long M, Han Y, Wang X, Lin F, Ren J, He T, Zhang H. p21WAF1/CIP1 gene transcriptional activation exerts cell growth inhibition and enhances chemosensitivity to cisplatin in lung carcinoma cell. BMC Cancer 2010,10:632.
    [30]Mao Q, Li Y, Zheng X, Yang K, Shen H, Qin J, Bai Y, Kong D, Jia X, Xie L. Up-regulation of E-cadherin by small activating RNA inhibits cell invasion and migration in 5637 human bladder cancer cells. Biochem Biophys Res Commun 2008,375(4):566-570.
    [31]Mao Q, Zheng X, Yang K, Qin J, Bai Y, Jia X, Li Y, Xie L. Suppression of migration and invasion of PC3 prostate cancer cell line via activating E-cadherin expression by small activating RNA. Cancer Invest 2010, 28(10):1013-1018.
    [32]Junxia W, Ping G, Yuan H, Lijun Z, Jihong R, Fang L, Min L, Xi W, Ting H, Ke D et al. Double strand RNA-guided endogeneous E-cadherin up-regulation induces the apoptosis and inhibits proliferation of breast carcinoma cells in vitro and in vivo. Cancer Sci 2010,101(8):1790-1796.
    [33]Matsui M, Sakurai F, Elbashir S, Foster DJ, Manoharan M, Corey DR. Activation of LDL receptor expression by small RNAs complementary to a noncoding transcript that overlaps the LDLR promoter. Chem Biol 2010, 17(12):1344-1355.
    [34]Wieland I, Arden KC, Michels D, Klein-Hitpass L, Bohm M, Viars CS, Weidle UH. Isolation of DICE 1:a gene frequently affected by LOH and downregulated in lung carcinomas. Oncogene 1999,18(32):4530-4537.
    [35]Yin Z, Spitz MR, Babaian RJ, Strom SS, Troncoso P, Kagan J. Limiting the location of a putative human prostate cancer tumor suppressor gene at chromosome 13q14.3. Oncogene 1999,18(52):7576-7583.
    [36]Li WJ, Hu N, Su H, Wang C, Goldstein AM, Wang Y, Emmert-Buck MR, Roth MJ, Guo WJ, Taylor PR. Allelic loss on chromosome 13q14 and mutation in deleted in cancer 1 gene in esophageal squamous cell carcinoma. Oncogene 2003, 22(2):314-318.
    [37]Rozenblatt-Rosen O, Nagaike T, Francis JM, Kaneko S, Glatt KA, Hughes CM, LaFramboise T, Manley JL, Meyerson M. The tumor suppressor Cdc73 functionally associates with CPSF and CstF 3'mRNA processing factors. Proc Natl Acad Sci U S A 2009,106(3):755-760.
    [38]Baillat D, Hakimi MA, Naar AM, Shilatifard A, Cooch N, Shiekhattar R. Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase Ⅱ. Cell 2005, 123(2):265-276.
    [39]Filleur S, Hirsch J, Wille A, Schon M, Sell C, Shearer MH, Nelius T, Wieland I. INTS6/DICE1 inhibits growth of human androgen-independent prostate cancer cells by altering the cell cycle profile and Wnt signaling. Cancer Cell Int 2009,9:28.
    [40]Melamed J, Einhorn JM, Ittmann MM. Allelic loss on chromosome 13q in human prostate carcinoma. Clin Cancer Res 1997,3(10):1867-1872.
    [41]Ropke A, Buhtz P, Bohm M, Seger J, Wieland I, Allhoff EP, Wieacker PF. Promoter CpG hypermethylation and downregulation of DICE1 expression in prostate cancer. Oncogene 2005,24(44):6667-6675.
    [42]Cooney KA, Wetzel JC, Merajver SD, Macoska JA, Singleton TP, Wojno KJ. Distinct regions of allelic loss on 13q in prostate cancer. Cancer research 1996, 56(5):1142-1145.
    [43]Hernandez M, Papadopoulos N, Almeida TA. Absence of mutations in DICE1/DDX26 gene in human cancer cell lines with frequent 13q14 deletions. Cancer Genet Cytogenet 2005,163(1):91-92.
    [44]Wieland I, Sell C, Weidle UH, Wieacker P. Ectopic expression of DICE1 suppresses tumor cell growth. Oncology reports 2004,12(2):207-211.
    [45]Yue X SJ, Chu Y, Younger ST, Gagnon KT, Elbashir S, Janowski BA, Corey DR. Transcriptional regulation by small RNAs at sequences downstream from 3' gene termini. Nat Chem Biol 2010,6(8):621-629.
    [46]Wang J, Place RF, Huang V, Wang X, Noonan EJ, Magyar CE, Huang J, Li LC. Prognostic value and function of KLF4 in prostate cancer:RNAa and vector-mediated overexpression identify KLF4 as an inhibitor of tumor cell growth and migration. Cancer research 2010,70(24):10182-10191.
    [47]Lu W, Tinsley HN, Keeton A, Qu Z, Piazza GA, Li Y. Suppression of Wnt/beta-catenin signaling inhibits prostate cancer cell proliferation. European journal of pharmacology 2009,602(1):8-14.
    [48]Zhao H, Lo YH, Ma L, Waltz SE, Gray JK, Hung MC, Wang SC. Targeting tyrosine phosphorylation of PCNA inhibits prostate cancer growth. Molecular cancer therapeutics 2011,10(1):29-36.
    [49]Tolonen TT, Tammela TL, Kujala PM, Tuominen VJ, Isola JJ, Visakorpi T. Histopathological variables and biomarkers enhancer of zeste homologue 2, Ki-67 and minichromosome maintenance protein 7 as prognosticators in primarily endocrine-treated prostate cancer. BJU international 2011, 108(9):1430-1438.
    [50]Mitra AV, Jameson C, Barbachano Y, Sodha N, Kote-Jarai Z, Javed A, Bancroft E, Fletcher A, Cooper C, Peock S et al. Elevated expression of Ki-67 identifies aggressive prostate cancers but does not distinguish BRCA1 or BRCA2 mutation carriers. Oncology reports 2010,23(2):299-305.
    [51]Berney DM, Gopalan A, Kudahetti S, Fisher G, Ambroisine L, Foster CS, Reuter V, Eastham J, Moller H, Kattan MW et al. Ki-67 and outcome in clinically localised prostate cancer:analysis of conservatively treated prostate cancer patients from the Trans-Atlantic Prostate Group study. British journal of cancer 2009, 100(6):888-893.
    [52]Watts JK, Yu D, Charisse K, Montaillier C, Potier P, Manoharan M, Corey DR. Effect of chemical modifications on modulation of gene expression by duplex antigene RNAs that are complementary to non-coding transcripts at gene promoters. Nucleic Acids Res 2010,38(15):5242-5259.
    [53]Kang MR, Yang G, Place RF, Charisse K, Epstein-Barash H, Manoharan M, Li LC. Intravesical delivery of small activating RNA formulated into lipid nanoparticles inhibits orthotopic bladder tumor growth. Cancer research 2012, 72(19):5069-5079.
    [54]Lima WF, Prakash TP, Murray HM, Kinberger GA, Li W, Chappell AE, Li CS, Murray SF, Gaus H, Seth PP et al. Single-stranded siRNAs activate RNAi in animals. Cell 2012,150(5):883-894.
    [1]FIRE A,XU S,MONTGOMERY M K,et al.Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J]. Nature,1998,391(6669):806-11.
    [2]ELBASHIR S M, HARBORTH J, LENDECKEL W, et al.Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J]. Nature,2001,411(6836):494-8.
    [3]MORRIS K V, CHAN S W, JACOBSEN S E, et al. Small interfering RNA-induced transcriptional gene silencing in human cells [J]. Science,2004, 305(5688):1289-92.
    [4]VOLPE T A, KIDNER C, HALL I M, et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi [J]. Science,2002, 297(5588):1833-7.
    [5]OLSEN P H, AMBROS V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation [J]. Dev Biol,1999,216(2):671-80.
    [6]BAGGA S, BRACHT J, HUNTER S, et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation [J]. Cell,2005,122(4):553-63.
    [7]LI L C, OKINO S T, ZHAO H, et al. Small dsRNAs induce transcriptional activation in human cells [J]. Proc Natl Acad Sci U S A,2006,103(46): 17337-42.
    [8]PLACE R F, LI L C,POOKOT D,et al.MicroRNA-373 induces expression of genes with complementary promoter sequences [J].Proc Natl Acad Sci U S A,2008,105(5):1608-13.
    [9]TURUNEN M P, LEHTOLA T, HEINONEN S E, et al. Efficient regulation of VEGF expression by promoter-targeted lentiviral shRNAs based on epigenetic mechanism:a novel example of epigenetherapy [J]. Circ Res,2009,105(6): 604-9.
    [10]JANOWSKI B A, YOUNGER S T, HARDY D B, et al. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs [J]. Nat Chem Biol,2007,3(3):166-73.
    [11]YUE X S J,CHU Y, YOUNGER ST,GAGNON KT, ELBASHIR S, JANOWSKI BA,COREY DR. Transcriptional regulation by small RNAs at sequences downstream from 3'gene termini [J]. Nat Chem Biol,2010,6(8):621-9.
    [12]YIN H, LIN H. An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster [J]. Nature,2007,450(7167):304-8.
    [13]VASUDEVAN S, STEITZ J A. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2 [J]. Cell,2007,128(6):1105-18.
    [14]VASUDEVAN S, TONG Y, STEITZ J A. Switching from repression to activation:microRNAs can up-regulate translation [J]. Science,2007,318(5858): 1931-4.
    [15]HUANG V, QIN Y, WANG J, et al. RNAa is conserved in mammalian cells [J]. PLoS One,2010,5(1):e8848.
    [16]WANG J, PLACE R F, HUANG V, et al. Prognostic value and function of KLF4 in prostate cancer:RNAa and vector-mediated overexpression identify KLF4 as an inhibitor of tumor cell growth and migration [J]. Cancer Res,2010,70(24): 10182-91.
    [17]PETRASCHECK M, ESCHER D, MAHMOUDI T, et al. DNA looping induced by a transcriptional enhancer in vivo [J]. Nucleic Acids Res,2005,33(12): 3743-50.
    [18]DYKXHOORN D M, NOVINA C D, SHARP P A. Killing the messenger:short RNAs that silence gene expression [J]. Nat Rev Mol Cell Biol,2003,4(6): 457-67.
    [19]PLACE R F, NOON AN E J, FOLDES-PAPP Z, et al. Defining features and exploring chemical modifications to manipulate RNAa activity [J]. Curr Pharm Biotechnol,2010,11(5):518-26.
    [20]NOVINA C D, SHARP P A. The RNAi revolution [J]. Nature,2004,430(6996): 161-4.
    [21]SCHWARTZ J C, YOUNGER S T, NGUYEN N B, et al. Antisense transcripts are targets for activating small RNAs [J]. Nat Struct Mol Biol,2008,15(8): 842-8.
    [22]MATSUI M, SAKURAI F, ELBASHIR S, et al. Activation of LDL receptor expression by small RNAs complementary to a noncoding transcript that overlaps the LDLR promoter [J]. Chem Biol,2010,17(12):1344-55.
    [23]HAN J, KIM D, MORRIS K V. Promoter-associated RNA is required for RNA-directed transcriptional gene silencing in human cells [J]. Proc Natl Acad Sci U S A,2007,104(30):12422-7.
    [24]MAHMOUDI S, HENRIKSSON S, CORCORAN M, et al. Wrap53, a natural p53 antisense transcript required for p53 induction upon DNA damage [J]. Mol Cell,2009,33(4):462-71.
    [25]GONZALEZ S, PISANO D G, SERRANO M. Mechanistic principles of chromatin remodeling guided by siRNAs and miRNAs [J]. Cell Cycle,2008, 7(16):2601-8.
    [26]CARNINCI P, KASUKAWA T, KATAYAMA S, et al. The transcriptional landscape of the mammalian genome [J]. Science,2005,309(5740):1559-63.
    [27]KATAYAMA S, TOMARU Y, KASUKAWA T, et al. Antisense transcription in the mammalian transcriptome [J]. Science,2005,309(5740):1564-6.
    [28]TAFT R J, GLAZOV E A, CLOONAN N, et al. Tiny RNAs associated with transcription start sites in animals [J]. Nat Genet,2009,41(5):572-8.
    [29]GOODRICH J A, KUGEL J F. From bacteria to humans, chromatin to elongation, and activation to repression:The expanding roles of noncoding RNAs in regulating transcription [J]. Crit Rev Biochem Mol Biol,2009,44(1): 3-15.
    [30]CHU Y, YUE X, YOUNGER S T, et al. Involvement of argonaute proteins in gene silencing and activation by RNAs complementary to a non-coding transcript at the progesterone receptor promoter [J]. Nucleic Acids Res,2010, 38(21):7736-48.
    [31]ROBERTS R W, CROTHERS D M. Stability and properties of double and triple helices:dramatic effects of RNA or DNA backbone composition [J]. Science, 1992,258(5087):1463-6.
    [32]FRENSTER J H. Selective control of DNA helix openings during gene regulation [J]. Cancer Res,1976,36(9 PT 2):3394-8.
    [33]MATZKE M, AUFSATZ W, KANNO T,et al.Genetic analysis of RNA-mediated transcriptional gene silencing [J]. Biochim Biophys Acta,2004,1677(1-3): 129-41.
    [34]PELISSIER T, THALMEIR S, KEMPE D, et al. Heavy de novo methylation at symmetrical and non-symmetrical sites is a hallmark of RNA-directed DNA methylation [J]. Nucleic Acids Res,1999,27(7):1625-34.
    [35]TSAI M C, MANOR O, WAN Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes [J]. Science,2010,329(5992): 689-93.
    [36]GILBERT S L, PEHRSON J R, SHARP P A. XIST RNA associates with specific regions of the inactive X chromatin [J]. J Biol Chem,2000,275(47): 36491-4.
    [37]LIU J, CARMELL M A, RIVAS F V, et al. Argonaute2 is the catalytic engine of mammalian RNAi [J]. Science,2004,305(5689):1437-41.
    [38]JANOWSKI B A, HUFFMAN K E, SCHWARTZ J C, et al. Involvement of AGO1 and AGO2 in mammalian transcriptional silencing [J]. Nat Struct Mol Biol,2006,13(9):787-92.
    [39]KIM D H, VILLENEUVE L M, MORRIS K V, et al. Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells [J]. Nat Struct Mol Biol,2006,13(9):793-7.
    [40]RAND T A, PETERSEN S, DU F, et al. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation [J]. Cell,2005,123(4):621-9.
    [41]MATRANGA C, TOMARI Y, SHIN C, et al. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes [J]. Cell,2005,123(4):607-20.
    [42]OHRT T, MUTZE J, STAROSKE W, et al. Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells [J]. Nucleic Acids Res,2008,36(20):6439-49.
    [43]RUDEL S,FLATLEY A,WEINMANN L,et al.A multifunctional human Argonaute2-specific monoclonal antibody [J]. RNA,2008,14(6):1244-53.
    [44]TAN G S, GARCHOW B G, LIU X, et al. Expanded RNA-binding activities of mammalian Argonaute 2 [J]. Nucleic Acids Res,2009,37(22):7533-45.
    [45]JOPLING C L, YI M, LANCASTER A M, et al. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA [J]. Science,2005,309(5740): 1577-81.
    [46]OROM U A, NIELSEN F C, LUND A H. MicroRNA-lOa binds the 5'UTR of ribosomal protein mRNAs and enhances their translation [J]. Mol Cell,2008, 30(4):460-71.
    [47]KIM D H, SAETROM P, SNOVE O, JR., et al. MicroRNA-directed transcriptional gene silencing in mammalian cells [J]. Proc Natl Acad Sci U S A,2008,105(42):16230-5.
    [48]YOUNGER S T, PERTSEMLIDIS A, COREY D R. Predicting potential miRNA target sites within gene promoters [J]. Bioorg Med Chem Lett,2009,19(14): 3791-4.
    [49]ENRIGHT A J, JOHN B, GAUL U, et al. MicroRNA targets in Drosophila [J]. Genome Biol,2003,5(1):R1.
    [50]ANTEQUERA F. Structure, function and evolution of CpG island promoters [J]. Cell Mol Life Sci,2003,60(8):1647-58.
    [51]VAGIN V V, SIGOVA A, LI C, et al. A distinct small RNA pathway silences selfish genetic elements in the germline [J]. Science,2006,313(5785):320-4.
    [52]LAU N C, SETO A G, KIM J, et al. Characterization of the piRNA complex from rat testes [J]. Science,2006,313(5785):363-7.
    [53]GRIVNA S T, BEYRET E, WANG Z, et al. A novel class of small RNAs in mouse spermatogenic cells [J]. Genes Dev,2006,20(13):1709-14.
    [54]ARAVIN A, GAIDATZIS D, PFEFFER S, et al. A novel class of small RNAs bind to MILI protein in mouse testes [J]. Nature,2006,442(7099):203-7.
    [55]HWANG H W, WENTZEL E A, MENDELL J T. A hexanucleotide element directs microRNA nuclear import [J]. Science,2007,315(5808):97-100.
    [56]LIAO J Y, MA L M, GUO Y H, et al. Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA3'trailers [J]. PLoS One,5(5):e10563.
    [57]OHRT T, MERKLE D, BIRKENFELD K, et al. In situ fluorescence analysis demonstrates active siRNA exclusion from the nucleus by Exportin 5 [J]. Nucleic Acids Res,2006,34(5):1369-80.
    [58]BRINSTER R L, ALLEN J M, BEHRINGER R R, et al. Introns increase transcriptional efficiency in transgenic mice [J]. Proc Natl Acad Sci U S A,1988, 85(3):836-40.
    [59]CLARK A J, ARCHIBALD A L, MCCLENAGHAN M, et al. Enhancing the efficiency of transgene expression [J]. Philos Trans R Soc Lond B Biol Sci,1993, 339(1288):225-32.
    [60]STEMMLER M P,HECHT A,KEMLER R. E-cadherin intron 2 contains cis-regulatory elements essential for gene expression [J].Development,2005,132(5):965-76.
    [61]GRZELINSKI M,URBAN-KLEIN B,MARTENS T,et al. RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts [J]. Hum Gene Ther, 2006,17(7):751-66.
    [62]CHEN Z, PLACE R F, JIA Z J, et al. Antitumor effect of dsRNA-induced p21(WAF1/CIP1) gene activation in human bladder cancer cells [J]. Mol Cancer Ther,2008,7(3):698-703.
    [63]YANG K, ZHENG X Y, QIN J, et al. Up-regulation of p21WAF1/Cip1 by saRNA induces G1-phase arrest and apoptosis in T24 human bladder cancer cells [J]. Cancer Lett,2008,265(2):206-14.
    [64]WEI J, ZHAO J, LONG M, et al. p21WAF1/CIP1 gene transcriptional activation exerts cell growth inhibition and enhances chemosensitivity to cisplatin in lung carcinoma cell [J]. BMC Cancer,10(632.
    [65]MAO Q, LI Y, ZHENG X, et al. Up-regulation of E-cadherin by small activating RNA inhibits cell invasion and migration in 5637 human bladder cancer cells [J]. Biochem Biophys Res Commun,2008,375(4):566-70.
    [66]MAO Q, ZHENG X, YANG K, et al. Suppression of migration and invasion of PC 3 prostate cancer cell line via activating E-cadherin expression by small activating RNA [J]. Cancer Invest,2010,28(10):1013-8.
    [67]JUNXIA W, PING G, YUAN H, et al. Double strand RNA-guided endogeous E-cadherin up-regulation induces the apoptosis and inhibits proliferation of breast carcinoma cells in vitro and in vivo [J]. Cancer Sci,2010,101(8):1790-6.
    [68]WATTS J K, YU D, CHARISSE K, et al. Effect of chemical modifications on modulation of gene expression by duplex antigene RNAs that are complementary to non-coding transcripts at gene promoters [J]. Nucleic Acids Res,2010,38(15): 5242-59.