X射线光束线仪器与条形射频源离子束刻蚀设备研制若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
同步辐射(SR)、惯性约束聚变(ICF)等以粒子束输运(Particle transport)为基础的大科学工程装置近年来在世界范围广泛发展,与之相关的非标仪器设备普遍涉及多门学科的精密集成,往往成为工程实施的关键。
     论文主要介绍SR X射线光束线关键仪器、制作ICF大口径衍射光学元件的条形源大型离子束刻蚀设备若干设计制造技术和性能分析。主要内容包括以下两个方面:
     1) NSRL X射线光束线仪器关键技术。根据我们X射线光束线仪器特点以及二期工程改造后的光源性能对仪器的影响,利用有限元数值模拟方法开展光学元件(U7C双晶单色器、U7B大面积聚焦镜)在没有水冷情况下的热载分析,通过对光子通量的测量,在线测试了双晶单色器的热效应,定性地分析了其从开机冷态到热平衡这一动态过程,并与普通底面间接水冷方式的模拟结果作了比较;对仪器的关键结构(双晶单色器联动机构、X射线聚焦镜压弯调整机构)从其原理、具体实施方法作了详细描述、讨论,并结合实际应用给出了其性能,系统地开展此类同步辐射关键仪器功能机构的研究。
     2) KZ-400离子束刻蚀装置研制。基于条形射频源,我们研制了大尺寸基底往返线性扫描矩形离子束的刻蚀设备,用于大口径衍射光学元件图形转移工艺。详细阐述了此装置的工作原理,以及方形大真空室、三维调节运动工作台及线形运动系统、离子束流密度探测等结构特点与设计分析。通过试验测试不同工作气体压力、气流,加速电压与束压等条件下的长轴束流密度均匀性,给出了相应的利用束阑修剪引出离子束边缘从而提高束流密度均匀性的措施,达到优于5%的均匀性。不同工况条件下的刻蚀实验表明刻蚀机性能满足要求。
     最后归纳总结了基于X射线、矩形离子束传输轨迹(Beam tracing)的仪器设备相关共性的问题:一定能量和空间分布的束线追迹模拟与测量,以及在受照光学表面投影引起的热载影响及数值模拟方法;对于一定性能需求的束线传输仪器设备,采用机械机构补偿运动、微小位移补偿精度调整实现要求束线传输轨迹、提高束线传输性能的设计方法。同时简单讨论了这些方法的改进与完善以及在更高性能需求的仪器设备的可能应用。
Large-scale scientific facilities based on particle transport have been developed widely all over the world recently, especially of synchrotron radiation(SR) and Inertial Confinement Fusion(ICF). Related non-standard instrumentation, most of which are integrated and precision system with multidisciplinary approach, plays a critical role in the engineering implement.
    Several key techniques on the development of the SR X-ray beamline instrument and the scanning ion beam etcher with linear radio frequency(RF) source for fabrication of large aperture diffractive optical elements(DOE) are presented. It is includes two main aspects:
    1) NSRL X-ray beamline main instruments. According to the characteristics of the 6T single-period superconducting wiggler source, discussion on the thermal equilibrium process of the heating effect on optics (U7C double crystal monochromator, U7B bent cylindrical mirror) is presented. A testing method and the results of thermal effect on photon flux of DCM are introduced. Temperature distribution and thermal strain for both steady and transient cases with radiation cooling alone and with a combination of radiation and forced convection cooling are considered by finite element method (FEM). Methods and performance of linkage mechanism for DCM, bender & adjustment device for focusing mirror are presented and discussed.
    2) Development of KZ-400 ion beam etcher. With a 6cm×66cm rectangular beam which the substrate carriage traverses back and forth, an area can be over-covered as large as 40cmx40cm. The Operating principle, construction features of the etcher, commissioning results and technical performance are presented, especially of the vacuum system with a large block chamber, workbench assembly with X,Y-translation and Z-rotation, and a scanning faraday-cup based current density detecting system. A beam diaphragm is adopted to optimize the ion beam spatial uniformity, and excelling 5% uniformity along the major axis is achieved. Etching experiments shows a good uniformity of 5.4% of etching depth over the 40cm.
    At last, the similar problems of instrumentation related to the beam tracing are discussed and summaried: the simulation and measurement methods with a certain energy and distribution as well as the heating effect on optical surfaces, and the design methods of structures with tiny motion or displacement for compensation of the adjustment to meet the requirement of performance. The improvement and possible application of the methods, for the more precision instrumentation of the incoming demand, are also taken into account in brief.
引文
1. S. Baik, A. Kira, et al. Proc. of 9th International Conference on Synchrotron Radiation Instrumentation (SRI2006)[C]. AIP Conference Proceedings, 879(2007)
    2. T. Warwick, J. Stohr, et al. Proc. of 8th International Conference on Synchrotron Radiation Instrumentation(SRI2003)[C]. AIP Conference Proceedings, 705 (2004)
    3. J. C. Gauthier, el al. Eds. Conference abstracts. Proc. of the 4th International Conference on Inertial Fusion Sciences and Applications(IFSA2005)[A], Biarritz, France, September 4-9, 2005(J. Phys. Ⅳ, Vol.133, 2006)
    4. Wuest E, Hogan W, Eds. Conference abstracts. Proc. of the 3rd Inertial Fusion Sciences and Applications(IFSA2003)[A], Monterey, CA, September 7-12, 2003 (Am. Nucl. Soc., La Gragne Ⅱ, 2004 )
    5. K. A. Tanaka, D. D. Meyerhofer, J. Meyer-ter-Vehn, Eds. Conference abstracts. Proc. of the 2nd International Conference on Inertial Fusion Science and Applications[A], Kyoto, September 10-14, 2001(Elsevier, Paris, 2002)
    6. C. Labaune, W. Hogan, K. anaka, Eds. Conference abstracts. Proc. of the 1st International Conference of Inertial Confinement Fusion Science and Application [A], France, Sep. 12~17, 1999(Elsevier, Paris, 1999)
    7. S. Goto, et al. Proc. of 4th International Workshop on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation (MEDSI2006) [C]. Spring-8, Japan, 2006
    8. Y. Dabin, et al. Proc. of 3th International Workshop on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation(MEDSI2004) [C]. ESRF, France, 2004
    9. J. A. Britten, L. M. Jones Ⅱ, T. C. Carlson, et al. Enabling technology for fabrication of meter-scale gratings for high-energy petawall lasers[C]. Proc. of the 3rd Inertial Fusion Sciences and Applications, Monterey, CA, September 7-12, 2003: WPo4.45
    10. J. Keck, J. B. Oliver, T. J. Kessler, et al. Manufacture and development of multilayer diffraction gratings[C]. Proc. SPIE, 5991(2006): 443-448
    11.马礼敦,杨福家.同步辐射应用概论[M].上海:复旦大学出版社,2001
    12.徐朝银.同步辐射光学与工程[M].中国科学技术大学国家同步辐射实验室(内部教材),2004
    13. E. E. Koch, et al., Handbook on Synchrotron Radiation[M], Vol. 1A(chapt1-6), 1983; G. V. Marr et al., Vol2(chapt2), 1987; G. Brown, Vol.3(chapt2-4), 1991
    14. MAX-Ⅳ project team. The Conceptual Design Report[R]. MAX-lab, Sweden, 2006
    15. NSLS-Ⅱ project team. Conceptual Design Report(CD-0)[R]. NSLS, Brookhaven National Laboratory, USA, 2004
    16. R. F. Service. Battle to become the next-generation x-ray source[J]. Science, 298(2002): 1356-1358
    17. D. M. MilIs. Third-generation hard x-ray synchrotron radiation sources: properties, optics, and experimental techniques[M]. John Wiley & sons, NY, 2002
    18. Experimental Facilities Division Progress Report(1996-97)[R]. APS, BNL, 1997: APS-TB-30
    19.肖向辉.1W1A、1W1B光束线设计及束线光学的研究[D].中国科学院高能物理研究所博士学位论文,2002
    20. N. Watanabe, M. Suzuki, et al. Rotated-inclined focusing monochromator with simultaneous tuning of asymmetry factor and radius of curvature over a wide wavelength range[J]. J. Synchrotron Rad. Vol.6(1999): 64-68
    21. Product catalog(2004-05)[R]. Advanced Design Consulting Inc., USA, 2005
    22. Synchrotron components catalogue(2006)[R]. Oxford-Danfysik, UK, 2006
    23. Product catalog(2006)[R]. ACCEL Instruments GmbH, Germany, 2006
    24. Brief presentation of IRELEC[R]. IRELEC, France, 2006
    25. Product catalog(2006)[R]. KOHZU Precision Co., Ltd, Japan, 2006
    26.全国第四届同步辐射光束线工程与技术学术会议报告集[C].(摘要)贵阳,(2006)
    27.全国第三届同步辐射软X射线及真空紫外技术与应用学术会议[C].长春,(2004)
    28. H. R. Beguiristain. Thermal distortion effects on beam line optical design for high flux synchrotron radiation[D]. University of California, Berkeley, 1997
    29. G. C. Tajiri. Analysis and design of precision optical components in high-intensity, third-generation x-ray beamline[D]. University of Illinois at Chicago, 2001
    30. M. D. Perry, G. Mourou. Terawatt to Petawatt sub picosecond laser[J]. Science, 264(1994): 917-924
    31. R. Kodama. Nuclear fusion-fast heating scalable to laser fusion ignition[J]. Nature, 418(2002): 933-934
    32. M. Dunne, F. Amiranoff, S. Atzeni, et al. A future European high power laser facility(Issue 1.0)[R]. European extreme light infrastructure: scientific prospects, Ecole Nationale Superieure de Techniques Avancees, Paris, 2005
    33. J. Murray. ICF Quarterly Report April-June, 1997(7-3)[R]. Lawrence Livermore National Laboratory(LLNL), Livermore, 1997: UCRL-LR-105821-97-3
    34. R. E. English, C. W. Laumann, J. L. Miller. Optical system design of the national ignition facility[R]. Technical Report, Lawrence Livermore National Laboratory (LLNL), Livermore, 1998.6: UCRL-JC-129758
    35.祝绍箕,邹海兴,包学诚.衍射光栅[M].北京:机械工业出版社,1986
    36.金国藩,严瑛白,邬敏贤.二元光学[M].北京:国防工业出版社,1998
    37.(瑞士)赫尔齐克著,周海献,等译.微光学:元件、系统、应用[M].北京:国防工业出版社,2002
    38.辛企明,孙雨南,谢敬辉.近代光学制造技术[M].北京:国防工业出版社,1997
    39. C. P. J. Barty, M. Key, J. Britten, et al. An overview of LLNL high-energy short-pulse technology for advanced radiography of laser fusion experiments[J]. Nucl. Fusion, 44(2004): S266-S275
    40. S. Dixit, J. B. Britten, R. Hyde. Fabrication and Applications of Large Aperture Diffractive Optics[C]. Proc. SPIE, 2001, 4440: 101-108, (Technical Report, LLNL, Livermore, 2002.9: UCRL-JC-145028)
    41. J. A. Britten. Manufacture of large-aperture diffractive optics and ultrathin refractive optics for high-power laser and space applications[C]. Proc. of the conference on optical society of America optical fabrication testing, Tucson, AZ, Jun 03-05, 2002
    42. J. A Britten. Diffractive optics for the NIF[R]. LLNL Monthly Report, 1999, (2): 125-134
    43. J. A Britten, S. M. Herman, L. J. Summers. Manufacture, optical performance and laser damage characteristics of diffractive optics for the national ignition facility[C]. SPIE, 1998, 3578: 337-346
    44. Hongbo Wei and Lifeng Li. All-dielectric reflection gratings: a study of the physical mechanism for achieving high efficiency[J]. Appl. Opt., 42(31), 2003: 6255-6260
    45.高福华.衍射光学元件在ICF激光驱动系统中的应用研究[D].四川大学博士学位论文,2003
    46.徐向东.惯性约束聚变中的衍射光栅[D].同济大学博士后学位论文,2004
    47.巴音贺希格.衍射光栅色散理论与光栅设计、制作和检验方法研究[D].中国科学院长春光学精密机械与物理研究所博士学位论文,2004
    48. D Strickland, G Mourou. Compression of amplified chirped optical pulses[J]. Opt. Commun., 56(1985): 219-221
    49. M. D. Perry, J. A. Britten, H. T. Nguyen, et al. Multilayer dielectric diffraction gratings[P]. United States Patent US5907436 A1, 1999
    50. B. W. Shore, M. D. Perry, J. A. Britten, et al. Design of high-efficiency dielectric reflection gratings. J. Opt. Soc. Am. A14(1997): 1124-1136
    51. M. D. Perry, R. D. Boyd, J. A. Britten, et al. High efficiency multilayer dielectric diffraction gratings[J]. Opt. lett., 20(1995): 940-942
    52. L. Li and J. Hirsh, All-dielectric high-efficiency reflection gratings made with multilayer thin-film coatings[J], Opt. Lett., 20(1995): 1349-1351
    53. L. Li. Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity[J]. J. Opt. Soc. Am. A10(1993): 2581-2591
    54. J. A. Britten, I. Jovanovic, W. A. Molander, et al. Advanced dielectric grating technology for high-energy petawall lasers[C]. Proc. of the conference on quantum electronics & laser science(QELS), 2005: JFB5
    55. J. Neauport, J. Flamand, Y. Josserand, et al. Diffraction gratings production for LIL high-power laser: an overview[C]. Proc. SPIE, 5252(2004): 140-147
    56. C. L. Blanc, C. Sauteret, B. Touzet, et al. 40 cm size multilayer dielectric gratings for LULI laser pulse compressor[C]. Conference on laser and electrooptics, 2003(CLEO' 03)
    57. K Hehl, J Bischoff, U Mohaupt, et al. High-efficiency dielectric reflection gratings: design, fabrication, and analysis[J]. Appl. Opt., 38(1999): 6257-6271
    58. Wei Zhang Jianhong Wu Jianqiang Zhu et al. New method for the fabrication of pulse compression grating[C]. Proc. SPIE, 6149(2006): 614921-1
    59. P. Rambo, J. Schwarz, I. Smith. Development of a mirror backed volume phase grating withpotential for large aperture and high damage threshold[J]. Opt. Commun., 260(2006): 403-414
    60. T. J. Kessler, J. Bunkenburg, H. Huang, et al. Demonstration of coherent addition of multiple grating for high-energy chirped-pulse-amplified laser[J]. Opt. Lett. 29(6), 2004: 635-637
    61. H. Kail, S. Molokoshi, G. Xu, et al. Development of alignment technology for segmented grating[C]. Conference on Lasers and Electro-Optics, CLEO, Pacific Rim, 2005: 1172-1173
    62. A. Cotel, N. Forget, C. Brach, et al. Characterisation of mltilayer dielectric gratings for petawatt-class lasers[C]. 2005 quantum electronics and laser science conference(QELS): 2038-2040
    63.大口径衍射光学元件研制可行性论证报告[R].中国科学技术大学等,2002.4
    64.大口径全息记录系统设计方案论证报告[R].苏州大学信息光学工程研究所,2003.12
    65. Wilkinson C D W, Rahman M. Dry etching and sputtering[J]. Phil. Trans. R. Soc. Lond. A, 2004, 362: 125-138
    66. Cuomo J J, Rossnagel S M, Kaufman H R. Handbook of ion beam processing technology[M]. Park Ridge: Noyes, 1989
    67.刘金声.离子束技术及应用[M].北京:国防工业出版社,1996
    68. M. C. Rushford, S. N. Dixit, R. Hyde, et al. Development of wet-etching tools for precision optical figuring[R]. Technical Report, Lawrence Livermore National Laboratory(LLNL), Livermore, 2004.2: UCRL-TR-155880
    69. D. T. Hawkins. Ion milling(ion-beam etching), 1954-1975: A bibliography[J]. J. Vac. Sci. Technol., 12(6), 1975: 1389-1397
    70. D. T. Hawkins. Ion milling (ion-beam etching), 1975-1978: A bibliography[J]. J. Vac. Sci. Technol., 16(4), 1979: 1389-1397
    71. E. G. Spencer, P. H. Schmidt. Ion-beam techniques for device fabrication[J]. J. Vac. Sci. Technol., 8(5), 1971: S52-S70
    72. P. Norgate, V. J. Hammond. Ion beam etching[J]. Phys Technol, 5(3), 1974: 186-203
    73. S. Somekh. Introduction to ion and plasma etching[J]. J. Vac. Sci. Technol., 13(5), 1976: 1003-1007
    74. H. I. smith, J. Melngailis, R. C. Williamson, et al. Ion-beam etching of surface gratings[C], Ultrasonics symposium 1972, Deklerk J(ED), IEEE, 496p: 558-563
    75.徐向东.全息离子束刻蚀真空紫外及软X射线衍射光栅研究[D].中国科学技术大学博士学位论文,2001
    76.王旭迪.几种光学材料的离子束刻蚀微结构研究[D].中国科学技术大学博士学位论文,2005
    1.刘乃泉,张武等.超导Wiggler及其光束线、站的建设研制报告[R].国家同步辐射实验室,1999
    2.徐朝银,潘国强等.X射线衍射与散射光束线站研制总结报告[R].NSRL二期工程子课题,2004
    3.赵飞云.NSRL 光束线前端的设计与制造[D].中国科学技术大学硕士学位论文(2001)
    4. QP Wang, XJ Yu, YW Zhang, et al. The status of NSRL beamline construction[C]. AIP Conference Proceedings 705: 491-493(2004)
    5. Chaoyin Xu, Guoqiang Pan, Faqiang Xu, et al. Nucl Instr Meth, 2001, A467-468: 639-642
    6. Xu FQ, Liu WH, Wei SQ, et al. U7C beamline and XAFS station of national synchrotron radiation laboratory[J]. Journal Of Synchrotron Radiation 8: 348-350, Part 2 MAR 2001
    7. Guoqiang Pan, Chaoyin Xu, Rong Fan, et al., Design and performance of U7B beamline and X-ray diffraction and scatteringstation at NSRL and its preliminary experiments in protein crystallography[J]. Nucl. Instrum. & Meth. A540: 480-486(2005)
    8. Robert. T. A. Thermal problems on high flux beam line[J]. Nucl Instr Meth, 1984, 222: 146-158
    9. F. D. Michaud. Estimating thermal distortion of monochromator crystals[J]. Nucl. Instru & Meth., A246(1986)444-449
    10. S. Joksch, et al. Heating effects of monochromator crystals at a high-intensity wiggler beamline[J]. Nucl. Instru. &. Meth., A291(1990)325-331
    11.董晓浩,凤良杰,徐朝银.NSRL-U7C双晶单色器热载影响与计算分析[J].核技术,Vol.29,2006(1):6-10
    12.王纳秀.同步辐射光束线站热缓释技术研究及冷却技术的应用[D].上海应用物理所博士学位论文,2006
    13. A. K. Freund, F. d. Bergvin, G. Marot, et al. X-ray mirrors for the European synchrotron radiation facility[J]. Optical Engineering. 29(1990): 928-941
    14. F. Cerrina. SHADOW Primer 2.0[R]. Center for X-ray Lithography, WISC, 1998
    15. Ali M K, David C, Lahsen A. Thermal contact resistance across a copper-silicon interface[J]. Proc. SPIE. 3151(1997): 45-51
    16. Motoyuki A, Junichi O, Youichi Y. Quantitative evaluation of contact thermal conductance in a vacuum as a result of simulating the effet of cooling[J]. Proc. SPIE. 1739(1993): 652-656
    17. Dormiani M. Finite element analysis of a SiC mirror receiving synchrotron radiation[J]. Nucl Instr Meth, 1988, A266: 507-512
    18. L. Assoufid, W. K. Lee, D. M. Mills. A finite element analysis of room temperature silicon crystal for APS-Bending magnet &ID beams[R]. ANL/APS/TB-19(1994)
    19. Robert K S. Summary of a workshop on high heat load X-ray optics held at Argon-ne National Laboratory[J]. Nucl Instr Meth, 1990, A291: 286-299
    20. G. C. Tajiri. Analysis and design of precision optical components in high-intensity, third-generation x-ray beamline[D]. University of Illinois at Chicago, 2001
    21. R. Caciuffo, S. Melone, et al. Monochromators for X-ray synchrotron radoation[J]. Physics Reports(Review section of physics letter) Vol.152(1), 1987: 1-71 and Paul Kirkpatrick. A device for rotating spectrometer crystals[J]. JOSA, Vol.7(7), 1923: 539 and A. H. Compton. A precision x-ray spectrometer and the wavelength of Mo Kα1[J]. Rev Sci Instrura, 1931, 2(7): 365-376
    22. T. Ishikawa, K. Tamasaku, and M. Yabashi. High-resolution X-ray monochromators[J]. Nucl. Instrum. Methods. Phys. Res. A547(2005): 42-49
    23. HART M, RODRIGUES A R D. Harmonics-free single-crystal monochromators for neutrons and x-rays[J]. J Appl Cryst 1978, 11(4): 248-253.
    24. Hrdy J. Fixed-exit channel-cut crystal x-ray monochromators for synchrotron radiation[J]. Czech J Phys, 1989, 39(3): 261-265
    25. Hrdy J. Harmonic-free and fixed-exit monolithic x-ray monochromator[J]. Czech J Phys, 1990, 40(4): 361-366
    26. Spieker P, Ando M, Kamiya N. A monolithic x-ray monochromator with fixed-exit beam position[J]. Nucl Instr Met., 1984, 222(1-2): 196-201
    27. Hashizume, H., M. Sauvage, J. F. Petroff, P. et al. Rapport d'activite', LURE, Jan. 1978-Jan. 1979, 75
    28. Kawata H, Ando M. A double crystal monochromator for the photon factory wiggler beamline[J]. Nucl Instr Meth, 1986, 246(1-3): 368-372.
    29. Lemonnier M, Collet O, Depautex C, et al. High vacuum two crystal two crystal soft x-ray monochromator[J]. Nucl Instr Meth, 1978, 152(1): 109-111.
    30. Golovchenko J A, Levesque R A, Cowan P L. X-ray monochromator system for use with synchrotron radiation sources[J]. Rev Sci Instrum, 1981, 52(4): 509-516 also Golovchenko J A. Tunable θ-2 θ device[P]. United States Patent US4365156 A1, 1980
    31. Cowan P L, Hastings J B, Jach T, et al. A UHV compatible two-crystal monochromator for synchrotron radiation[J]. Nucl Instr Meth, 1983, 208(1-3): 349-353.
    32. Kirkland J P. A UHV-compatible fixed two/four crystal monochromator[J]. Nucl Instr Meth A, 1990, 291(1-2): 185-191
    33. Mason W P, Emmel G R, Feyzi F, et al. A new double-crystal monochromator for UHV operation in the low to medium photon energy range[J]. Rev Sci Instrum, 1996, 67(9): 3350-3351
    34. Shu D, Toellner T S, Alp E E. Modular overconstrained weak-link mechan-ism for ultraprecision motion control[J]. Nucl Instr Meth A, 2001, 467-468(1): 771-774
    35. D. Shu, J. Barraza, T. Sanchez, et al. Nucl Instr Meth A319(1-2), 1992: 63-70
    36. Caliebe WA, Cheung S, Lenhard A, et al. Fixed exit monochromator with fixed rotation axis[C]. AIP Proceedings, 2004, 705: 643-646
    37. Xu C, Zhao W, Pan G, et al. A double-crystal monochromator for EXAFS measurement at NSRL[J]. Nucl Instr Meth A, 1998, 410(2): 293-296
    38.王峰.合肥光源上X射线双晶单色仪的研制[D].中国科学技术大学硕士学位论文,2001
    39. Shu D, Wang M, Liu W, et al. UHV compatible compact double-crystal monochromator at BEPC diffraction & scattering beamline 4B9A[J]. Rev Sci Instrum, 1989, 60(7): 2054-2057
    40.曹冲振.同步辐射双晶单色仪若干关键技术研究[D].上海交通大学博士学位论文,2005
    41. J. H. He, S. J. Xia, Z. C. Hou, et al. A double crystal monochromator of sagittal focusing[J]. ICFA 25th advanced beam dynamics workshop, Shanghai symposium on intermediate-energy light sources, 2003
    42.傅翾.同步辐射Sagittal聚焦双晶单色技术研究[D].西安光学精密机械研究所博士学位论文,2001
    43. Matsushita T, Ishikawa T, Oyanagi H. Sagittal focusing double-crystal monochromator with constant exit beam height at the photon factory[J]. Nucl Instr Meth A, 1986, 246(1-3): 377-379
    44. T. Murata, T. Matsukawa, et al. Soft X-ray beamline BL7A at the UVSOR[J]. Rev Sci Instrum, 1992, 63(1): 2054-2057
    45. W. Ehrenberg, X-ray optics[J]. Nature, 160(1947)330-331
    46. P. Kirkpartrick and A. V. Baez, Formation of optical images by x-rays[J]. J. Opt. Soc. Am. 38(1948)766-774
    47. H. Wolter, Ann. Der Physik, 10, 1952, P. 94-114
    48. W. Ehrenberg, X-Ray Optics: The Production of Converging Beams by Total Reflection[J]. J. Opt. Soc. Am. 39(1949)741-746
    49. W. Ehrenberg, X-Ray Optics: Imperfections of Optical Flats and Their Effect on the Reflection of X-Rays[J]. J. Opt. Soc. Am. 39(1949)746-751
    50. C. M. Lucht and D. Harker, An X-ray microscope using mirrors of adjustable curvature[J]. Rev.Sci.Instru.22(1951)392-396
    51. J. A. Howell and P. Horowitz, Ellipsoidal and bent cylindrical condensing mirrors for synchrotron radiation[J]. Nucl. Instrum. & Meth. 125(1975): 225-230
    52. D. Bilderback, C. Henderson, and C. Prior, Elastically bent mirror for focusing synchrotron x-ray[J]. Nucl. Instrum. & Meth. A246(1986): 194-197
    53. J. P. Kirkland, R. A. Neiser and W. T. Elam. A compact, modular, mirror bending and position system[J]. Nucl. Instrum. & Meth. A246(1986): 203-206
    54. E. Morikawa, J. D. scott and V. Saile. Adaptive optics for resolution/through optimi-zation: variable-radius-mirror application for PGM[J]. Nucl. Instrum. & Meth. A319(1992): 116-120
    55. J. Susini, Design parameters for hard x-ray mirrors: The european synchrotron radi-ation facility case[J]. Optical Engineering. 34(1995): 361-376
    56.黄志刚.X射线成像与压弯聚焦镜研究[D].中国科学技术大学硕士学位论文,2004
    57. Chaoyin Xu, Guoqiang Pan, Rong Fan, et al., The x-ray diffraction and scattering beamline and results of the performance tests at NSRL[C]. AIP Conference Proceedings 705: 514-517(2004)
    58.董晓浩,凤良杰,康乐,徐朝银.同步辐射X射线双晶单色器联动机构[J].光学精密工程,Vol.15(2),2007:224-229
    59. Xiaohao Dong, et al. Development of x-ray mirror shaped by mechanical bending at NSRL[C]. The 9th International Conference on Synchrotron Radiation Inst-rumentation, Daegu, May28-June2, 2006, AIP Conference Proceedings 879(2007): 963-966
    60.周泗忠.压弯聚焦镜自重平衡的研究[C].全国第三届同步辐射学术年会报告,上海,2003
    1. H. R. Kaufman, J. J. Cuomo, J. M. E. Harper. Technology and application of broad-beam ion sources used in sputtering. Part Ⅰ. Ion source technology[J]. J. Vac. Sci. Technol., 21(3), 1982: 725-736
    2. J. M. E. Harper, J. J. Cuomo, H. R. Kaufman, Technology and application of broad-beam ion sources used in sputtering. Part Ⅱ. Applications[J]. J. Vac. Sci. Technol., 21(3), 1982: 737-756
    3.徐成海,巴德纯,于溥,等.真空工程技术[Z].北京:化学工业出版社,2006
    4.张玉春,吴钰铭,陈国明等.LK-1离子束刻蚀机的设计及其工作参数[J].电子与自动化,1980(4):10-15
    5. Zhang Yuchun, Wu Yuming, Ren Congxin, et al. A reactive ion beam etching and coating system[J]. Nuclear Instruments & Methods in Physics Research B6, 1985: 447-451
    6.安志超.一种新型的离子束刻蚀设备:LK-2 型离子束刻蚀机[J].微细加工技术,1983(2):1-6
    7.谈治信,惠金河.LSK-3型离子束刻蚀机的结构设计[J].真空与低温,12(3),1993:139-146
    8.孟宪光,尤大纬.LSK-500型离子束刻蚀机通过成果鉴定[J].电工电能新技术,1983,(3):
    9.雷震寰.SD-3离子束刻蚀试验机[J].山东大学学报(理学版),1981,(01):
    10.成淑英,谈治信,陈绍金,等.RIBE-5型反应离子束刻蚀机[J].真空,1993,(01)
    11.LKJ-1C-100/150离子束刻蚀系统技术及使用说明[Z].中国航天总公司23所离子束系统工程部(IBSED)
    12.张华顺,等.离子源和中性大功率束流[M].北京:原子能出版社,1987
    13. Zhang Hua-sheng, Chen Chia-erh, Zhao Wei-jiang. The progress of ion source in China[J]. Rev. Sci. Instrum. 64(5), 1994: 1383-1387
    14. Chen Chia-erh, Zhao Wei-jiang. Recent ion source development in China[J]. Rev. Sci. Instrum. 67(3), 1996: 1399-1403
    15. W. J. Zhao, X. T. Ren, H. W. Zhao. Development of ion sources for materials processing in China[J]. Rev. Sci. Instrum.77), 2006: 03C113
    16. Andre Anders. Plasma and ion sources in large area coatings: A Review[J]. Surface & Coatings Technology, 2005(200): 1893-1906
    17. M. Naito, Y. Ando, Y. Inouchi, et al., Ion sources for large area processing[J]. Rev. Sci. Instrum. 2000(71): 1023-1028
    18. M. Tanjyo, S. Sakai, M. Takahashi, et al. RF ion source for low energy ion implantation. Surface & Coatings Tech, 2001(136): 281-284
    19. S. R. Bryan Jr, D. L. Sanders. Uniform etching of 85-cm-diameter grating[R]. LLNL supporting technologies report of engineering, FY98(6): 17-21
    20. H. T. Nguyen, S. R. Bryan, J. A. Britten. Fabrication of efficient, large aperture transmission diffraction gratings by ion beam etching[R]. Technical Report, Lawrence Livermore National Laboratory(LLNL), Livermore, 2000.4: CAUCRL-ID-140249-REV-1
    21. J. A. Britten, S. J. Bryan, L. J. Summers, et al. Large aperture, high-efficiency multilayer dielectric reflection gratings[C]. Proc. of the conference on lasers and electro-optics, Opt. Soc. America, part vol.2, 2002: CPDB7-1-4(also quantum electronics & laser science conference, Long Beach, CA, May 19-24, 2002)
    22. H. R. Kaufman, J. R. Kahn, and R. E. Nethery. Modular linear ion source[C]. American Society of Vacuum Coaters, 47th Annual Technical Conference Proceedings, 2004: 477-482
    23. J. A. Britten, W. Molander, A. M. Komashko, et al. Multilayer dielectric gratings for petawatt-class laser systems[C]. Proc. SPIE, 5273(2004): 1-7
    24. J. Keck, J. B. Oliver, T. J. Kessler, et al. Manufacture and development of multilayer diffraction gratings[C]. Proc. SPIE, 5991(2006): 443-448
    25. J. A. Britten, L. M. Jones Ⅱ, T. C. Carlson, et al. Enabling technology for fabrication of meter-scale gratings for high-energy petawall lasers[C]. Proc. of the 3rd Inertial Fusion Sciences and Applications, Monterey, CA, September 7-12, 2003: WPo4.45
    26.徐朝银.大型离子束刻蚀机研制(工程评审)报告[R].中国科学技术大学国家同步辐射实验室,2003.7
    27. Ryan T, Chamberlain P. Characterization of a large linear ion source[J]. J. Vac. sci. Techol. A, 1990, 8: 3204-3208
    28. Wahlin E K. Multi-grid ion beam source for generating a highly collimated ion beam[P]. United States Patent US7045793 B2, 2006
    29. Kanarov V, Hayes A, Yevtukhov R. Investigation of a rf inductively coupled plasma ion source capable of highly uniform and collimated ion-beam generation[J]. Rev. Sci. Instrum., 2006, 77: 03B515
    30. St. Jankuhn, F. Scholze, E. Hartmann, et al. Simulation of gridded broad-beam ion sources for ultra-precise surface proeessing[J]. Rev. Sci. Instrum., 2006, 77: 03B709
    31. F. Scholze, H. Neumann, M. Tartz, et al. Ion current density profile control of a scalable linear ion source and its application[J]. Rev. Sci. Instrum., 2006, 77: 03C7107
    32. Variale V, Claudione M. BRICTEST: a code for charge breeding simulations in RF quadrupolar field[J]. Nucl. Instru. Meth. A 2005, 543(2-3): 403-414
    33. Zelenak A, Bogomolov SL. Design and simulation of ion optics for ion sources for production of singly charged ions[J]. Rev. Sci. Instru. 2004, 75(5): 1672-1674
    34. Welton RF, Stockli MP, Boers JE, et al. Simulation of the ion source extraction and low energy beam transport systems for the Spallation Neutron Source[J]. Rev. Sci. Instru. 2002, 73(2): 1013-10
    35. Arzt T. Numerical simulation of the RF ion source RIG-10[J]. Journal of Physics D-applied physics, 1988, 21(2): 278-285
    36. J. R. Coupland, T. S. Green, D. P. Hammond, et al. A study of the ion beam intensity and divergence obtained from a single aperture three electrode extraction system[J]. Rev. Sci. Instru. 1973, 44(9): 1258-1270
    37. P. D. Reader, D. P. White, G. C. Issacson. Argon plasma bridge neutralizer operation with a 10-cm-beam-diameter ion etching source[J]. J. Vac. Sci. Technol., 15(3), 1978: 1093-1095
    38.苏志伟.离子刻蚀用大面积矩形射频离子源及刻蚀工艺的关键技术研究[D].核工业西南物理研究院硕士学位论文,2006
    39. V. Norkus, G. Gerlach, T. Reichard, et al. Direct measurement of the ion current density distribution of broad beam ion sources[J]. Surface & Coatings Technology, 2003(174-175): 922-927
    40. Wahlin E K, Watanabe M, Shimonek J, et al. Enhancement of collimated low-energy broad-beam ion source with four-grid accelerator system[J]. Appl. Phys. Lett., 2003, 83: 4722-4724
    41. D. Siegried, B. Buchhoitz, D. Burtner, et al. Radio frequency linear ion beam source with 6cm×66cm beam[J]. Rev. Sci. Instrum., 71, 2000: 1029-1031
    42. G. S. Ash. Cryogenic pumps, Handbook of vacuum science and technology[M]. New York: Academic press, 1998: (chapter2.5) 149-182
    43. Technical Manual for 6×66cm RF linear ion source[Z]. CO, America, Veeco Instruments Inc, 2002: #422323 Rev.I
    44. Technical Manual for GFC-1000-U Gas flow controller[Z]. CO, America, Veeco Instruments Inc, 2002: #9311-003 Rev.G
    45. Technical Manual for RF-2001 Controller[Z]. CO, America, Veeco Instruments Inc, 2002: #413741 Rev.K
    46. Technical Manual for RFN-300 RF Neutralizer[Z]. CO, America, Veeco Instruments Inc, 2002: #425430 Rev.B
    47. Spector(?) system overview[Z]. CO, America, Veeco-Ion Tech Inc, 2001: Manual #424086 Rev.F
    48. D. E. Siegried, B. W. Buchhoitz. 19th International vacuum exhibition, Tokyo, Japan, 25 September, 1997
    49.达道安,主编.真空设计手册(第三版)[Z].北京:国防工业出版社,2004
    50.高飞.KZ-400离子束刻蚀装置优化设计[D].中国科学技术大学硕士学位论文,2005
    51.THK综合商品目録(第二版)[Z].Tokyo,Japan:THK CO.,LTD,2002
    52.(美)皮茨.西索姆著,葛新石,等译.传热学[M].北京:科学出版社,2002
    53. Model 6517A electrometer/high resistance meter getting started manual[Z]. Ohio, U. S. A, Keithley Instruments Inc., 2000: #6517A-903-01 Rev.A
    54. Hua Lin, Lifeng Li, and Lijiang Zeng. In-situ monitoring during ion-beam etching of multilayer dielectric gratings: simulation and experiment[C]. Proc. SPIE, 5636: 143-149(2005)
    55.刘颖,等.光栅离子束刻蚀的光学在线检测装置及检测方法[P].中国专利,申请号:200710020220.0,2007
    56.董晓浩,高飞,黄志刚,等.(大面积扫描刻蚀)离子束均匀性分析与改善[C].第十二届全国电子束、离子束、光子束学术年会论文集,北京,2003:223-226
    57. Dong Xiao-hao, Liu Ying, Zhao Fei-yun, et al. Characterization of a large-scale ion beam etcher based on radio frequency linear source [J].中国科学技术大学学报,Vol.37, 2007(4-5): (in print)
    58.付绍军等.863-804专项“大口径衍射光学元件研制”“十五”阶段课题验收报告书[R].大口径衍射光学元件研制课题组,2006
    1. B. Lai, F. Cerrina. SHADOW: A synchrotron radiation ray tracing program[J]. Nucl. Instrum. & Meth. A246(1986): 337-341
    2. B. Lai, K. Chapman, F. Cerrina. SHADOW: New developments[J]. Nucl. Instrum. & Meth. A266(1988): 544-549
    3. C. Welnak, P. Anderson, M. Khan, et al. Recent developments in SHADOW[J]. Rev Sci Instrum, 1992, 63(1): 865-868
    4. C. Welnak, G. J. Chen, F. Cerrina. SHADOW: A synchrotron radiation and X-ray optics simulation tool[J]. Nucl. Instrum & Meth. A347(1994): 344-347
    5. R. J. Dejus, M. S. del. Rio. XOP: A graphical user interface for spectral calculations and x-ray optics utilities[J]. Rev Sci Instrum, 1996, 67(9): 1-4
    6. M. S. del. Rio, R. J. Dejus. XOP: A mutilplatform graphical user interface for synchrotron radiation spectral and optics calculations[J]. Proc. SPIE. 3152(1997): 148-157
    7. O. C. Zienkiewicz and R. L. Taylor. The finite element method(Fifth edition) [M]. Butterworth-Heinemann, Oxford, 2000
    8. Herman Winick, et al. Standard wiggler magnets, Nucl. Instr. & Meth., 152(1978), p9
    9. R. Coasson, et al. Multipole wigglers as sources of synchrotron radiation[J]. Nucl. Instr. & Meth., 201(1982), p3
    10. G. N. Greaves, et al. X-Ray optics & spectral brightness of the superconducting SRS wiggler[J]. Nucl. Instr. & Meth., 208(1983), p139
    11.熊光楞,郭斌,陈晓波,等.协同仿真与虚拟样机技术[M].北京:清华大学出版社,2004
    12.方建军,田建君,郑青春.光机电一体化系统设计[M].北京:化学工业出版社,2003
    13. Chian Liu, R. Conley, L. Assoufid, From Flat Substrate to Elliptical KB Mirror by Profile Coating[C]. AIP conference proceedings 705(2004): 704-707
    14. Akihisa Takeuchi, Yoshio Suzuki, and Hidekazu Takano. X-Ray Focusing Mirror Fabricated With Bent-Polishing Method[C]. AIP conference proceedings 705 (2004): 760-763
    15. S. Matsuyama, H. Mimura, H. Yumoto, et al. Development of mirror manipulator for hard-x-ray nanofocusing at sub-50-nm level[J]. Rev. Sci. Instru. 77, 093107, 2006
    16. Deming Shu et al. Redunantly constrained laminar structure as weak-link mechanisms[P]. United States Patent US0060200 A1, 2002
    17. K. R. Kim, H. Y. Kim, C. G. Kim. The collimating mirror system of the protein crystallography beamline 6B at PLS[J]. Nuclear Instruments and Methods in Physics Research A 467-468(2001) 785-788
    18.裴鹿成,张孝泽.蒙特卡罗方法及其在粒子输运问题中的应用[M].北京:科学出版社,1980
    19. F. Cerrina, P. Nealey, J. W. Taylor. Research Activities at the Center for NanoTechnology[R]. SRC users' meeting, October 27, 2000
    20. D. Korytar, I. Besse, P. Bohacek. Two-beam dynamical approach to multiple successive diffractions in x-ray crystal optics[J]. Czechoslovak Journal of Physics, Vol.46(11), 1996: 1011-1025
    21. T. Lzumi, et al. Photon beam position monitor[J]. Rev. Sci. Instrum, 60(7), 1989, p1951
    22. B. A. Karlin, et al. X-ray, soft X-ray, and VUV beam position monitor. Rev. Sci. Instrum, 63(1), 1992, p526
    23. E. E. Koch, et al., Handbook on Synchrotron Radiation, vol.1A, 1983, chapter5, p315
    24. P. Bergonzo, et al., Diamond as a tool for synchrotron radiation monitoring: beam position, profile, and temporal distribution. Diamond and Related Materials, Volume 9, Issues 3-6, April-May 2000, Pages 960-964
    25. H. Aoyagi, et al. Blade-type X-ray beam position monitors for SPring-8 undulator beamlines, Nucl. Instr. & Meth., A467-468(2001), p252
    26. Yaning Xie, et al. A beam position monitor and slit combination for synchrotron radiation. Nucl. Instr. & Meth., A467-468(2001), p256
    27.马利明.射频离子源研制及引出系统数值模拟[D].东北大学硕士学位论文,2005
    28. Variale V, Claudione M. BRICTEST: A code for charge breeding simulations in RF quadrupolar field[J]. Nucl. Instru. Meth. A2005, 543(2-3): 403-414
    29. Zelenak A, Bogomolov SL. Design and simulation of ion optics for ion sources for production of singly charged ions[J]. Rev. Sci. Instru. 2004, 75(5): 1672-1674
    30. Welton RF, Stockli MP, Boers JE, et al. Simulation of the ion source extraction and low energy beam transport systems for the Spallation Neutron Source[J]. Rev. Sci. Instru. 2002, 73(2): 1013-10
    31. Arzt T. Numerical simulation of the RF ion source RIG-10[J]. Journal of Physics D-appliedphysics, 1988, 21(2): 278-285
    32. Reinard Becker. Numerical simulation of ion-beam formation[J]. Rev.Sci.Instru. 1996,67(3): 1132-1137
    33. Technical documents for 6×66cm RF linear ion source [Z]. CO, America, Veeco Instruments Inc, 2004