人脸识别关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
特征提取是人脸识别研究的核心问题。通过采集设备所获得的人脸图像构成了高维的人脸观测空间,而人脸的鉴别特征则分布在高维空间中人脸样本所形成的低维流形(子空间)上。特征提取就是从高维观测空间搜寻低维的人脸鉴别子空间(流形)的过程。在这一过程中,光照处理和维数约简是两个关键的步骤。在观测空间中,人脸样本数据的分布在本质上是稀疏的,但各类别分布之间又是高度交叠的,造成了人脸样本的类内差异大于类间差异。对人脸图像进行光照处理,可以有效地调整观测空间中人脸样本的分布形态,缩小样本的类内差异,增大类间差异,为随后的维数约简(特征提取)奠定良好的基础。经过光照处理的人脸图像仍然位于高维的观测空间,向量的高维性质会造成“维数灾难”和“测度集中”现象,在这种情况下,直接利用分类器进行分类难以取得好的效果。因此,如何针对高维、小样本的人脸识别问题,设计出有效的维数约简算法,以便从高维的观测空间中提取的最具鉴别力的低维人脸特征,便成为人脸识别研究的中心任务。遵循这一思路,本文围绕着光照处理和特征提取这两个关键步骤,从理论和技术两个层面进行了深入的研究,在现有的研究基础上,提出了一些新的观点和解决方案。
     针对光照变化处理,论文分别提出了基于Gabor小波和基于NSCT (Nonsubsampled Contourlet Transform, NSCT)变换的光照处理算法。
     (1)基于Gabor小波的光照变化处理:Gabor小波内核类似于哺乳动物的视觉皮层感知细胞的响应曲线,因此图像的Gabor特征对光照、姿态和表情的变化不敏感。基于Gabor小波的这一特性,本文首先对人脸图像进行Gabor变换,得到人脸的Gabor表征,之后针对高维的Gabor特征,提出基于保持局部线性关系的监督流形学习算法:监督邻域保持嵌入算法(Supervised Neighborhood Preserving Embedding, SNPE),进行了有效的维数约简。在Yale和ORL两个人脸数据库上进行了实验,结果验证了算法的可行性。
     (2)基于NSCT变换的光照变化处理:类似于Gabor小波,NSCT变换(Nonsubsampled Contourlet Transform, NSCT)也是一种多尺度、多方向的2D小波变换,但和Gabor小波不同,NSCT的基函数之间是相互正交的。因此,NSCT各子图之间所包含的冗余信息最小,而且可以通过重构算法由子图得到原始图像。基于NSCT变换的这种优良性质,本文在Retinex光照模型的基础上,将人脸图像变换到NSCT域,采用自适应阈值对各高频子图进行滤波,通过逆NSCT变换重构得到人脸图像的光照不变量(特征)。实验结果表明,本文所提算法可以非常有效地削弱光照变化对人脸图像的影响,在很大程度上提高了算法的识别率。
     流形学习的核心思想是在降维的过程中保持数据空间局部的几何性质,是目前主流的非线性子空间方法,已经被广泛地应用到了人脸识别问题中。本文根据人脸样本分布的特点,基于现行方法提出了3种应用于人脸识别问题的监督流形学习算法:
     (1)自适应监督局部保持最优投影算法(Adaptive Supervised Locality Optimal Preserving Projection, ASLOPP):ASLOPP算法在构造样本空间特征图时,首先采用自适应邻域算法来确定样本空间中每个数据点邻域的大小,增强了对数据分布稀疏性的表征;其次通过改变权值来抑制邻域内不同样本之间的相似度,并通过增加约束条件,采用迭代算法进行目标函数的优化,使得低维嵌入空间的基向量之间相互正交,减少了嵌入空间中信息的冗余,同时也提高鉴别能力。在Extended Yale B和CMU PIE两个人脸库上进行了实验,结果表明该算法可以有效地提高人脸识别效果。
     (2)监督局部保持投影算法(Supervised Locality Preserving Proj ection, SLPP):该算法也是在LPP算法的基础上,根据人脸图像特征空间的分布特点,在构造样本空间特征图的过程中,首先利用自适应邻域算法确定样本点邻域大小,之后利用样本的先验类标信息,分布构造了类内图和类外图,用来表征样本空间中各类样本的分布情况。目标函数则融入了线性鉴别分析(Linear Discriminant Analysis, LDA)的思想,使得优化后的嵌入空间不仅最优保持了原始样本空间的局部几何结构,同时各类样本的类内散度最小化,类间散度最大化,大幅度增强了嵌入空间的鉴别能力。
     (3)监督邻域保持嵌入算法(Supervised Neighborhood Preserving Embedding):监督邻域保持嵌入则是在NPE算法(Neighborhood Preserving Embedding, NPE)的基础上,在构造样本空间的邻域图的过程中,利用样本的类标信息将邻域内样本分为内类样本和外类样本,通过目标函数的优化,使得嵌入空间在最优保持样本空间局部线性关系的同时,同类数据之间距离缩小,不同类数据之间距离增大,从而嵌入空间在最优保持各类数据子流形的基础上,减少了数据的类内散度,增大了数据的类间散度,提高了鉴别能力。
Feature extraction is a key problem in the study of face recognition. Face images obtained by image acquisition equipment construct the high-dimensional face observation space, and discriminative features of human face lie on the low manifold (subspace) formed by face samples. What is the feature extraction is the process of searching the low-dimensional discriminative subspace (manifold) from the high-dimensional observation space. During this process, illumination processing and dimensionality reduction is the two crucial steps. The distribution of face sample data in the observation space is sparse essentially, while that of each class is highly overlapping with each other, resulting that the differences of face samples within classes are larger than that between classes. Processing the illumination of face images effectively can adjust the distribution form of face samples in the observation space, reducing the differences within classes, increasing those between classes, and thus laying a good foundation for the followed dimensionality reduction (feature extraction). However, face images, after handling lighting, still stay in the observation space, and the high-dimensional property of vectors will incur'Curse of Dimensionality' and 'measure concentration', in which case it is hard to achieve good results by using classifiers to classify the samples directly. Therefore, it becomes the central task in the study of face recognition how to design effective algorithms of reducing dimensionality to extract the low-dimensional face features from the high-dimensional observation space with the most powerful discriminative. Followed this idea, we made an intensive study on these two crucial steps of processing illumination and extracting features from the view of theory and technology, and proposed some new idea and solutions based on the existing research results.
     The kernels of Gabor wavelet are similar to the response of the two-dimensional receptive field profiles of the mammalian simple cortical cell, and exhibit the desirable characteristics of capturing salient visual properties such as spatial localization, orientation selectivity, and spatial frequency selectivity. Therefore, the Gabor features of images are insensitive to the variations of illumination, pose and expression. Based on this property of Gabor wavelet, we first made a Gabor transform to face images, with the facial Gabor features obtained; and then proposed a locality preserving based supervised manifold learning algorithm designed for the high-dimensional Gabor features, called Supervised Neighborhood Preserving Embedding, by which the dimensionality is reduced effectively. Experimental results on the two face databases of Yale and ORL show the feasibility of the proposed algorithm.
     Similar to the Gabor wavelet, Nonsubsampled Contourlet Transform (NSCT) is also a multi-scale and multi-direction2D wavelet transform. The difference from the Gabor wavelet is that the basis functions of NSCT is orthogonal to each other, with the least redundant information contained by the sub-bands of NSCT. In consideration of this good feature of NSCT, we transformed, based on the Retinex illumination model, the face image into NSCT domain, used adaptive threshold to filter each high-frequency sub-band, and obtained the illumination invariant of face images by using inverse NSCT. Experimental results indicated that the proposed algorithm can very effectively reduce the effect of illumination variation on face images, improving the recognition rate of the algorithm to a large extent.
     Manifold learning has a core idea of preserving the local geometric properties of the data space during the process of reducing the dimensionality, which is now a mainstream nonlinear subspace method and wildly applied to face recognition. In this paper, according to the distribution feature of face samples, we proposed3kinds of supervised learning algorithms for face recognition based on an analysis of limits of some manifold learning algorithms.
     (1) Adaptive Supervised Locality Optimal Preserving Projection (ASLOPP). After investigating some drawbacks of existing supervised LPP algorithms in classification problem, ASLOPP method determines the neighborhood size of each data in sample space by using adaptive neighborhood algorithm, adds constraint conditions, and employs iterative method to optimize the objective function, which leads to orthogonal basis vectors in low-dimensional embedding, decreasing the information redundancy in the embedding while increasing the discriminative power. We conducted experiments on Extended Yale B and CMU PIE face databases, with good results improving the face recognition rates obviously.
     (2) Supervised Locality Preserving Projection (SLPP). This algorithm is also based on LPP, which first employs adaptive neighborhood method for determining the sample neighborhood size in the process of constructing the eigenmap of sample space, in terms of the distribution of facial feature space. Then the prior class label information of samples is used to construct within-class and between-class maps, respectively, by which the distribution of each class is represented. And the objective function absorbs the idea of LDA, which allows the optimized embedding not only maintain the local geometry of the original sample space, but also minimize the within-class variance while maximize the between-class one, greatly enhancing the discriminative of the embedding.
     (3) Supervised Neighborhood Preserving Embedding. On the basis of the Neighborhood Preserving Embedding (NPE), this algorithm determines the link mode between samples by the class label in constructing the neighborhood map of the sample space. By optimization of the objective function, the embedding holds the local linearity of the sample space optimally, and also greatly improve the discriminative power.
引文
[1]Elliott S J, Massie S A, Sutton M J. The Perception of Biometric Technology:A Survey. In:Proceedings of IEEE Workshop on Automatic Identification Advanced Technologies,2007:259-264.
    [2]Xiao Q. Technology review-biometries-technology application, challenge, and computational intelligence solutions. Computational Intelligence Magazine,2007, 2(2):5-25p.
    [3]Zhao W., Chellappa R., Rosenfeld A., et al. Face Recognition:A Literature Survey. ACM Computing Surveys,2003,35(4):399-458.
    [4]周襄楠.http://news.tsinghua.edu.cn/new/news.php?id=12297[EB/OL].2006.
    [5]中关村在线报道.1ittp://news.zol.com.cn/26/263844.html[EB/OL].2006.
    [6]H. Chan, W. Bledsoe. A Man-Machine Facial Recognition System:Some Preliminary Results. Technical Report, Panoramic Research Inc., Cal,1965
    [7]张翠平,苏光大.人脸识别技术综述.中国图像图形学报.2000,5(11):885-894
    [8]T Kanade. Picture Processing System by Computer and Recognition of Human Faces:[Ph.D Dissertation]. Kyoto:Kyoto University,1973,87-93.
    [9]G. Kaufman, K. Breeding. The Automatic Recognition of Human Faces from Profile Silhouettes. IEEE Transactions on Systems, Man, and Cybernetics,1976,6(2):113-121
    [10]L. Harmon, M. Khan, R. Lasch, et al. Machine Identification of Human Faces. Pattern Recognition,1981,13(2):97-110.
    [11]M Turk, A Pentland. Eigenfaces for recgnition. Journal of Cognitive Neuroscience,1991, 3(1):71-86.
    [12]Samal Iyengar. Automatic Recognition and Analysis of Human Faces and Facial Expressions. Pattern Recognition,1992,25(3):131-136.
    [13]Chellappa, Wilson, Sirohey. Human and Machine Recognition of Faces:A Survey. In: Proceeding of IEEE,1995,1223-1225.
    [14]Zhao, Chellappa, Rosenfeld, Phillips, Face Recognition:A Literature Survey, ACM Computing Survey,2003,35(4):399-458.
    [15]P. Belhumeur, Hespanha, J. Kriegman, D. Eigenfaces vs. Fisherfaces:recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
    [16]L.-F. Chen, H.-YM. Liao, et al. A New LDA-Based Face Recognition System Which Can Solve the Small Sample Size Problem. Pattern Recognition,2000,33(2): 1713-1726.
    [17]R. Huang, Q. Liu, H. Lu, et al. Solving the Small Size Problem of LDA. In:Proc.16th Int'l Conf. Pattern Recognition,2002,29-32.
    [18]W.Zhao, R. Chellappa, A. Krishnaswamy. Discriminant Analysis of Principal Components for Face Recognition. In:Proc. of Inter. Conf. Auto. Face and Gesture Recognition,1995, 336-341.
    [19]H. Yu, J. Yang. A Direct LDA Algorithm for High-Dimensional Data with Application to Face Recognition. Pattern Recognition,2001,34(3):2067-2070.
    [20]D.-Q. Dai, P. C. Yuen. Regularized Discriminant Analysis and Its Application to Face Recognition. Pattern Recognition,2003,36(2):845-847.
    [21]L.VViskott, J.M.Fellous, N.Kruger, et al. Face Recognition by Elastic Bunch Graph Matching. IEEE Transactions on Pattern analysis and Machine Intelligence,1997,19(7): 775-779.
    [22]Cootes T.F., Edwards, G.J., et al. Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(6):681-685.
    [23]Tenenbaum J, Silva V, Langford J. A global geometric framework for nonlinear dimensionality reduction. Science,2000,290 (5500):2319-2323.
    [24]Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science,2000,290 (5500):2323-2326.
    [25]Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural computation,2003,15 (6):1373-1396.
    [26]Zhang Z, Zha H. Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM Journal of Scientific Computing,2004,26(1):313-338.
    [27]X. He, S. Yan, Y. Hu, P. Niyogi, et al. Face recognition using Laplacian faces. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27 (3):328-340.
    [28]A. S. Georghiades, D. J. Kriegman, P. N. BeIhumeur. Illumination cones for recognition under variable lighting:faces. IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1998,52-59.
    [29]V. Blanz, T. Vetter. Face recognition based on fitting a 3D morphable model. IEEE Transactions Pattern Analysis and Machine Intelligence,2003,25(9):1063-1074.
    [30]韩燕丽,杨慧宇,苏伟.基于分形和肤色模型的自然态人脸检测方法研究.计算机工程与设计,2009,30(1):251-254.
    [31]Martinkauppi, J. B., Pietikainen, M. Facial Skin Color Modeling. In:Handbook of Face Recognition, Springer, New York,2005,113-135.
    [32]丁海波,薛质,李生红.基于HSI空间的肤色检测方法.计算机应用,2004,24 (12):210-211.
    [33]Lin, C. Face detection in complicated backgrounds and different illumination conditions by using YCbCr color space and neural network. Pattern Recognition Letters,2007,28 (16):2190-2200.
    [34]Hond, D., Spacek, L. Distinctive Descriptions for Face Processing. In:8th BMVC, England,320-329.1997.
    [35]Nilsson, M., Dahl, M., Claesson I. The successive mean quantization transform. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),2005, 4429-432.
    [36]S. C. Yan, X. F. He, et al. Bayesian shape localization for face recognition using global and local textures. IEEE Transactions on Circuits and Systems for Video Technology, 2004,14(1):102-113.
    [37]X. G. Wang, X. O. Tang. An improved Bayesian face recognition algorithm in PCA subspace. In:Proceedings of the 2003 IEEE International Conference on Acoustics, Speech, and Signal Proeessing. HongKong, China,2003,3:129-132.
    [38]Z. F. Li, X. O. Tang. Bayesian Pave revognition using support vector machine and face clustering. In:Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington DC, USA,2004,2:374-380.
    [39]T. Kohonen. Self-organization and associative mernozy. Berlin:Springer,1988.
    [40]N.Intrator, D.Reisfeld, Y Yeshurun. Face Recognition by Supervised/Unsupervised hybrid Network. Pattern Recognition Letters.1996,17(1):67-76.
    [41]S. Lawrence, C. L. Giles, A. C. Tsoi, et al. Face recognition:a convolutional neural-network approach. IEEE Transactions on Neural Networks,1997,8(1):98-113.
    [42]V. N. Vapnik. The nature of statistical learning theory. New York, Springer,1995.
    [43]G. D. Guo, S. Z. Li, K. Chars. Face recognition by support vector machines. In: Proceedings of IEEE Conf. Automatic Face and Gesture Recognition,2000,196-199.
    [44]P. L. Phillips. Support vector machines applied to face recognition. Advances in Neural information Proeessing Systems,1999,11:803-849.
    [45]Phillips P J, Grother P, Micheals R J, et al. Face recognition vendor test 2002:Evaluation report. NIST, TR-IR 6965, http://www.itl.nist.gov/iad/894.03/face/face.html.
    [46]Messer K, Kittler J, Sadeghi M, et al. Face authentication competition on the Banca database. In:Proc First International Conference on Biometric Authentication,2004, 8-15.
    [47]Phillips P J, Grother P, Micheals R J, et al. Face recognition vendor test 2002:Evaluation report. http://www.frvt.org/FRVT2002/documents.htm.
    [48]Yuankui Hu, Zengfu Wang. A low-dimensional illumination space representation of human faces for arbitrary lighting conditions. Acta Automatica sigica,2007,33(1):9-14.
    [49]Bowyer K W, Chang K, Flynn P. A survey of approaches to three-dimensional face recognition. In:Proc. ICRR,2004,358-361.
    [50]Kong S. G, Heo J, Abidi B, et al. Recent advances in visual and infrared face recognition-A review. CVIU,2005,97(1):103-135.
    [51]Pan Z, Healey G, Prasad M, et al. Face recognition in Hyperspectral images. IEEE Trans. PAMI,2003,25(12):1552-1560.
    [52]Savvides M, Kumar B. Illumination normalization using logarithm transforms for face authentication. In:Proceedings of International Conference on Audio-and video-based biometric person authentication,2003,1055-1055.
    [53]Stark J A. Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Transactions on Image Processing,2000,9(5):889-896.
    [54]Shan S, Gao W, Cao B, Zhao D. Illumination normalization for robust face recognition against varying lighting conditions. In:Proceedings of IEEE International Workshop on Analysis and Modeling of Faces and Gestures,2003b,157-164.
    [55]Shashua A. Geometry and photometry in 3D visual recognition. Massachusetts Institute of Technology, Cambridge,USA,1994.
    [56]Hallinan P W. A low-dimensional representation of human faces for arbitrary lighting conditions. In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition,1994,995-999.
    [57]Georghiades A S, Belhumeur P N. From Few to Many:Illumination Cone Models for Face Recognition Under Variable Lighting and Pose. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(6):643-660.
    [58]Ramamoorthi R, Hanrahan P. On the relationship between radiance and irradiance: determining the illumination from images of a convex lambertain object. Journal of Optical Society ofAmerican,2001,18(10):2448-2459.
    [59]Basri R, Jacobs D W. Lambertian reflectance and linear subspaces. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(2):218-233.
    [60]Lee K C, Ho J, Kriegman D J. Acquiring linear subspaces for face recognition under variable lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005, 27(5):684-698
    [61]Qing L-Y, Shan S-G, Chen X-L, et al. Face recognition under varying lighting based on the harmonic images. Chinese Journal of Computers,2006a,29(5):760-767.
    [62]H. F. Chen, P. N. Belhumeur, D. W. Jacobs. In search of illumination invariants. IEEE Conference on Computer Vision Pattern Recognition,2000,1:254-261
    [63]EDWIN H. LAND, JOHN J. MOCANN. Lightness and Retinex theory. Journal of the Optical Society of America,1971,61(1):1-11.
    [64]ZIA-UR RAHMANZIA, DANIEL J. JOBSON, GLENN A. WOODELL. Retinex processing for automatic image enhancement. Journal of Electronic Imaging,2004, 13(1):100-110.
    [65]Jobson D J, Rahman Z, Wooden G A. Properties and performance of a center/surround retinex. IEEE Transactions on Image Processing,1997b,6(3):451-462.
    [66]Jobson D J, Rahman Z, Woodell G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Transactions on Image Processing,1997a,6(7):965-976.
    [67]A. Shashua, T. Riklin-Raviv. The quotient image:class based re-rendering and recognition with varying illuminations. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(2):129-139.
    [68]D. J. Jobson, Z. Rahman,. A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Transactions on Image Processing,1997, 6(7):965-976.
    [69]Weilong Chen, Er M J, Wu S. Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain. IEEE Transactions on Systems, Man, and Cybernetics,2006,3(2):458-466.
    [70]R. Gross and V Brajovic. An image pre-processing algorithm for illumination invariant face recognition. In Proc.4th Int'l Conf. on AVBPA,2003,10-18.
    [71]Zhang T, Fang B, YuanY Yan, et al. Multiscale facial structure representation for face recognition under varying illumination. Pattern Recognition,2009a,42(2):251-258.
    [72]Cheng Y, Hou Y, Zhao C, Li Z, Hu Y, Wang C. Robust face recognition based on illumination invariant in nonsubsampled contourlet transform domain. Neurocomputing, 2010a,73(11):2217-2224.
    [73]M. Lades, J.C. Vorbruggen, J. Buhmann, J. Lange, et al. Distortion invariant object recognition in the dynamic link architecture. IEEE Trans, on Computers,1993,42 (3): 300-311.
    [74]T. Ojala, M. Pietikainen, D. Harwood. A comparative study of texture measures with classification based on featured distribution. Pattern Recognition,1996,29 (1):51-59
    [75]T. Ojala, M. Pietikainen, T. Maenpaa. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans, on PAMI,2002,24 (7): 971-987.
    [76]边肇棋,张学工等.模式识别(第二版).北京:清华大学出版社,2000,58-76.
    [77]Y Moses, Y Adini, and S. Ullman. Face recognition:The problem of compensating for changes in illumination direction. In Proceedings of the European Conference on Computer Vision,1994,286-296.
    [78]Bellman R. Adaptive Control Processes:New Jersey:Princeton University Press, A Guided Tour [M].1st ed. Princeton 1961.
    [79]Cootes T F, Taylor C J, Cooper D H, et al. Active shape models-Their training and application. Computer vision and Image Understanding,1995,61(1):38-59.
    [80]Cootes T F, Edwards G J, Taylor C J. Active appearance models. IEEE Trans. PAMI, 2001,23(6):681-685.
    [81]Deniz O, Castrillon M, Hemandez M. Face recognition using independent component analysis and Support vector machines. Pattern Recognition Letters,2003,24:2153-2157.
    [82]Lin S H, Kung S Y, Lin L J, et al. Face recognition/Detection by probabilistic decision-based neural network. IEEE Trans, on Neural Network,1997,8(1):114-132.
    [83]Deniz O, Castrillon M, Hemandez M. Face recognition using independent component analysis and support vector machines. Pattern Recognition Letters,2003,24:2153-2157.
    [84]Heisele B, Ho P, Poggio T. Face recognition with support vector machines:global versus component-based approach. In:Proc. of International Conference on Computer Vision, Vancouver, Canada,2001 (2):688-694.
    [85]Guo G, Li S Z, Chan K. Face recognition by support vector machines. In:Proc. of the 4th Conference on Auto Face and Gesture Recognition,2000,196-201.
    [86]P. Belhumeur, Hespanha, J. and Kriegman, D. Eigenfaces vs. Fisherfaces:recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
    [87]M. S. Bartlett, J. R. Movellan, T. J. Sejnowski. Face recognition by independent component analysis. IEEE Trans. Neural Networks,2002,13(6):1450-1460.
    [88]M. H. Yang. Kernel eigenfaces vs. Kernel Fisherfaces:Face Recognition Using Kernel Methods. In:Proc. Fifth Int'l Conf. Automatic Face and Gesture Recognition,2002, 1121-1124.
    [89]G. Baudat, F. Anouar. Generalized Discriminant Analysis Using a Kernel Approach, Neural Computation,2000,12(10):2385-2404.
    [90]L. Wiskott, J.M. Fellous, N. Kruger, C. Von der Malsburg. Face recognition by elastic bunch graph matching. IEEE Trans, on PAMI,1997,19 (7):775-779.
    [91]P. Kalocsai, C. Von der Malsburg. Face recognition by statistical analysis of feature detectors. Image and Vision Computing,2000,18(4):273-278.
    [92]Beyer K, Goldstein J, Ramakrishnan R. When Is" Nearest Neighbor" Meaningful?. In proceedings of 7th international conference on Database theory,1998:217-235.
    [93]C.J. Liu and H. Wechsler. Gabor feature based classification using the enhanced Fisher linear discriminant model for face recognition. IEEE Trans, on Image Processing,2002, 11(4):467-476.
    [94]C.J. Liu, H. Wechsler. Independent component analysis of Gabor features for face recognition. IEEE Trans, on Neural Networks,2003,14 (4):919-928.
    [95]L. Shen, L. Bai, M. Fairhurst. Gabor wavelets and generalized discriminant analysis for face identification and verification. Image and Vision Computing,2006,25 (5):553-563.
    [96]Chen T, Wotao Yin, Xiang Sean Zhou, et al. Total variation models for variable lighting face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,2006, 28(9):1519-1524
    [97]L. Cunha, J. Zhou, M. N. Do. The nonsubsampled contourlet transform:theory, design, and applications. IEEE Transactions on Image Processing,2006,15(2):3089-3101.
    [98]Basri R, Jacobs D W. Lambertian reflectance and linear subspaces. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(2):218-233.
    [99]Horn B. K. P. Robot Vision. Cambridge, US:MIT Press,1986,231-236.
    [100]N. G. Chitaliya, Prof. A. I. Trivedi. An efficient method for face feature extraction and recognition based on contourlet transform and principal component analysis using neural network. International Journal of Computer Applications,2010,6(4):28-33.
    [101]Kokkinakis K, Nandi A. K, Exponent parameter estimation for generalized Gaussian probability density functions with application to speech modeling. Signal Processing,2005,85(9):1852-1858.
    [102]A. Pizurica, W. Phiiaps. Estimating the probability of the presence of a signal of interest in multiresolution single and multiband image denoising. IEEE Transactions on Image Processing,2006,15(3):654-665.
    [103]Y. Cheng, Y. k. Hou, C.X. Zhao, et al. Robust face recognition based on illumination invariant in nonsubsampled contourlet transform domain. Neurocomputing,2010,73(2): 2217-2224.
    [104]Gyanendra K. Verma, Shitala Prasad, Gohel Bakul. Robust face recognition using curvelet transform. In:Proceedings of the 2011 international conference on communication, computing & security, NY, USA:ACM,2011,239-242.
    [105]Seung H S, Lee D D. The manifold ways of perception. Science,2000,22(290): 2268-2269.
    [108]R. A. Horn, C. R. Johnson,杨奇译.矩阵分析.北京:机械土业出版社,2005,34-38.
    [106]J. H. Friedman. Regularized Discriminant Analysis. Journal of the American Statistical Association,1989.84(405):165-175.
    [107]P. N. Belhumeur, J. P. Hespanha, D. J. Kriegman. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans. Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
    [109]L F Chen, H.Y.M. Liao, M.T. Ko, et al. A New LDA-Based Face Recognition System Which can Solve the Small Sample Size Problem. Pattern Recognition,2000,33(10): 1713-1726
    [110]邓伟洪.高精度人脸识别算法研究[D].[PHD].北京:北京邮电大学,2009,46.
    [111]Nayar S, Nene S, Murase H. Subspace method for robot vision. IEEE Trans, on Robotics and Automation,1996,12(5):750-758.
    [112]Donoho D L, Grimes C. Hessian eigenmaps:New locally linear embedding techniques for high-dimensional data. In:Proc. of the National Academy of Science,2003,100(10): 5591-5596.
    [113]He X F, Deng C, Yan S C, et al, Neighborhood preserving embedding. In:Proc. of 10th IEEE International Conference on Computer Vision, Beijing, China,2005,1208-1213.
    [114]J. Yang, D. Zhang, J-Yang, et al. Globally maximizing, locally minimizing: Unsupervised discriminant projection with applications to face and palm bioriietrics. IEEE Trans. Pattern Anal. Mach. Intell.,2007,29(4):650-664.
    [115]Zhang T H, Yang J, Zhao D L, et al. Linear local tangent space alignment and application to face recognition. Neurocomputing,2007,70:1547-1553.
    [116]De Ridder D, Kouropteva O, Okun O, et al. Supervised locally linear embedding. In: Proceedings of the 2003 Joint International Conference on Artificial Neural Networks and Neural Information Processing, Springer-Verlag,2003,333-341.
    [117]Pan Y, Ge S S, Mamun A. Weighted locally linear embedding for dimension reduction. Pattern Recognition,2009,42(5):798-811.
    [118]Geng X, Zhan D C, Zhou Z H. Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2005,35(6):1098-1107.
    [119]陈维恒.微分流形初步.北京:高等教育出版社,2002,12-15.
    [120]Silva V D, Tenenbaum J B. Global versus local methods in nonlinear dimensionality reduction. In:Advances in Neural Information Processing Systems 15. Cambridge MA, 2003:705-712.
    [121]B. Raducanu, F. Dornaika. A supervised non-linear dimensionality reduction approach for manifold learning. Pattern Recognition,2011,45(6):2432-2444.
    [122]J. Lu, Y.-P. Tan. Improved discriminant locality preserving projections for face and palmprint recognition. Neurocomputing,2011,74(18):3760-3767.
    [123]B. Cheng, J.C. Yang, S.C. Yan, Y. Fu, T.S. Huang. Learning with 1(1)-graph for image analysis. IEEE Transactions on Image Processing,2010,19:858-866.
    [124]L.S. Qiao, S.C. Chen, X.Y. Tan. Sparsity preserving projections with applications to face recognition. Pattern Recognition,2010,43 (8):331-341.
    [125]L. Zhang, M. Yang, Z. Feng, D. Zhang. On the dimensionality reduction for sparse representation based face recognition. In:Prof, of 2010 International Conference on Pattern Recognition, Hong Kong, China,2010,1237-1240.
    [126]W.K. Wong, H.T. Zhao. Supervised optimal locality preserving projection. Pattern Recognition,2011,45(1):186-197.
    [127]Shanwen Zhang, Ying-Ke Lei, et al. Modified orthogonal discriminant projection for classification. Neurocomputing,2011,74 (17):3690-3694.
    128] Shanwen Zhang, Ying-Ke Lei, et al. Semi-supervised locally discriminant projection for classification and recognition. Knowledge-Based Systems,2011,24 (2):341-346.
    [129]W.K. Wong, H.T. Zhao. Supervised optimal locality preserving projection. Pattern Recognition,2012,45 (1):186-197.
    [130]Lin YuSheng, Zheng Yujie, et al. An orthogonal discriminant locality preserving projections with Schur decomposition. Journal of Image and Graphics,2009,14(4): 701-706.
    131] Jin Yi, Ruan Qiuqi. Kernel based orthogonal locality preserving projections for face recognition [J]. Journal of Electronics & Information Technology,2009,31(2): 283-287.
    [132]Liwei Wang, Yan Zhang, et al. On the Euclidean distance of images. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(8):1334-1339.
    [133]Jiani Hu, Weihong Deng, et al. Learning a locality discriminating projection for classification. Knowledge-Based Systems,2009,22(10):562-568.
    [134]Wang Qingjun, Zhang Rubo. Kernel Orthogonal Unsupervised Discriminant Projection with Applications to Face Recognition. Journal of Image and Graphics,2010, 22(10):1783-1787.
    [135]Lin YuSheng, Zheng Yujie, Yang Jingyu. An orthogonal discriminant locality perserve projections with Schur decomposition. Journal of Image and Graphics,2009,14(4): 701-706.
    [136]Jin Yi, Ruan Qiuqi. Kernel based orthogonal locality preserving projections for face recognition. Journal of Electronics & Information Technology,2009,31(2):283-287.
    [137]W. K. Wong, H. T. Zhao. Supervised optimal locality preserving projection. Pattern Recognition,2012,45(1):186-197.
    [138]L. Zhang, L. Qiao, S. Chen. Graph-optimized locality preserving projections. Pattern Recognition,2010.43(6):1993-2002.
    [139]H. Zhao, S. Sun, Z. Jing. Local-information-based uncorrelated feature extraction. Optical Engineering,2006,45:020505.
    [140]D. Cai, X. He, J. Han, H.-J. Zhang. Orthogonal Laplacian faces for face recognition. IEEE Transactions on Image Processing,2006,15(11):3608-3614.