氮素和源库比对棉花“铃—叶”系统生理特性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以转基因抗虫杂交棉中棉所29(CCRI29)为材料,在田间进行不同氮肥水平(高氮:225.0kg·hm~(-2);中氮:112.5kg·hm~(-2);低氮:0kg·hm~(-2)以及改变源库比试验,较为系统地研究了CCRI29在不同的生育阶段对不同处理的生理反应。结果表明:
     不同氮肥水平对棉花的生长有一定调节效应。与中氮、低氮相比,高氮明显提高了棉株株高和叶面积指数,促进了主茎功能叶中可溶性蛋白质的合成,促进了后期果枝叶中叶绿素的含量,延长了叶片功能期,但对生育进程影响较小。中氮水平下主茎功能叶光合速率和果枝叶中叶绿素含量、可溶性蛋白质含量高于高氮和低氮水平。低氮水平下可溶性蛋白质含量低,后期叶片叶绿素下降快,加速了群体叶片的衰老。
     不同氮肥水平对棉花各个器官中碳水化合物代谢有重要的影响。高氮对主茎功能叶碳水化合物的积累有一定的抑制作用,低氮促进了果枝叶中碳水化合物的积累,中氮水平条件下叶片中可溶性糖、淀粉的代谢关系较为协调。不同氮肥水平对伏前桃、伏桃棉铃子棉中碳水化合物的积累没有明显的影响。不同氮肥水平对棉花产量的影响:中氮>高氮>低氮。
     对SOD、POD、MDA的影响:中氮水平下降低了叶片中MDA含量;POD、SOD酶活性表现为,伏前桃对位叶中各处理间比较:中氮>高氮>低氮,而伏桃对位叶各处理间顺序为高氮>中氮>低氮。提高源/库比、降低源/库比均降低了伏前桃、伏桃对位叶中SOD和POD活性,对MDA含量的影响为:减源>CK>减库。
     在不同氮肥条件下,改变源库比对不同时期棉铃及对位叶中可溶性蛋白质的变化趋势有不同影响。伏前桃对位叶中蛋白质含量:减库>减源>CK,而伏桃对位叶中减库处理可溶性蛋白质含量显著低于减源和对照。
     改变源库比对棉铃子棉生理特征的影响:减库不利于增加棉子中蛋白质的含量;有利于增加子棉中淀粉含量,对可溶性糖含量影响小。
     减库促进铃壳、子棉的干物质积累,从而增加了单铃重。不同源库比条件下单铃重比较为:减源>CK>减库,并且改变源库比可提高衣分百分数。
     棉花是一种很重要的经济作物,以往针对群体条件下棉花同果节“铃-叶”系统的研究报道较少。限制了对棉花源库关系的认识及棉铃形成与发育的合理调控。本试验研究了不同氮肥水平条件下,改变源库比对棉花生长发育及生理特征的影响。为棉花生理育种及高产栽培调控提供了一定的理论依据。
With Bt-transgenic hybird cotton variety CCRI29 as material, the study includes two experiments:(l)on effects by applying different level of nitrogen fertilizer (225.0kg · hm-2, high; 112.5kg · hm-2, middle; 0kg · hm-2, low) in the field;
    (2) on effects caused by changing the ratio of source/sink in cotton. The main results are as follows:
    The results showed that changing nitrogen application amount had some effects on cotton growth. Compared with mid-nitrogen and low-nitrogen, high-nitrogen boosted the plant height and leaf area index, increased the dissoluble protein content of function leaf on main stem and promoted chlorophyll accumulating in leaf growth anaphase, which extended leaf function period. Photosynthesis of function leaf on main stem, chlorophyll content and dissoluble protein of leaf on reproductive branch under the treatment of mid-nitrogen were higher than those under the other treatments. The dissoluble protein content of leaf was the lowest under the treatment of low-nitrogen, and the chlorophyll content decreased rapidly in leaf growth anaphase, which accelerated the leaf's senescence.
    Different nitrogen level affected the carbohydrate metabolism in various organs of cotton plant evidently. The carbohydrate synthesis was inhibited under high-nitrogen level, but low-nitrogen level promoted carbohydrate accumulation in leaf on reproductive branch, and dissoluble sugar and starch metabolized in phase, under mid-nitrogen condition. Different nitrogen levels had no significant effect on carbohydrate concentration in seed cotton of bolls before July 15 and bolls from July 15 to Aug. 15. There was significant difference between the lint yields of different nitrogen conditions and caused the order of lint yield was mid-nitrogen > high-nitrogen > low-nitrogen.
    
    
    At the same time, changing nitrogen levels affected SOD activity, POD activity and MDA content of leaf to some extent. The MDA content decreased under mid-nitrogen condition. The changing of SOD and POD activity was various in different growth and development stages, the order of their activity of leaf born around June 1 was mid-nitrogen>hig-nitrogen>low-nitrogen, but the order of leaf activity born around June 22 was high-nitrogen>mid-nitrogen>low-nitrogen.
    Changing source/sink ratio affected SOD activity, POD activity and MDA content in leaf at the same time. Both increasing and decreasing source/sink ratio could reduce SOD activity and POD activity. The order MDA content of leaf under different treatments was removing leaves>CK>removing buds.
    Changing source/sink ratio affected the content of dissoluble protein in seed cotton and the corresponding leaf of boll differently under different nitrogen level. The order of dissoluble protein content in corresponding leaf of boll formed before 15 of July (early boll) was: decreasing sink>decreasing source>CK. But dissoluble protein in corresponding leaf of early boll under the condition of decreasing sink was higher than that of the other two treatments significantly.
    Reducing sink was not favorable to protein accumulation in seed cotton, but increased the starch content, and had less effect on dissolvable sugar content.
    Removing buds promoted the dry matter weight of boll shell as well as seed cotton weight, thereby increased unit boll weight. But the unit boll weight was decreased after picking off the leaves. Besides, removing leaves and removing buds can heighten the lint percentage.
    Cotton is an important cash crop, but so far, few studies on the boll and leaf system at the same node were reported, which hindered us for knowing the relationship of source and sink of cotton. In this experiment, the effects on growth and development and physiological characteristics of cotton by changing source/sink ratios under different nitrogen conditions were studied and aimed to provide theoretical basis for cultivation of high yield and physiological breeding.
引文
[1] 段海,徐立华,陈德华.氮肥运筹及化控对棉花源库质量影响的研究[J].江苏农业研究 1999,20(4):11~15.
    [2] 周志勇.花生源库关系对产量及生理生化特性的影响[D].山东农业大学硕士学位论文,2003,4,27.
    [3] 李绍长,王荣栋.作物源库理论在产量形成中的作用[J].新疆农业科学,1998(3):106~110。
    [4] Yosh I. A.. Effects of source-to-sink ratio on carbohydrate production and senescence of rice flag leaves during the ripening period[J]. Crop Sci, 1993, 62(4):547~553.
    [5] Naimei T U. The source-sink relationships of lowland rice[A]. The compilation of experiments in rice plant[C], TLATC, JICA, 1994.
    [6] Onnett G D. Effects on the stem of winter barley of manipulating the source and sink during grain-filling[J]. Journal of Experimental Botany, 1993,44(258):83~91.
    [7] INGH D. Physiological analysis of yielding ability in hirsutum cotton[J]. Indian J. Plant Physiol., 1983, 26(1): 68~75, 26(3): 264~275.
    [8] 李大跃.杂种棉花光合物质生产及其源库关系的研究[J].四川棉花,1992,(1):21~26.
    [9] 庄军年.棉花源库调节对体内光合产物运输分配及其产量的影响[D].硕士研究生论文,江苏农学院,1992.
    [10] 倪金柱.棉花栽培生理[M].上海科学技术出版社,1986.
    [11] 王缨,周行,乔海清等译,棉花生理专题论文集[M].农业出版社,1987,209~220.
    [12] 高璎,马克浓.棉花的产量形成及其诊断[M].上海科学技术出版社.1981,336~338.
    [13] 刘晓冰,崔守富.源库改变对小麦籽粒蛋白质、淀粉含量及产量的影响[J].种子,1995(5):5~7.
    [14] 卢艳丽.大豆源库关系的研究[D].内蒙古农业大学硕士学位论文.2002.
    [15] 王振林,尹燕枰.小麦源库比与产量形成期同化物分配及结实性的关系[J].山东农业大学学报.1995,26(2):144~150.
    [16] 曹显祖.水稻品种的源库特征及其类型划分的研究[J].作物学报,1987,13(4):265~272.
    [17] 李绍长.玉米品种源库特性及其栽培措施初探[J].新疆农垦科技.1999,(2):5~6.
    [18] 孙学振,王振林,张红.源库比对麦套棉干物质生产与产量构成的影响[J].中国棉花,1995,22(12):18~19.
    [19] 张志军,张建新,刘文国等.玉米高产群体与其源库平衡关系的分析[J].农业与技
    
    术,2000(6):14~16.
    [20] 贺明荣,王振林,曹鸿鸣。源库关系改变对小麦灌浆期植株光合速率及~(14)C同化物运转分配的影响[J].西北植物学报,1998,18(4):555~560.
    [21] 贺明荣,王振林,曹鸿鸣.小麦不同品种光合速率和~(14)C同化物分配对源库比改变的响应[J].植物学通报,1998,15(增刊):91~94.
    [22] Palit P. Source-sink control of dry matter production and photosynthesis in rice plant after flowering[J]. Indian Journal plant Physiol,1977, (3): 25~29.
    [23] 满为群,杜维广,张桂茹等.大豆高光效种质与高产品种源库平衡的研究[J].中国油料,1995,11(1):59~62。
    [24] 许大全.光合产物水平与光合速率[J].植物生理学通讯,1986,6:1~8.
    [25] 杨建昌,王志琴,朱庆森.水稻产量源库关系的研究[J].江苏农学院学报,1993,14(3):47~53.
    [26] Zvi P., Maria L.M., et al. Effect of altered sink: source ratio on photosynthetic metabolism of source leaves[J]. Plant Physiol. 1987, 786~791.
    [27] Choma M.A., Garner J.L., Marini R.P. and Barden J.A. Effect of fruiting on net photosynthesis and dark respiration of 'Hecker' strawberries[J]. Hort. Science, 1982,17:212~213.
    [28] Forney C.F., Breen P.J. Dry matter partitioning and assimilation in fruiting and deblossomed strawberry[J]. Journal of the American Society for Horticultural Science. 1985,(110):181~185.
    [29] Lenz F., Daunicht H.J. Emfluss von Wurzel and Frucht auf die photosynthese bei Citrus[J]. Angew. Bot. 1971,45:11~20.
    [30] Chalmers et al. Photosynthesis in relation to growth and distribution of fruit in peach trees[J]. Australian Journal of Plant Physiology, 1975, 2: 635~645.
    [31] Crews C.E., Williams S.L., Vines H.M. Characteristics of photosynthesis in peach leaves[J]. Planta,1975 126: 97~104.
    [32] Sams C.E., Flore J.A. Net photosynthetic of sour cherry (prunus cerasus L.'Montmorency')during the growing season with particular reference to fruiting[J]. Photosyn.Res. 1983, 4: 307~316.
    [33] Fujii J.A., Kennedy R.A. Seasonal changes in photosynthetic rate in apple trees. A comparison between fruiting and nonfruiting trees[J]. Plant Physiol., 1985, 78:519~524.
    [34] Hansen P. ~(14)C studied on apples trees.vi.The influence of the fruit on photosynthesis of the leaves,and the relative photosynthetic yields of fruits and leaves[J]. Physiol plant, 1970, 23: 805~810.
    
    
    [35] Vemmos S.N. Net photosynthesis, stomatal conductance, chlorophyll content and specific leaf weight of pistachio trees as influnced by fruiting[J]. Hort. Sci., 1994,69: 775~782.
    [36] 周睿、夏宁、束怀瑞,苹果果实对叶片光合作用的调节[J].园艺学报,1995,22(3):293~294.
    [37] Layne D.R, Flore J.A. End-product inhibition of photosynthesis in prunus cerasus L. in response to whole-plant source-sink manipulation. J.Amer. Sci. Hort. Sci, 1995, 120:538~599.
    [38] Gucci R., Xiloyannis C., and Flore J.A. Gas exchanges parameters,water relations and carbohydrate partitioning in leaves of field-grown Prunnus domestica L. following fruit removal[J]. Plant Physiol. 1991, 83: 497~505.
    [39] 朱亚静.源库比对桃叶片光合作用及碳水化合物代谢的影响[D].中国农业大学硕士学位论文,2003,06:8.
    [40] 赵平,孙谷畴,彭少麟.植物氮素营养的生理生态学研究[J].生态科学,1998,17(2):37~42.
    [41] 肖凯,张荣铣,钱维朴.氮素营养对小麦群体光合碳同化作用的影响及其调控机制[J].植物营养与肥料学报,1999,5(3):235~243.
    [42] 姜东,于振文,苏波等.不同施氮时期对冬小麦根系衰老的影响[J].作物学报,1997,23(2):180~190.
    [43] 何萍,金继运,林葆.氮肥用量对春玉米叶片衰老的影响及其机理研究[J].中国农业科学,1998,31(3):66~71.
    [44] 孙济中,陈布圣.棉作学[M].中国农业出版社.1999.
    [45] Von caemmerer S, Evans J R. Determination of the average partial pressure of CO_2 in chloroplasts from leaves of several C3 plant[J]. Plant Physiol., 1991,85:287~305。
    [46] 王月福,于振文,李尚霞等.氮素营养水平对小麦开花后碳素同化、运转和产量的影响[J].麦类作物学报.2002,22(2):55~59.
    [47] 张旺锋,王振林,余松烈等.氮肥对新疆高产棉花群体光合性能和产量形成的影响[J].作物学报,2002,28(6):789~796.
    [48] 陈锦强等.高等植物绿叶中的氮素代谢与光合作用的关系[J].植物生理学通讯,1984(1):1~8,21.
    [49] 朱根海等.叶片含氮量与光合作用[J].植物生理学通讯,1985,(2):9~12.
    [50] Evans JR. Photosynthesis and nitrogen relationships in leaves of c3 plant[J]. Oecologia,1989,78:9~19.
    [51] 毛树春.棉花营养与施肥[M].中国农业科技出版社.1993
    [52] Longstreth DJ. Nutrient influence on leaf photosynthesis effect on nitrogen phosphorus and
    
    potassium for Gossypium hirsutrumL[J]. Plant Physiology, 1980,65(3):541~543.
    [53] 王本宣,陈布圣.不同氮肥水平和不同种植密度下的棉花群体光合特性[J].华中农业大学学报,1989,8(3):213~217.
    [54] Bondada BR,Oosterhuis DM,Norman RJ,etal. Canopy photosynthesis growth yield and boll 15N accumulation under nitrogen stress in cotton[J]. Crop Sci, 1996,36(1): 127~133.
    [55] Wullschleger SD. Photosynthesis of individual field-grown leaves during ontogeny[J]. Photosynth Res. 1990,23(2): 163~170.
    [56] 范术丽,氮磷钾对棉花伏桃发育的影响[J].棉花学报,1999,11(1):24~30.
    [57] 纪从亮,俞敬忠,刘友良等.棉花高产品种的源库流特点研究[J].棉花学报,2000,12(6):298~301.
    [58] 崔淑芳,崔瑞敏(译).氮素对棉花成铃效应的研究[J].作物杂志,1996(4):38~39.
    [59] 凌启鸿,张洪程,蔡建中等.水稻高产群体质量及其优化控制讨论[J].中国农业科学,1993,26(6):1~11.
    [60] 李绍长,王荣栋.作物源库理论的发展及其在生产中的应用[J].作物杂志,1998(1):10~12.
    [61] TIAN Xiao-li,YANG Pei-zhu,DUAN Liu-sheng, et al. Preliminary study on the source-sink relationship of Bt transgenic cotton[J]. Acta Gossypii Sinica, 1999, 11(3): 151~156.
    [62] 陈国平,郭景伦,王忠孝等.玉米库源关系的研究[J].玉米科学,1998(4):36~39.
    [63] 屠乃美,官春云.水稻幼穗分化期间减源对源库关系的影响[J].湖南农业大学学报.1999(6):430~436.
    [64] 高松洁,王文静,陈时良等.不同源库型小麦品种生理特点及其与穗粒重的关系[J].华北农学报,2000(1):27~21.
    [65] 陈德华,吴云康,段海等.棉花群体叶面积载荷量与产量关系及对源的调节效应研究[J].棉花学报,1996,8(2):109~112.
    [66] 张宪政.植物组织中叶绿素含量的测定[J].辽宁农业科技,1986,(3):19~21.
    [67] Read SM, Northcote DH. Minimization of variation in the response to different protein of the Coomassic Blue G dye dinding: assay for protein.Anal.Biochem., 1981, 116: 53~64.
    [68] 邹琦主编,植物生理学[M].中国农业出版社,2000,54~55,58~59.
    [69] 孙群,李学俊.植物组织中超氧化物歧化酶活性测定[A].邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000,163~165.
    [70] 华东师范大学.植物生理学实验指导[M].北京:人民教育出版社,1980.
    [71] 赵世杰,许长成,邹琦,等.植物组织中丙二醛测定方法的改进[J].植物生理学通讯.1994,30(3):207~210.
    [72] 赵世杰.植物组织中丙二醛含量的测定[A].邹琦.植物生理学实验指导[M].北京:中
    
    国农业出版社,2000.161~162.
    [73] 杨晴,李雁鸣,肖凯,等.不同施氮量对小麦旗叶衰老特性和产量性状的影响[J].河北农业大学学报,2002,25(4):20~24
    [74] Fernandez C.J., Mcinnes K.J., Cothren J.T.. Water status and leaf area production in water-and nitrogen-stressed cotton[J]. Crop Sci., 1996, 36:1224~1233.
    [75] 黄骏麒.中国棉作学[M].北京:中国农业科技出版社,1998.
    [76] Araus J L, Tapia L. Photosynthetic gas exchange characteristics of wheat flag biades and sheaths during grain filling[J]. Plant physiol. 1987, 85: 667~673.
    [77] 许大全,沈允钢.光合产物水平与光合机构运转关系的探讨[J].植物生理学报,1982:8(2):173~186.
    [78] M.A.Jones, R.Wells, D.S.Guthrie. Cotton response to seasonal patterns flower remova Ⅰ. yield and fiber quality[J].Crop Sci. 1996,36:633~638.
    [79] M.A.Jones, R.Wells, D.S.Guthrie. Cotton response to seasonal patterns flowerre Ⅱ. growth and dry matter allocation[J]. Crop Sci. 1996, 639~645.
    [80] 何萍,金继运.氮钾营养对春玉米颖片衰老过程中激素变化与活性氧代谢的影响[J].植物营养与肥料学报,1999,5(4):289~296.
    [81] 侯彩霞,汤章城.细胞相容性物质的生理功能及其作用机制[J].植物生理通讯,1999,35(1):1~7.
    [82] 彭长连,林植芳,林桂珠等.人为干扰对亚热带森林木本植物叶片抗氧化能力的影响[J].生态学报,1998,(18),1:101~106.
    [83] 阎成士,李德全,张建华.植物叶片衰老与氧化胁迫[J].植物学通报,1999,16(4):398~404.
    [84] 陈少裕.膜脂过氧化对植物细胞的伤害.植物生理学通讯.1991,27(2):73~76.
    [85] 张敬贤.玉米细胞保护酶活性对苗期干旱的反应.华北农学报,1990,5(增刊):19~23.
    [86] 毛树春,韩迎春,宋美珍等.中棉所29栽培技术及其生理特性研究[J].棉花学报,2001,13(2):82~86.
    [87] 邬飞波,成灿土,许馥华.氮素营养对短季棉生理代谢和产量的影响[J].浙江农业大学学报.1998,24(3):241~247.
    [88] 潘晓华,王永锐.二系稻N31S/P40(Fl)改变库/源比对叶片衰老及同化物分配的影响[J].江西农业大学学报.1994,16(3):221~226.
    [89] 曹翠玲,李生秀,张占平.氮素形态对小麦生长中后期保护酶等生理特性的影响[J].土壤通报.2003,34(4):295~298.