酒精所致氧化应激对高尔基体SPCA1的影响及神经生长因子的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     本论文研究旨在探索氧化应激是否介导酒精对高尔基体SPCAl的影响,以及神经生长因子是否具备改善酒精毒性的作用,为酒精相关疾病治疗提供新思路。
     方法:
     1.培养小鼠神经细胞瘤N2A细胞,建立酒精封闭系统;
     2.实验分三个模块:急性酒精作用模块、抗氧化剂NAC预处理模块、神经生长因子NGF预处理模块;
     3.光学显微镜、MTT法评价急性酒精作用对N2A细胞生存的影响;
     4.荧光显微镜、流式细胞仪观察及检测细胞内氧化应激水平;
     5.多功能酶标仪检测细胞内游离钙离子浓度的变化;
     6.实时荧光定量PCR检测基因ATP2C1表达变化;
     7. Western blot检测蛋白SPCAl表达变化。
     结果:
     1.急性酒精作用后,小鼠N2A细胞形态结构无明显变化,MTT吸光度值变化无统计学差异,说明酒精200mM浓度以下24h作用对小鼠神经细胞瘤N2A细胞生存无明显影响;
     2.急性酒精作用后,各浓度酒精亚组均较空白组细胞荧光强度高,且随酒精浓度上升逐渐增大,在酒精100mM浓度荧光强度增幅最大(16.3%),随后小幅下降。NAC预处理后,NAC1mM、2mM浓度下细胞内氧化应激相比单独酒精作用无明显变化,仅在NAC4mM浓度下细胞内氧化应激较单独酒精作用组低,降幅为3.7%。
     3.急性酒精作用后,各浓度酒精亚组均较空白组细胞内游离钙离子浓度增高,且随酒精浓度上升逐渐增大,在100mM浓度时增幅最大(22.4%),随后小幅下降。NAC预处理后,各浓度NAC亚组细胞内游离钙离子浓度均较单独酒精作用组明显降低,且下降程度随NAC浓度上升逐渐增大,在4mM浓度降幅最大(31.8%)。NGF预处理后,各浓度NGF亚组的细胞内游离钙离子浓度均较单独酒精作用组明显降低,且下降程度随NGF浓度上升逐渐增大,在50ng/ml浓度时降幅最大(31.4%),随后小幅下降。
     4.急性酒精作用后,各浓度酒精亚组基因ATP2C1、蛋白SPCA1表达水平均较空白组升高,且随酒精浓度上升逐渐增大,在200mM浓度时达最大增幅(45%,34.9%)。NAC预处理后,各浓度NAC亚组基因ATP2C1、蛋白SPCA1表达水平均较单独酒精作用亚组下降,且下降程度随NAC浓度升高而增大,在4mM浓度下降幅度最大(30%,12%)。NGF预处理后,各浓度NGF亚组基因ATP2C1、蛋白SPCA1表达水平均较单独酒精作用亚组升高,且上升程度随NGF浓度升高而增大,在100ng/ml浓度时表达最高(16%,6%)。
     结论:
     1.急性酒精作用导致了细胞内氧化应激、钙超载,上调了SPCA1的表达。
     2.NAC预处理可缓解急性酒精所致细胞内氧化应激、钙超载,下调SPCAl表达。
     3.NGF预处理可上调SPCAl表达,缓解急性酒精所致细胞内钙超载。图17幅,表12张,参考文献105篇
Objective:
     The objectives of this study were to clarify whether oxidative stress induced by ethanol destroys intracellular Ca2+homeostasis resulting in golgi apparatus SPCA1functional changes and whether NGF had a protective effect against ethanol.
     Methods
     1. We employed closed chamber system to mimic ethanol admiration in vitro.
     2. Experimental grouping was designed as follows:acute ethanol group, acute ethanol(100mM)+NAC group, acute ethanol(100mM)+NGF group.
     3. The neuronal viability was measured by the MTT assay, as well as the morphologic changes were studied under Light Microscopes.
     4. The oxidative stress was measured by flow cytometric analysis and fluorescence Microscope.
     5. The intracellular free Ca2+concentration was measured by multi-functional enzyme-labeling instrument
     6. The mRNA levels of SPCA1were tested by quantitative Real-Time polymerase chain reaction.
     7. The protein level of SPCA1was determined by western blotting.
     Result:
     1. After acute ethanol intake, there weren't obvious cell morphology changes in ethanol subsets, and the optical density changes of ethanol subsets had non-statistical meaning comparing to the blank, which indicated acute ethanol intake had no effect on the viability of N2A cell.
     2. After acute ethanol intake, the fluorescence intensity of ethanol subsets were stronger than the blank, which were dependent of ethanol concentration with the strongest intensity at Ethanol100mM subset. In Ethanol(100mM)+NAC, the fluorescence intensity was only weaker at NAC4mM subset comparing to the ethanol intake subset.
     3. After acute ethanol intake, the intracellular free Ca2+concentration of ethanol subsets increased comparing to the blank, which were dependent of ethanol concentration with the highest concentration at Ethanol100mM subset. In Ethanol(100mM)+NAC, the intracellular free Ca2+concentrations decreased comparing to the ethanol intake, which were dependent of NAC concentration with the lowest concentration at NAC4mM subset. In Ethanol(100mM)+NGF, the intracellular free Ca2+concentration of NGF subsets decreased comparing to the ethanol intake subset, which were dependent of NGF concentration with the lowest concentration at NGF50ng/ml subset.
     4. After acute ethanol intake, the mRNA and protein levels of SPCA1of ethanol subsets increased comparing to the blank, which were dependent of ethanol concentration with the highest expression at Ethanol200mM subset. In Ethanol(100mM)+NAC, the mRNA and protein levels of SPCA1decreased comparing to the ethanol intake, which were dependent of NAC concentration with the lowest expression at NAC4mM subset. In Ethanol(100mM)+NGF, the mRNA and protein levels of SPCA1of NGF subsets increased comparing to the ethanol intake subset, which were dependent of NGF concentration with the highest expression at NGF100ng/ml subset.
     Conclusion:
     1. Acute ethanol intake induced oxidative stress, calcium overload and elevated the expression of SPCA1at mRNA and protein level in N2A cell.
     2. NAC pretreatment alleviated oxidative stress and calcium overload induced by acute ethanol intake and decrease the expression of SPCA1at mRNA and protein level in N2A cell.
     3. NGF pretreatment increased the expression of SPCA1at mRNA and protein level in N2A cell and alleviated calcium overload induced by acute ethanol intake.
     Figure17, table12, reference105
引文
[1]Butterfield DA, Castegna A, Drake J, et al. Vitamin E and neurodegenerative disorders associated with oxidative stress [J]. Nutr Neurosci 2002,5(4):229-39.
    [2]Heap L, Ward RJ, Abiaka C, et al. The influence of brain acetaldehyde on oxidative status, dopamine metabolism and visual discrimination task [J]. Biochem Pharmacol 1995,50(2):263-70.
    [3]Nordmann R, Ribiere C, Rouach H. Implication of free radical mechanisms in ethanol-induced cellular injury [J]. Free Radic Biol Med 1992,12(3):219-40.
    [4]Rao AV, Balachandran B. Role of oxidative stress and antioxidants in neurodegenerative diseases [J]. Nutr Neurosci 2002,5(5):291-309.
    [5]Norberg, A.; Jones, A.W.; Hahn, R.G, et al. Role of variability in explaining ethanol pharmacokinetics:Research and forensic applications [J]. Clin.Pharmacokinet,2003,42(1):1-31.
    [6]Holford, N.H.G. Clinical pharmacokinetics of ethanol [J]. Clin Pharmacokinet 1987,13(5):273-92.
    [7]Klein, H.; Harmjanz, D. Effect of ethanol infusion on the ultrastructure of human myocardium [J]. Postgrad Med J,1975,51(595):325-9.
    [8]Berridge, M. J.; Bootman, M. D.; Lipp, P. Calcium-a life and death signal [J]. Nature 1998,395(6703):645-8.
    [9]Marin, J.; Encabo, A, et al. Mechanisms involved in the cellular calcium homeostasis in vascular smooth muscle:calcium pumps [J]. Life Sci. 1999;64(5):279-303.
    [10]Ikram U, Najeeb U. Neuroprotection with metformin and thymoquinone against ethanol-induced apoptotic neurodegeneration in prenatal rat cortical neurons [J]. BMC Neurosci,2012,13(1):11.
    [11]Zheman X, Lijun L. Effects of extracellular Ca2+ influx and intracellular Ca2+ release on ethanol-induced cytoplasmic Ca2+ overload in cultured superior cervical ganglion neurons[J]. Neuroscience Letters,2005,390(2):98-103
    [12].Mironov S. L. and Hermann A. Ethanol actions on the mechanisms of Ca21 mobilization in rat hippocampal cells are mediated by protein kinase C[J]. Brain Res,1996,714(1-2):27-37.
    [13]Wang, X., Wang, G, et al. Ethanol directly modulates gating of a dihydropyridine-sensitive Ca2+ channel in neurohypophysial terminals [J]. Journal of Neuroscience,1994,14(9):5453-60.
    [14]Mullikin-Kilpatrick, D., Mehta, N.D, et al. Gi is involved in ethanol inhibition of L-type calcium channels in undifferentiated but not differentiated PC 12 cells[J]. Molecular Pharmacology,1995,47(5):997-1005.
    [15]Mullikin-Kilpatrick, D., Treistman, S.N. Inhibition of dihydropyridine-sensitive Ca++ channels by ethanol in undifferentiated and nerve growth factor-treated PC 12 cells:interaction with the inactivated state [J]. Journal of Pharmacology and Experimental Therapeutics,1995,272(2):489-97.
    [16]Huang, G-J., McArdle, J.J. Role of the GTP-binding protein Go in the suppressant e.ect of ethanol on voltage-activated calcium channels of murine sensory neurons [J]. Alcoholism:Clinical and Experimental Research, 1994,18(3):608-15.
    [17]Wang, H.; Joseph, J. A. Mechanism of hydrogen peroxide-induced calcium deregulation in PC12 cells [J]. Free Radic. Biol. Med,2000,28(8):1222-31.
    [18]Doan, T. N.; Gentry, D. L, et al. Hydrogen peroxide activates agonist-sensitive Ca2+-flux pathways in canine venous endothelial cells [J]. Biochem. J,1994, 297(1):209-15.
    [19].Joseph, J. A.; Strain, J. G.; Jimenez, N. D, et al. Oxidant injury in PC12 cells-a possible model of calcium "dysregulation" in aging. I. Selectivity protection against oxidative stress [J]. J. Neurochem,1997,69(3):1252-8.
    [20]Duchen, M. R. Mitochondria and calcium:from cell signalling to cell death [J]. J. Physiol,2000,529(1):57-68.
    [21]Brookes, P. S.; Yoon, Y.; Robotham, J. L, et al. Calcium, ATP, and ROS:a mitochondrial love-hate triangle [J]. Am. J. Physiol. Cell Physiol,2004,287(4): 817-33.
    [22]Southall, T. D.; Terhzaz, S.; Cabrero, P., et al. Novel subcellular locations and functions for secretory pathway Ca2+ /Mn2+-ATPases [J]. Physiol. Genomics, 2006,26(1):35-45.
    [23]Vanoevelen, J.; Raeymaekers, L.; Dode, L, et al. Cytosolic Ca2+signals depending on the functional state of the Golgi in HeLa cells [J]. Cell Calcium, 2005,38(5):489-95.
    [24]Miseta, A.; Fu, L.; Kellermayer, R.; Buckley, J, et al. The Golgi apparatus plays a significant role in the maintenance of Ca2+ homeostasis in the vps33D vacuolar biogenesis mutant of Saccharomyces cerevisiae [J]. J. Biol. Chem,1999, 274(9):5939-47.
    [25]Surra, A.; Wolff, D. Inositol 1,4,5-trisphosphate but not ryanodine receptor agonists induces calcium release from rat liver Golgi apparatus membrane vesicles [J]. J. Membr. Biol,2000,177(3):243-9.
    [26]Missiaen, L.; Raeymaekers, L.; Dode, L, et al. SPCA1 pumps and Hailey-Hailey disease [J]. Biochem. Biophys. Res. Commun,2004,322(4):1204-13.
    [27]Van Baelen, K.; Vanoevelen, J.; Callewaert, G, et al. The contribution of the SPCA1 Ca2+ pump to the Ca2+ accumulation in the Golgi apparatus of HeLa cells assessed via RNA-mediated interference [J]. Biochem. Biophys. Res. Commun,2003,306(2):430-6
    [28]Ton, V.K., Mandal, D., Vahadji, C., et al.. Functional expression in yeast of the human secretory pathway Ca(2+), Mn(2+)-ATPase defective in Hailey-Hailey disease [J]. Journal Of Biological Chemistry,2002,277(8):6422-7.
    [29]Dode, L., Andersen, J.P., Raeymaekers, L., et al. Functional comparison between secretory pathway Ca2+/Mn2+-ATPase (SPCA) 1 and sarcoplasmic reticulum Ca2+-ATPase (SERCA) 1 isoforms by steady-state and transient kinetic analyses [J]. Journal Of Biological Chemistry,2005,280(47):39124-34
    [30]Dode, L., Andersen, J.P., Vanoevelen, J., et al. Dissection of the functional differences between human secretory pathway Ca2+/Mn2+-ATPase (SPCA) 1 and 2 isoenzymes by steady-state and transient kinetic analyses [J]. Journal Of Biological Chemistry,2006,281(6):3182-9
    [31]Hu, Z., Bonifas, J.M., Beech, J., et al. Mutations in ATP2C1, encoding a calcium pump, cause Hailey-Hailey disease [J]. Nature Genetics,2000,24(1):61-5.
    [32]Wootton, L.L., Argent, C.C., Wheatley, M., et al. The expression, activity and localisation of the secretory pathway Ca2+-ATPase (SPCA1) in different mammalian tissues [J]. Biochim Biophys Acta,2004,1664(2):189-97.
    [33]Sudbrak, R., Brown, J., Dobson-Stone, C., et al. Hailey-Hailey disease is caused by mutations in ATP2C1 encoding a novel Ca(2+) pump [J]. Human Molecular Genetics,2000,9(7):1131-40.
    [34]Vanoevelen, J., Dode, L., Van Baelen, K.,et al. The secretory pathway Ca2+/Mn2+-ATPase 2 is a Golgi-localized pump with high affinity for Ca2+ ions [J]. Journal Of Biological Chemistry,2005,280(24):22800-8.
    [35]Adickes ED, Mollner TJ, Lockwood SK. Closed chamber system for delivery of ethanol to cell cultures[J]. Alcohol& Alcoholism,1988;23(5):377-81.
    [36]Grant BF, Dawson DA. Alcohol and drug use, abuse, and dependence among welfare recipients [J]. Am J Public Health,1996,86(10):1450-4.
    [37]Gohlke, J.M.; Griffith, W.C.; Faustman, E.M. Computational models of ethanol-induced neurodevelopmental toxicity across species:Implications for risk assessment [J]. Birth Defects Res. B. Dev. Reprod. Toxicol.2008, 83(1):1-11.
    [38]Kathleen H. McDonough. Antioxidant nutrients and alcohol [J]. Toxicology, 2003,189,89-97.
    [39]Fadda F, Rossetti ZL. Chronic ethanol consumption:from neuroadaptation to neurodegeneration [J]. Progress in Neurobiology,1998,56(4):385-431.
    [40]Salvador, M, Alfredo, S. Cellular and Mitochondrial Effects of Alcohol Consumption [J]. Int. J. Environ. Res. Public Health,2010,7(12):4281-304.
    [41]Zakhari, S. Overview:How is alcohol metabolized by the body? [J].Alcohol Res. Health,2006,29(4):245-54.
    [42]Agarwal, D.P. Genetic polymorphisms of alcohol metabolizing enzymes [J]. Pathol Biol (Paris).2001,49(9):703-9.
    [43]Gemma, S.; Vichi, S.; Testai, E. Individual susceptibility and alcohol effects: Biochemical and genetic aspects [J]. Ann.1st. Super. Sanita,2006;42(1):8-16.
    [44]George, A.; Figueredo, V.M. Alcohol and arrhythmias:A comprehensive review [J]. J. Cardiov. Med. (Hagerstown),2010,11(4):221-8
    [45]Marinho, V.; Laks, J.; Engelhardt, E, et al. Alcohol abuse in an elderly woman taking donepezil for Alzheimer disease [J]. J. Clin. Psychopharmacol,2006, 26(6):683-5.
    [46]Ohkubo, T.; Metoki, H.; Imai, Y. Alcohol intake, circadian blood pressure variation, and stroke [J]. Hypertension,2009,53(1):4-5.
    [47]James.H, Servio.H.R. Mechanism of alcohol-induced oxidative stress and neuronal injury [J]. Free Radical Biology & Medicine,2008,45(11):1542-50.
    [48]M.E.Jung, M.B.Gatch. Estrogen Neuroprotection Against the Neurotoxic Effects of Ethanol Withdrawal Potential Mechanisms [J]. Experimental Biology and Medicine,2005,230(1):8-22.
    [49]Gregory S, Kelly KD. Clinical applications of N-acetylcysteine [J]. Altern Med Rev,1998,3(2):114-127
    [50]刘霞,李长岭,尹广宇等。N-乙酰半胱胺酸对乙醇代谢的影响及机制研究[J]. 中国药学杂志,2006,41(14):1063-1066.
    [51]罗有同,肖昕.N-乙酰半胱胺酸对缺氧缺血性脑病新生大鼠神经元凋亡的干预效果[J].武警医学,2004,15(9):675-676.
    [52]殷宪敏,杨明峰,李睿等.几种不同药物对缺氧缺血新生大鼠神经元凋亡的影响[J].泰山医学院学报,2003,24(1):1-3.
    [53]Hoek J. B., Thomas A. P., Rubin R, et al. Ethanol-induced mobilization of calcium by activation of phosphoinositide-specific phospholipase C in intact hepatocytes [J]. J. Biol. Chem,1987,262(2):682-91.
    [54]Grant, A.J., Koski, G., Treistman, S.N. Effect of chronic ethanol on calcium currents and calcium uptake in undifferentiated PC 12 cells [J]. Brain Research, 1993,600(2):280-4.
    [55]Gerstin, E., McMahon, T., Hundle, B., et al. Protein kinase C d mediates ethanol-induced up-regulation of L-type calcium channels [J]. Journal of Biological Chemistry,1998,273(26):16409-14.
    [56]Messing, R.O., Petersen, P.J., Henrich, C.J. Chronic ethanol exposure increases level of protein kinase C d and e and protein kinase C-mediated phosphyorylation in cultured neural cells [J]. Journal of Biological Chemistry,1991,266(34):23428-32.
    [57]Coe, I.R., Yao, L., Diamond, I.,et al. The role of protein kinase C in cellular tolerance to ethanol [J]. Journal of Biological Chemistry,1996,271(46): 29468-72.
    [58]Goldstein, A. In:Addiction:From Biology to Drug Policy [J]. W.H. Freeman & Co, New York,1994,220-21
    [59]Colombo, G., Agabio, R., Lobina, C.,et al. Effects of the calcium channel antagonist darodipine on ethanol withdrawal in rats [J]. Alcohol and Alcoholism, 1995,30(1):125-31.
    [60]Woodward, J.J., Machu, T., Leslie, S.W. Chronic ethanol treatment alters o-conotoxin and bay K 8644 sensitive calcium channels in rat striatal synaptosomes [J]. Alcohol,1990,7(4):279-84.
    [61]Solem, M., McMahon, T., Messing, R.O.. Protein kinase A regulates inhibition of N-and P/Q-type calcium channels by ethanol in PC 12 cells [J]. Journal of Pharmacology and Experimental Therapeutics,1997,282(3):1487-95.
    [62]Helen J. W, Robert O. M.Regulation of neuronal voltage-gated calcium channels by ethanol [J]. Neurochemistry International,1999,35(2):95-101.
    [63]Naziroglu M, Cig B, Ozgul C. Neuroprotection induced by N-acetylcysteine against cytosolic glutathione depletion induced Ca2+influx in dorsal root ganglion neurons of mice:role of trpvl channels [J]. Neuroscience.2013, pii:S0306-4522(13)00254-6.
    [64]Ozgul C, Naziroglu M. TRPM2 channel protective properties of N-acetylcysteine on cytosolic glutathione depletion dependent oxidative stress and Ca2+ influx in rat dorsal root ganglion [J]. Physiol Behav.2012,106(2):122-8.
    [65]Belrose JC, Xie YF, Gierszewski LJ, MacDonald JF, Jackson MF. Loss of glutathione homeostasis associated with neuronal senescence facilitates TRPM2 channel activation in cultured hippocampal pyramidal neurons [J]. Mol Brain., 2012,5:11.
    [66]Naziroglu M, Ozgul C, Cig B, Dogan S, Uguz AC. Glutathione modulates Ca(2+) influx and oxidative toxicity through TRPM2 channel in rat dorsal root ganglion neurons [J]. J Membr Biol,2011,242(3):109-18.
    [67]Farquhar, M. G.; Palade, G. E. The Golgi apparatus:100 years of progress and controversy [J]. Trends Cell Biol,1998,8(1):2-10.
    [68]Durr G, Strayle J, Plemper R, et al.The medial-Golgi ion pump Pmrl supplies the yeast secretory pathway with Ca2+ and Mn2+ required for glycosylation, sorting, and endoplasmic reticulum-associated protein degradation [J]. Mol Biol Cell, 1998,9(5):1149-62.
    [69]Antebi A, Fink GR. The yeast Ca2+-ATPase homologue, PMR1, is required for normal Golgi function and localizes in a novel Golgi-like distribution [J]. Mol Biol Cell,1992,3(6):633-654
    [70]Halachmi, D., Eilam, Y. Elevated cytosolic free Ca2+concentrations and massive Ca2+ accumulation within vacuoles, in yeast mutant lacking PMR1, a homolog of Ca2+ -ATPase [J]. Febs Letters,1996,392(2):194-200.
    [71]Mitchell, K.J., Tsuboi, T., Rutter, G.A. Role for plasma membrane-related Ca2+-ATPase-1 (ATP2C1) in pancreatic beta-cell Ca2+ homeostasis revealed by RNA silencing [J]. Diabetes,2004,53(2):393-400.
    [72]Lai, P., Michelangeli, F. Changes in expression and activity of the secretory pathway Ca2+ ATPase 1 (SPCA1) in A7r5 vascular smooth muscle cells cultured at different glucose concentrations [J]. Biosci Rep,2009,29(6):397-404.
    [73]Lissandron, V., Podini, P., Pizzo, P., et al. Unique characteristics of Ca2+ homeostasis of the trans-Golgi compartment [J]. Proc Natl Acad Sci U S A,2010, 107(20):9198-203.
    [74]Ramos-Castaneda, J., Park, Y.N., Liu, M., et al. Deficiency of ATP2C1, a Golgi ion pump, induces secretory pathway defects in endoplasmic reticulum (ER)-associated degradation and sensitivity to ER stress [J]. Journal Of Biological Chemistry,2005,280(10):9467-73.
    [75]Uccelletti, D., Farina, F., Pinton, P., et al. The Golgi Ca2+-ATPase KlPmrlp function is required for oxidative stress response by controlling the expression of the heat-shock element HSP60 in Kluyveromyces lactis [J]. Molecular Biology Of The Cell,2005,16(10):4636-47.
    [76]Farina, F., Uccelletti, D., Goffrini, P., et al. Alterations of O-glycosylation, cell wall, and mitochondrial metabolism in Kluyveromyces lactis cells defective in KlPmrlp, the Golgi Ca(2+)-ATPase [J]. Biochem Biophys Res Commun,2004, 318(4):1031-8.
    [77]Sofroniew MV, Galletly NP. Survival of adult basal forebrain cholinergic neurons after loss of target neurons [J]. Science.,1990,247(4940):338-42.
    [78]Sofroniew MV, Cooper JD. Atrophy but not death of adult septal cholinergic neurons after ablation of target capacity to produce mRNAs for NGF, BDNF, and NT3 [J]. J Neurosci.1993,13(12):5263-76.
    [79]Kawaja MD, Gage FH. Reactive astrocytes are substrates for the growth of adult CNS axons in the presence of elevated levels of nerve growth factor [J]. Neuron.1991,7(6):1019-30.
    [80]Hefti F. Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections [J]. J Neurosci.1986,6(8):2155-62.
    [81]Williams LR, Varon S. Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transection [J]. Proc Natl Acad Sci U S A.1986,83(23):9231-5.
    [82]Shigeno T, Mima T. Amelioration of delayed neuronal death in the hippocampus by nerve growth factor [J]. J Neurosci.1991,11(9):2914-9.
    [83]Schumacher JM, Short MP. Intracerebral implantation of nerve growth factor-producing fibroblasts protects striatum against neurotoxic levels of excitatory amino acids [J]. Neuroscience.1991;45(3):561-70.
    [84]Friedman, W. J., and Greene, L. A. Neurotrophin signaling via Trks and p75 [J].Exp. Cell Res.1999,253(1):131-42.
    [85]Barker, P. A. p75NTR:A study in contrasts [J]. Cell Death Differ.1998 5(5):346-56.
    [86]Miller MW, Mooney SM. Chronic exposure to ethanol alters neurotrophin content in the basal forebrain-cortex system in the mature rat:effects on autocrine-paracrine mechanisms [J]. J Neurobiol,2004,60(4):490-8.
    [87]Gericke CA, Schulte-Herbru" ggen O, Arendt T, et al. Chronic alcohol intoxication in rats leads to a strong but transient increase in NGF levels in distinct brain regions [J]. J Neural Transm,2006,113(7):813-20.
    [88]Heaton MB, Mitchell JJ, Paiva M, et al. Ethanol-induced alterations in the expression of neurotrophic factors in the developing rat central nervous system [J]. Brain Res Dev,2000,121(1):97-107.
    [89]Fiore. M.; Laviola, G. Early exposure to ethanol but not red wine at the same alcohol concentration induces behavioral and brain neurotrophin alterations in young and adult mice [J]. Neurotoxicology,2009,30(1):59-71.
    [90]Mauro C, Rosanna M. Early exposure to ethanol or red wine and long-lasting effects in aged mice. A study on nerve growth factor, brain-derived neurotrophic factor, hepatocyte growth factor, and vascular endothelial growth factor [J]. Neurobiology of Aging,2012,33(2):359-67.
    [91]Z. Y. WANG, T. MIKI. Short-term exposure to ethanol causes a differential response between nerve growth factor and brain-derived neurotrophic factor ligand receptor systems in the mouse cerebellum [J]. Neuroscience,2010, 165(2):485-91.
    [92]Holtzman DM, Sheldon RA, Nerve growth factor protects the neonatal brain against hypoxic-ischemic injury [J].1996,39(l):114-22.
    [93]Kirschner PB, Jenkins BG. NGF, BDNF and NT-5, but not NT-3 protect against MPP+toxicity and oxidative stress in neonatal animals [J]. Brain Res.1996, 713(1-2):178-85.
    [94]Cao GF, Liu Y. Rapamycin sensitive mTOR activation mediates nerve growth factor (NGF) induced cell migration and pro-survival effects against hydrogen peroxide in retinal pigment epithelial cells [J]. Biochem Biophys Res Commun. 2011,414(3):499-505.
    [95]Bianco, MR.; Berbenni, M. Cross-talk between cell cycle induction and mitochondrial dysfunction during oxidative stress and nerve growth factor withdrawal in differentiated PC12 cells [J]. J Neurosci Res.2011,89(8):1302-15.
    [96]Jianwen L, Youjun Y. Synergistic protective effect of picroside II and NGF on PC 12 cells against oxidative stress induced by H2O2 [J]. Pharmacological Reports 2007,59(5):573-9.
    [97]Lam HH, Bhardwaj A, O'Connell MT, et al. Nerve growth factor rapidly suppresses basal, NMDA-evoked, and AMPA-evoked nitric oxide synthase activity in rat hippocampus in vivo [J]. Proc. Natl. Acad. Sci. USA.1998, 95(18):10926-31.
    [98]Toshiaki, K.;, Hiroyuki, N. p75-mediated neuroprotection by NGF against glutamate cytotoxicity in cortical cultures [J]. Brain Research 2000 852(2):279-89.
    [99]B. Webb, M. B. Heaton. Ethanol Effects on Cultured Embryonic Hippocampal Neuronal Calcium Homeostasis Are Altered by Nerve Growth Factor [J]. Alcohol Clin fip Res.1997,21(9):1643-52.
    [100]Cheng B, Mattson MP. NGF and bFGF protect rat hippocampal and human cortical neurons against hypoglycemic damage by stabilizing calcium homeostasis [J]. Neuron,1991,7(6):1031-41.
    [101]Mattson MP, Lovell MA, Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intracellular Ca2+concentration, and neurotoxicity and increase antioxidant enzyme activities in hippocampal neurons [J]. J Neurochem,1995,65(4):1740-51.
    [102]Olivieri G,Otten U, et al. Oxidative stress modulates tyrosine kinase receptor A and p75 receptor (low-affinity nerve growth factor receptor) expression in SHSY5Y neuroblastoma cells [J]. Neurol Clin Neurophysiol.2002(2):2-10.
    [103]Jia M, Li M, Liu XW,et al. Voltage-sensitive calcium currents are acutely increased by never growth factor in PC 12 cells [J]. J. Neurophysiol.1999, 82(6):2847-52.
    [104]Jiang H, Takeda K, Lazarovici P, et al. Never growth factor (NGF)-induced calcium influx and intercellular calcium mobilization in 3T3 cells expressing NGF receptors [J]. J. Biol. Chem.1999,274(37):26209-16.
    [105]Pavlikova, M., Tatarkova, Z., Sivonova, M., et al. Alterations induced by ischemic preconditioning on secretory pathways Ca2+-ATPase (SPCA) gene expression and oxidative damage after global cerebral ischemia/reperfusion in rats [J]. Cellular And Molecular Neurobiology,2009,29(6-7):909-16.
    [1]Keil, R.M.K. Coping and stress:a conceptual analysis Journal of Advanced Nursing [J].2004,45(6):659-665.
    [2]I-Shih Liu. Continuum Mechanics [M]. Germany:Springer,2002,41-50.
    [3]Wai-Fah Chen, Da-Jian Han. Plasticity for Structural Engineers [M]. U.S.A:J. Ross Publishing.2007,46-71.
    [4]Bernard, C. Lectures on the phenomena common to animals and plants [M]. U.S.: Charles C Thomas,1974.
    [5]Gross, C. G. Claude Bernard and the constancy of the internal environment [J] Neuroscientist,1998,4(5):380-385.
    [6]W. B. Cannon. Physiological regulation of normal states:some tentative postulates concerning biological homeostatics [M]. Paris:Editions Medicales,1926,91.
    [7]Humphrey, James H. Anthology of Stress Revisited:Selected Works Of James H. Humphrey [M]. Paul J. Rosch. New York:Nova Science Publishers.2005,9.
    [8]Hans Selye. The Stress of Life [M]. New York:McGraw-Hill,1956.
    [9]Koolhaas JM, Bartolomucci A, Buwalda B, et al. Stress revisited:A critical evaluation of the stress concept [J]. Neuroscience and Biobehavioral Reviews 2011,35(5),1291-1301.
    [10]Ritossa F. A new puffing pattern induced by temperature shock and DNP in drosophila [J]. Cellular and Molecular Life Sciences (CMLS),1962, 18(12):571-573.
    [11]Ritossa F. Discovery of the heat shock response [J]. Cell Stress Chaperones.1996, 1(2):97-8.
    [12]Schlesinger, MJ. Heat shock proteins [J]. The Journal of Biological Chemistry, 1990,265(21):12111-12114.
    [13]A. Samali and S. Orrenius, Heat shock proteins:regulators of stress response and apoptosis" [J]. Cell Stress and Chaperones,1998,3(4):228-236.
    [14]Jaattela M. Heat shock proteins as cellular lifeguards [J]. Annals of Medicine, 1999,31(4):261-271.
    [15]Craig EA, Ingolia TD, Manseau LJ. Expression of Drosophila heat-shock cognate genes during heat shock and development [J]. Dev Biol,1983, 99(2):418-426.
    [16]Craig, E. A., K. Jacobsen. Mutations in cognate genes of Saccharomyces cerevisiae hsp70 result in reduced growth rates at low temperatures [J]. Mol. Cell. BioL 1985,5(12):3517-3524.
    [17]. Ellenwood, M. S., E. A. Craig. Differential regulation of the 70K heat shock gene and related genes in Saccharomyces cerevisiae [J]. Mol. Cell. Biol,1984, 4(8):1454-1459.
    [18]Mues GI, Munn TZ, Raese JD. A human gene family with sequence homology to Drosophila melanogaster HSP70 heat shock gene [J]. J. Biol. Chem,1985, 261(2):874-877.
    [19]Nagao RT, Czarnecka E, Gurley WB, et al. Genes for low-molecular-weight heat shock proteins of soybeans:sequence analysis of a multigene family [J]. Mol. Cell. Biol,1985,5(12):3417-3428.
    [20]Palter KB, Watanabe M, Stinson L, et al. Expression and localization of Drosophila melanogaster hsp 70 cognate proteins [J]. Mol. Cell. Biol,1986, 6(4):1187-1203.
    [21]Zimmerman JL, Petri W, Meselson M. Accumulation of a specific subset of Drosophila melanogaster heat shock mRNAs in normal development without heat shock [J]. Cell,1983,32(4):1161-1170.
    [22]Chaudhury S, Welch TR, Blagg BS. Hsp90 as a target for drug development [J]. ChemMedChem,2006, 1(12):1331-1340.
    [23]Chiosis G, Rodina A, Moulick K. Emerging Hsp90 inhibitors:from discovery to clinic. Anticancer Agents [J]. Med. Chem,2006,6:1-8
    [24]Luo W, Sun W, Taldone T, Rodina A, et al. Heat shock protein 90 in neurodegenerative diseases [J]. Mol. Neurodegener,2010,3(5):24.
    [25]Peterson LB, Blagg BS. To fold or not to fold:modulation and consequences of Hsp90 inhibition [J]. Future Med. Chem,2009, 1(2):267-283.
    [26]Fujimoto M, Nakai A. The heat shock factor family and adaptation to proteotoxic stress [J]. FEBS J,2010,277(20):4112-4125.
    [27]Morimoto RI, Kroeger PE, Cotto JJ. The transcriptional regulation of heat shock genes:a plethora of heat shock factors and regulatory conditions [J]. EXS,1996, 77:139-163.
    [28]L. Pirkkala, P. Nyk'anen, L. Sistonen. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond [J]. FASEB Journal, 2001,15(7):1118-1131.
    [29]A. Shabtay, Z. Arad. Reciprocal activation of HSF1 and HSF3 in brain and blood tissues:is redundancy developmentally related? [J]. American Journal of Physiology,2006,291(3):566-R572.
    [30]Ostling P, Bjork JK, Roos-Mattjus P, et al. Heat Shock Factor 2 (HSF2) contributes to inducible expression of hsp genes through interplay with HSF1 [J]. Journal of Biological Chemistry,2007,282(10):7077-7086.
    [31]I. Shamovsky, E. Nudler. New insights into the mechanism of heat shock response activation [J]. Cellular and Molecular Life Sciences,2008, 65(6):855-861.
    [32]R. Voellmy. On mechanisms that control heat shock transcription factor activity in metazoan cells [J]. Cell Stress and Chaperones,2004,9(2):122-133.
    [33]Morimoto RI. Dynamic remodeling of transcription complexes by molecular chaperones [J]. Cell,2002,110(3):281-284.
    [34]Jolly C, Metz A, Govin J, Vigneron M, et al. Stress-induced transcription of satellite III repeats [J]. J. Cell Biol,2004,164(1):25-33.
    [35]W. P. Roos, B. Kaina. DNA damage-induced cell death by apoptosis [J]. Trends in Molecular Medicine,2006,12(9):440-450.
    [36]Christmann M, Tomicic MT, Roos WP, et al. Mechanisms of human DNA repair: an update [J]. Toxicology,2003,193(1-2):3-34.
    [37]Harper JW, Elledge SJ. The DNA damage response:ten years after [J]. Mol Cell, 2007; 28(5):739-745.
    [38]Ge XQ, Blow JJ. The licensing checkpoint opens up [J]. Cell Cycle,2009, 8(15):2320-2322.
    [39]Nevis KR, Cordeiro-Stone M, Cook JG Origin licensing and p53 status regulate Cdk2 activity during G(1) [J]. Cell Cycle,2009,8(12):1952-1963.
    [40]Bell SP, Dutta A. DNA replication in eukaryotic cells [J]. Annu Rev Biochem, 2002,71:333-374.
    [41]Arias EE, Walter JC. Strength in numbers:preventing rereplication via multiple mechanisms in eukaryotic cells [J]. Genes Dev,2007,21(5):497-518.
    [42]DePamphilis ML. The "ORC cycle":a novel pathway for regulating eukaryotic DNA replication [J]. Gene,2003,310:1-15.
    [43]Boye E, Grallert B. In DNA replication, the early bird catches the worm [J]. Cell, 2009,136(5):812-814.
    [44]Gadbois DM, Lehnert BE. Temporal position of Gl arrest in normal human fibroblasts after exposure to gamma-rays [J]. Exp Cell Res,1997, 232(1):161-166.
    [45]Linke SP, Harris MP, Neugebauer SE, et al. p53-mediated accumulation of hypophosphorylated pRb after the G1 restriction point fails to halt cell cycle progression [J]. Oncogene,1997,15(3):337-345.
    [46]Cann KL, Hicks GG. Absence of an immediate G1/S checkpoint in primary MEFs following gamma-irradiation identifies a novel checkpoint switch [J]. Cell Cycle,2006,5(16):1823-1830.
    [47]Deckbar D, Stiff T, Koch B, Reis C, Lobrich M, et al. The limitations of the G1-S checkpoint [J]. Cancer Res,2010,70(11):4412-4421.
    [48]Arooz T, Yam CH, Siu WY, et al. On the concentrations of cyclins and cyclin-dependent kinases in extracts of cultured human cells [J]. Biochemistry, 2000,39(31):9494-9501.
    [49]Nigg EA. Mitotic kinases as regulators of cell division and its checkpoints [J]. Nat Rev Mol Cell Biol,2001,2(1):21-32.
    [50]Lindqvist A, Rodriguez-Bravo V, Medema RH. The decision to enter mitosis: feedback and redundancy in the mitotic entry network [J]. J Cell Biol,2009 185(2):193-202.
    [51]Watanabe N, Arai H, Nishihara Y, et al. M-phase kinases induce phospho-dependent ubiquitination of somatic Weel by SCFbeta-TrCP [J]. Proc Natl Acad Sci USA,2004,101(13):4419-4424.
    [52]Watanabe N, Arai H, Iwasaki J, et al. Cyclin-dependent kinase (CDK) phosphorylation destabilizes somatic Weel via multiple pathways [J]. Proc Natl Acad Sci USA,2005,102(33):11663-11668.
    [53]Hutterer A, Berdnik D, Wirtz-Peitz F, et al. Mitotic activation of the kinase Aurora-A requires its binding partner Bora [J]. Dev Cell,2006,11(2):147-157.
    [54]Chan EH, Santamaria A, Sillje HH, et al. Plkl regulates mitotic Aurora A function through betaTrCP-dependent degradation of hBora [J]. Chromosoma, 2008,117(5):457-469.
    [55]Sandell LL, Zakian VA. Loss of a yeast telomere:arrest, recovery, and chromosome loss [J]. Cell,1993,75(4):729-739.
    [56]Toczyski DP, Galgoczy DJ, Hartwell LH. CDC5 and CKII control adaptation to the yeast DNA damage checkpoint [J]. Cell,1997(6),90:1097-1106.
    [57]Galgoczy DJ, Toczyski DP. Checkpoint adaptation precedes spontaneous and damage-induced genomic instability in yeast [J]. Mol Cell Biol,2001, 21(5):1710-1718.
    [58]Goedecke W, Eijpe M, Offenberg HH, et al. Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis [J]. Nat Genet.1999, 23(2):194-198.
    [59]Dinkelmann M, Spehalski E, Stoneham T, et al. Multiple functions of MRN in end-joining pathways during isotype class switching [J]. Nat Struct Mol Biol. 2009,16(8):808-813.
    [60]Gottlieb TM, Jackson SP. The DNA-dependent protein kinase:requirement for DNA ends and association with Ku antigen [J]. Cell,1993; 72(1):131-142.
    [61]Nick McElhinny SA, Snowden CM, McCarville J, et al. Ku recruits the XRCC4-ligase IV complex to DNA ends [J]. Mol Cell Biol.2000, 20(9):2996-3003.
    [62]Lee JH, Paull TT. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex [J]. Science,2005,308(5721):551-554.
    [63]Paull TT, Lee JH. The Mrell/Rad50/Nbsl complex and its role as a DNA double-strand break sensor for ATM [J]. Cell Cycle,2005,4(6):737-740.
    [64]Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation [J]. Nature,2003, 421(6922):499-506.
    [65]Huen MS, Grant R, Manke I, et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly [J]. Cell,2007, 131(5):901-914.
    [66]. Doil C, Mailand N, Bekker-Jensen S, et al. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins [J]. Cell,2009,136(3):435-446.
    [67]Kim H, Chen J, Yu X. Ubiquitin-binding protein RAP80 mediates BRCAl-dependent DNA damage response [J]. Science,2007,316(5828):1202-1205.
    [68]Caldecott, K.W. Mammalian DNA single-strand break repair:an X-ra(y)ted affair [J]. Bioessays,2001,23(5),447-455.
    [69]Matsuoka S, Rotman G, Ogawa A. et al, Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro [J]. Proc. Natl. Acad. Sci. USA,2000, 97(9),10389-10394.
    [70]Guo Z, Kumagai A, Wang SX, et al. Requirement for Atr in phosphorylation of Chkl and cell cycle regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus egg extracts [J]. Genes Dev.2000,14(21), 2745-2756.
    [71]Shieh SY, Ahn J, Tamai K, et al. The human homologs of checkpoint kinases Chkl and Cdsl (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites [J]. Genes Dev.2000,14(3):289-300.
    [72]Chehab NH, Malikzay A, Appel M, et al. Chk2/hCdsl functions as a DNA damage checkpoint in G(1) by stabilizing p53 [J]. Genes Dev.2000, 14(3):278-288.
    [73]Canman CE, Lim DS, Cimprich KA, et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53 [J]. Science 1998,281(5383), 1677-1679.
    [74]Lassus P, Opitz-Araya X, Lazebnik Y. Requirement for caspase-2 in stressinduced apoptosis before mitochondrial permeabilization [J]. Science 2002, 297(5585):1352-1354.
    [75]Kozutsumi Y, Segal M. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulatedproteins [J]. Nature,1988, 332(6163):462-4.
    [76]Jiang Z, Hu Z, Zeng L, et al. The role of the Golgi apparatus in oxidative stress: is this organelle less significant than mitochondria? [J]. Free Radical Biology & Medicine 2011,50(8),907-917.
    [77]Ellgaard L, Molinari M, Helenius A. Setting the standards:quality control in the secretory pathway [J]. Science 1999,286(5446):1882-1888.
    [78]Lee AS. The glucose-regulated proteins:stress induction and clinical applications [J]. Trends Biochem Sci,2001,26(8):504-510.
    [79]Prostko CR, Brostrom MA, Malara EM, et al. Phosphorylation of eukaryotic initiation factor (eIF) 2 alpha and inhibition of eIF-2B in GH3 pituitary cells by perturbants of early protein processing that induce GRP78 [J]. J Biol Chem,1992, 267(24):16751-16754.
    [80]Brostrom CO, Prostko CR, Kaufman RJ, et al. Inhibition of translational initiation by activators of the glucose-regulated stress protein and heat shock protein stress response systems. Role of the interferon-inducible double-stranded RNA-activated eukaryotic initiation factor 2alpha kinase [J]. J Biol Chem,1996, 271(40):24995-25002.
    [81]Melero JA. Isolation and cell cycle analysis of temperaturesensitive mutants from Chinese hamster cells [J]. J Cell Physiol,1979,98(1):17-30.
    [82]Carlberg M, Larsson O. Role of N-linked glycosylation in cellcycle progression and initiation of DNA synthesis in tumortransformed human fibroblasts [J]. Anticancer Res,1993,13(1):167-171.
    [83]Zinszner H, Kuroda M, Wang X, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum [J]. Genes Dev,1998,12(7):982-995.
    [84]Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta [J]. Nature,2000,403(6765):98-103.
    [85]Novoa I, Zhang Y, Zeng H, et al. Stress-induced gene expression requires programmed recovery from translational repression [J]. EMBO J,2003, 22(5):1180-1187
    [86]Hitomi J, Katayama T, Eguchi Y, et al. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death [J]. J. Cell Biol, 2004,165(3):347-356.
    [87]Nishitoh H, Matsuzawa A, Tobiume K, et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats [J]. Genes Dev.2002,16(11):1345-1355.
    [88]Zinszner H, Kuroda M, Wang X, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum [J]. Genes Dev.1998,12(7):982-995.
    [89]McCullough KD, Martindale JL, Klotz LO, et al. Gadd153 sensitizes cells to endoplasmic reticulum stress by downregulating Bcl2 and perturbing the cellular redox state [J]. Mol. Cell. Biol.2001,21(4):1249-1259
    [90]. Kondylis V, Rabouille C. The Golgi apparatus:lessons from Drosophila [J]. FEBS Lett,2009,583(23):3827-3838
    [91]. Preuss D, Mulholland J, Franzusoff A, et al. Characterization of the Saccharomyces Golgi complex through the cell cycle by immunoelectron microscopy [J]. Mol. Biol. Cell,1992,3(7):789-803
    [92]Rambourg A, Jackson CL, Clermont Y, et al. Three dimensional configuration of the secretory pathway and segregation of secretion granules in the yeast Saccharomyces cerevisiae [J]. J. Cell Sci.2001,114(12):2231-2239
    [93]Marra P, Salvatore L, Mironov A Jr, et al. The biogenesis of the Golgi ribbon:the roles of membrane input from the ER and of GM130 [J]. Mol. Biol. Cell,2007, 18(5):1595-1608
    [94]Bivona TG, Perez De Castro I, Ahearn IM, et al. Phospholipase Cy activates Ras on the Golgi apparatus by means of RasGRP1 [J]. Nature,2003, 424(6949):694-698
    [95]Inder K, Harding A, Plowman SJ, et al. Activation of the MAPK module from different spatial locations generates distinct system outputs [J]. Mol. Biol. Cell, 2008,19(11):4776-4784
    [96]Wang X, Sato R, Brown MS, et al. SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis [J]. Cell,1994,77(1):53-62
    [97]Sakai J, Duncan EA, Rawson RB, et al. Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment [J]. Cell,1996,85(7):1037-1046
    [98]Ye J, Rawson RB, Komuro R, et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs [J]. Mol. Cell,2000,6(6):1355-1364.
    [99]Hicks SW, Machamer CE. Golgi structure in stress sensing and apoptosis [J]. Biochimica et Biophysica Acta,2005,1744(3):406-414
    [100]Gbolahan W. Okunade, Marian L. Miller. Loss of the Atp2cl Secretory Pathway Ca2_-ATPase (SPCA1) in Mice Causes Golgi Stress, Apoptosis, and Midgestational Death in Homozygous Embryos and Squamous Cell Tumors in Adult Heterozygotes [J]. The Journal of Biological Chemistry,2007,282(36): 26517-26527.
    [101]Hiderou Yoshida. ER Stress Response, Peroxisome Proliferation, Mitochondrial Unfolded Protein Response and Golgi Stress Response [J]. Life,2009,61(9): 871-879.
    [102]Surra, A.; Wolff, D. Inositol 1,4,5-trisphosphate but not ryanodine receptor agonists induces calcium release from rat liver Golgi apparatus membrane vesicles. J. Membr [J]. Biol.2000,177(3):243-249.
    [103]Missiaen L, Raeymaekers L, Dode L, et al. SPCA1 pumps and Hailey-Hailey disease. Biochem. Biophys [J]. Res. Commun.2004,322(4):1204-1213.
    [104]Van Baelen K, Vanoevelen J, Callewaert G, et al. The contribution of the SPCA1 Ca2+pump to the Ca2+accumulation in the Golgi apparatus of HeLa cells assessed via RNA-mediated interference [J]. Biochem Biophys Res Commun, 2003,306(2):430-436.
    [105]Pavlikova M, Tatarkova Z, Sivonova M, et al. Alterations induced by ischemic preconditioning on secretory pathways Ca2+-ATPase (SPCA) gene expression and oxidative damage after global cerebral ischemia/reperfusion in rats [J]. Cell, Mol. Neurobiol.2009,29(6-7):909-916.
    [106]Kourtis N, Nikoletopoulou V, Tavernarakis N. Small heat-shock proteins protect from heat-stroke-associated neurodegeneration [J]. Nature,2012, 490(7419):213-8
    [107]Uccelletti D, Farina F, Pinton P, et al. The Golgi Ca2+-ATPase K1Pmrlp function is required for oxidative stress response by controlling the expression of the heat shock element HSP60 in Kluyveromyces lactis [J]. Mol. Biol. Cell,2005, 16(10):4636-4647.
    [108]Lissandron V, Podini P, Pizzo P, et al. Unique characteristics of Ca2+ homeostasis of the trans-Golgi compartment [J]. Proc Natl Acad Sci U S A,2010, 107(20),9198-9203.
    [109]Ramos-Castaneda J, Park YN, Liu M, et al. Deficiency of ATP2C1, a Golgi ion pump, induces secretory pathway defects in endoplasmic reticulum (ER)-associated degradation and sensitivity to ER stress [J]. Journal Of Biological Chemistry,2005,280(10),9467-9473.
    [110]Berridge MJ, Bootman MD, Lipp P. Calcium-a life and death signal [J]. Nature, 1998,395(6703):645-648.
    [111]Oku M, Tanakura S, Uemura A, et al. Novel cis-acting element GASE regulates transcriptional induction by the Golgi stress response [J]. Cell Struct Funct.2011, 36(1):1-12. Epub 2010 Dec 8.
    [112]Lau KS, Partridge EA, Grigorian A, et al. Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation [J]. Cell,2007,129(1):123-134.
    [113]Gill DJ, Chia J, Senewiratne J, et al. Regulation of O-glycosylation through Golgi-to-ER relocation of initiation enzymes [J]. J. Cell Biol,2010, 189(5):843-858
    [114]Porstmann T, Santos CR, Griffiths B, et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth [J]. Cell Metab,2008, 8(3),224-236
    [115]Faulhammer F, Konrad G, Brankatschk B, et al. Cell growth-dependent coordination of lipid signaling and glycosylation is mediated by interactions between Saclp and Dpmlp [J]. J. Cell Biol,2005,168(2):185-191
    [116]Demmel L, Gravert M, Ercan E, et al. The clathrin adaptor Gga2p is a phosphatidylinositol 4-phosphate effector at the Golgi exit [J]. Mol. Biol. Cell, 2008,19(5):1991-2002.
    [117]Shu Jiang, Brian Storrie. Cisternal Rab Proteins Regulate Golgi Apparatus Redistribution in Response to Hypotonic Stress [J]. Molecular Biology of the Cell,2005,16(5):2586-2596.
    [118]Mancini M, Machamer CE, Roy S, et al. Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis [J]. J Cell Biol,2000,149(3): 603-612.
    [119]O'Reilly LA, Ekert P, Harvey N, et al. Caspase-2 is not required for thymocyte or neuronal apoptosis even though cleavage of caspase-2 is dependent on both Apaf-1 and caspase-9 [J]. Cell Death Differ,2002,9(8):832-841.
    [120]Bergeron L, Perez GI, Macdonald G, et al. Defects in regulation of apoptosis in caspase-2-deficient mice [J]. Genes Dev,1998,12(9):1304-1314.
    [121]Lassus P, Opitz-Araya X, Lazebnik Y. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization [J]. Science, 2002,297(5585):1352-1354.
    [122]Hauser HP, Bardroff M, Pyrowolakis, et al. A giant ubiquitin-conjugating enzyme related to IAP apoptosis inhibitors [J]. J Cell Biol 1998, 141(6):1415-1422.
    [123]Vernooy SY, Chow V, Su J, et al. Drosophila Bruce can potently suppress Rpr-and Grim-dependent but not Hid-dependent cell death [J]. Curr Biol 2002, 12(13):1164-1168.
    [124]S.J. Jones, E.C. Ledgerwood, et al. TNF recruits TRADD to the plasma membrane but not the trans-Golgi network, the principal subcellular location of TNF-R1 [J]. J. Immunol.1999,162:1042-1048.
    [125]Bennett M, Macdonald K, Chan SW, et al. Cell surface trafficking of Fas:a rapid mechanism of p53-mediated apoptosis [J], Science 1998,282(5387):290-293.
    [126]Bradley JR, Thiru S, Pober JS Pober. Disparate localization of 55-kd and 75-kd tumor necrosis factor receptors in human endothelial cells [J]. Am. J. Pathol. 1995,146(1):27-32.
    [127]Malisan F, Testi R. GD3 ganglioside and apoptosis [J]. Biochim Biophys Acta 2002,1585(2-3):179-187.
    [128]Chiu R, Novikov L, Mukherjee S, et al. A caspase cleavage fragment of p115 induces fragmentation of the Golgi apparatus and apoptosis [J]. J Cell Biol,2002, 159(4):637-648.
    [129]Hicks SW, Machamer CE. The NH2-terminal domain of Golgin-160 contains both Golgi and nuclear targeting information [J]. J Biol Chem,2002, 277(39):35833-35839.
    [130]Hood DA, Irrcher I, Ljubicic V, et al. Coordination of metabolic plasticity in skeletal muscle [J]. J. Exp. Biol,2006,209(12):2265-2275.
    [131]Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer:a dawn for evolutionary medicine [J]. Annu. Rev. Genet,2005, 39,359-^07.
    [132]Scarpulla RC. Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells [J]. Gene,2002,286(1):81-89.
    [133]L Leary SC, Shoubridge EA. Mitochondrial biogenesis:which part of "NO" do we understand? [J]. Bioessays,2003,25(6):538-541.
    [134]Chelstowska A, Butow RA. RTG genes in yeast that function in communication between mitochondria and the nucleus are also required for expression of genes encoding peroxisomal proteins [J]. J. Biol. Chem,1995,270(30):18141-18146.
    [135]Giannattasio S, Liu Z, Thornton J, et al. Retrograde response to mitochondrial dysfunction is separable from TORI/2 regulation of retrograde gene expression [J]. J. Biol. Chem.2005,280(52):42528-42535.
    [136]Liu Z, Spirek M, Thornton J, et al. A novel degron-mediated degradation of the RTG pathway regulator, Mkslp, by SCFGrrl [J]. Mol. Biol. Cell,.2005, 16(10):4893-4904.
    [137]Ferreira Junior JR, Spirek M, Liu Z, et al. Interaction between Rtg2p and Mkslp in the regulation of the RTG pathway of Saccharomyces cerevisiae [J]. Gene,2005,354,2-8.
    [138]Liu Z, Sekito T, Spirek M, et al. Retrograde signaling is regulated by the dynamic interaction between Rtg2p and Mkslp [J]. Mol. Cell,2003, 12(2):401-11.
    [139]Sekito T, Thornton J, Butow RA. Mitochondria-tonuclear signaling is regulated by the subcellular localization of the transcription factors Rtglp and Rtg3p [J]. Mol. Biol. Cell,2000, 11(6):2103-2115.
    [140]Liu, Z., Butow, R. A. A transcriptional switch in the expression of yeast tricarboxylic acid cycle genes in response to a reduction or loss of respiratory function [J]. Mol. Cell. Biol.1999,19,6720-6728.
    [141]Rothermel, B. A., Thornton, J. L., et al. Rtg3p, a basic helix-loop-helix/leucine zipper protein that functions in mitochondrial-induced changes in gene expression, contains independent activation domains [J]. J. Biol. Chem.1997, 272:19801-19807.
    [142]Liao, X., Butow, R. A. RTG1 and RTG2:two yeast genes required for a novel path of communication from mitochondria to the nucleus [J]. Cell,1993,72, 61-71.
    [143]Devaux F, Carvajal E, et al. Genome-wide studies on the nuclear PDR3-controlled response to mitochondrial dysfunction in yeast [J]. FEBS Lett. 2002,515:25-28
    [144]Hallstrom TC, Moye-Rowley WS. Multiple signals from dysfunctional mitochondria activate the pleiotropic drug resistance pathway in Saccharomyces cerevisiae [J]. J. Biol. Chem.2000,275:37347-56
    [145]Zhang X, Moye-Rowley WS. Saccharomyces cerevisiae multidrug resistance gene expression inversely correlates with the status of the F(0) component of the mitochondrial ATPase [J]. J. Biol. Chem.2001,276:47844-52
    [146]Zhang X, Kolaczkowska A, et al. Transcriptional regulation by Lgelp requires a function independent of its role in histone H2B ubiquitination [J]. J. Biol. Chem. 2005,280:2759-70.
    [147]HwangWW,Venkatasubrahmanyam S, et al. A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol. Cell, 2003,11:261-66.
    [148]Epstein CB, Waddle JA, et all. Genome-wide responses to mitochondrial dysfunction [J]. Mol. Biol. Cell,2001,12:297-308
    [149]Guaragnella N, Butow RA. ATO3 encoding a putative outward ammonium transporter is an RTG-independent retrograde responsive gene regulated by GCN4 and the Ssyl-Ptr3-Ssy5 amino acid sensor system [J]. J. Biol. Chem.2003, 278:45882-87.
    [150]Palkova Z, Devaux F, et al. Ammonia pulses and metabolic oscillations guide yeast colony development [J]. Mol. Biol. Cell,2002,13:3901-14
    [151]Wolfgang Voos. Mitochondrial protein homeostasis:the cooperative roles of chaperones and proteases [J]. Research in Microbiology,2009,160:718-725
    [152]Haynes, C. M., Petrova, K., et al. ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans [J]. Dev. Cell,2007,13:467-480.
    [153]Haynes, C. M., Yang, Y., et al. The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans [J]. Mol. Cell,2010,37,529-540.
    [154]Shepherd, J. C., Schumacher, T. N., et al. TAP 1-dependent peptide translocation in vitro is ATP dependent and peptide selective [J]. Cell,1993,74,577-584.
    [155]Benedetti, C., Haynes, C. M., et al. Ubiquitinlike protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response [J]. Genetics,2006,174,229-239.
    [156]Martinus, R. D., Garth, G P., et al. Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome [J]. Eur. J. Biochem. 1996,240,98-103.
    [157]Zhao, Q., Wang, J., et al. A mitochondrial specific stress response in mammalian cells [J]. EMBO J.2002,21,4411-4419.
    [158]Horibe, T., Hoogenraad, N. J. The chop gene contains an element for the positive regulation of the mitochondrial unfolded protein response [J]. PLoS ONE 2007,2, e835.