我国木本生物柴油产业布局研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,“不与粮争地、不与民争粮”的木本生物柴油产业受到包括中国在内的广大发展中国家的重视。在中国,木本生物柴油产业已经呈现快速发展的态势,但是作为一个新兴产业和社会现象,仍存在一定问题与不确定性,其中资本蜂拥而入、项目一哄而上等现象较为突出,导致产业布局混乱。因此,在原料供应和生产环节研究集中以及技术储备充分的情况下,研究我国木本生物柴油产业布局问题对于整个产业的发展具有重要意义。
     本研究基于可持续发展理论、区位理论、比较优势理论、增长极理论、点轴理论,以木本生物柴油产业为研究对象,通过查阅大量国内外文献,全面梳理和总结国内外木本生物柴油产业的发展概况,进而分析我国木本生物柴油产业布局现状与主要影响因素;在此基础上,利用因子分析法构建了我国木本生物柴油产业合理布局的评价指标体系,并通过专家问卷调查和层次分析法确定评价指标体系的权重,进而利用系统聚类分析方法从宏观层面分析我国木本生物柴油产业的优先布局区域和布局模式;另外,利用GIS和运输总成本相结合的方法,从微观层面分析我国木本生物柴油加工厂的厂址选择,并以四川省攀枝花市的以小桐子为原料的木本生物柴油加工厂为案例进行实证分析;最终提出我国木本生物柴油产业布局的政策建议和保障措施。
     本研究主要成果体现在:(1)明确资源因素、人口和劳动力因素、需求因素、经济因素以及政策因素等是影响我国木本生物柴油产业布局的主要因素。(2)在明确构建我国木本生物柴油产业合理布局评价指标体系意义和原则的前提下,结合现有文献和专家访谈,选取相关评价指标,并利用因子分析方法,对选取的评价指标的结构进行分析,最终构建了我国木本生物柴油产业合理布局的评价指标体系。(3)利用专家问卷调研、层次分析法、数据标准化、系统聚类等方法从宏观层面将我国木本生物柴油产业的优先布局区域分为最优布局区域、适宜布局区域和不适宜布局区域三类,并提出了增长极和增长极推广两种布局模式。(4)利用GIS和运输总成本模型相结合的方法,从微观层面分析我国木本生物柴油加工厂的厂址选择;并通过案例分析得出,银江镇是攀枝花市以小桐子为原料的木本生物柴油加工厂的最优厂址。
     本研究最后提出了我国木本生物柴油产业布局的政策建议与保障措施。其中国家层面的政策建议主要包括:综合考虑产业布局的影响因素,明确实施机制;根据产业不同发展阶段,合理制定布局模式。地方层面的政策建议主要包括:围绕国家总体布局战略,因地制宜制定相应规划政策;加强地方政府之间的合作与交流。我国木本生物柴油产业布局实施的保障措施主要包括:组织保障、法制保障、资金保障、技术保障等四个方面。
In recent years, woody biodiesel industry has gained the attention of a wide range of developing countries, including China. In China, this industry has developed rapidly. But as a newly born industry and social phenomenon, there are still problems and uncertainties standing out, such as much capital crashing in and many programs setting up, which cause the disorder in the industrial layout. Therefore, based on the facts that there are many researches about material supply and material production, and the technical reserve is sufficient, studying the industrial layout of woody biodiesel in China is significant to the whole industry.
     Based on the theory of sustainable development, location theory, the theory of comparative advantage, growth pole theory and the pole-axis theory, this paper takes woody biodiesel industry as study object. After referring to a large number of domestic and oversea literatures, and summarizing the development of their woody biodiesel industries, the author tries to analyze the situation of the industrial layout of woody biodiesel in China and its major influence factors. On this basis, the indicator system of China's woody biodiesel industrial layout is established with the method of factor analysis. By questionnaire survey of experts and Analytic Hierarchy Process, the weight of the indicator system is determined. Afterwards, the priority regions and layout patterns of China's woody biodiesel industry are analyzed on a macroscopic scale using systematic cluster analysis.In addition, with the method combining GIS with total transportation cost, this paper analyzes the site selection of woody biodiesel factories in China on a microscopic scale, and picking Panzhihua City in Sichuan Province as an example to do empirical analysis using jatropha curcas as raw material. In the end, certain policy suggestions and supporting measures to the industrial layout of woody biodiesel in China are put forward.
     Major achievements of this study are shown as follows:
     a) The main factors influencing the industrial layout of woody biodiesel in China are including resource factor, population and labor force factors, demand factor, economic factor and policy factor.
     b) After realizing the meanings and determining the principles of establishing the indicator system of China's woody biodiesel industrial layout, the author combines current literatures and expert interviews to select the indicators of correlation, and uses factor analysis method to analyze the chosen indicators. Eventually, the indicator system of China's woody biodiesel industrial layout is established.
     c) With the approaches of questionnaire survey of experts, Analytic Hierarchy Process, data standardization and systematic cluster analysis, the priority regions of China's woody biodiesel industry are determined on a macroscopic scale and divided into there categories, including the optimal layout regions, the appropriate layout regions and the inappropriate layout regions. Meanwhile, two kinds of layout patterns are presented, which are the growth pole layout pattern and the layout pattern of growth pole promotion.
     d) With the method combining GIS with total transportation cost, the site selection of woody biodiesel factories in China on a microscopic scale is analyzed. Through empirical analysis, Yinjiang Town is the best site to build woody biodiesel factory in Panzhihua City using jatropha curcas as raw material.
     At last, certain policy suggestions and supporting measures to the industrial layout of woody biodiesel in China are put forward. The policy suggestions on the national level include two points-the first one is that taking the influence factors of the industrial layout into account, and determine the implementation mechanism clearly; the other is that formulating the layout patterns rationally on the basis of different development phases of the industry. The policy suggestions on the local level include two points as well, which are firstly, based on the overall state layout strategy, to set up corresponding policies according to local conditions and secondly, to enhance the cooperation and communication between local governments. The supporting measures to implement the industrial layout of woody biodiesel in China are organizational guarantee, legal system guarantee, fund guarantee and technical support.
引文
[1]安晓东等.乙醇与生物柴油应用对比分析和市场化前景[J].农机化研究,2008,8(8):189-193.
    [2]蔡庆丽.广西发展非粮生物燃料乙醇产业的优势与对策[J].农业现代化研究,2008,29(5):592-595.
    [3]蔡庆丽.因地制宜发展小油桐生物柴油促进广西喀斯特地区新农村建设[J].生态经济,2009,1:74-77.
    [4]陈聪等.生物质大电厂优化选址建模及决策分析[J].农业工程学报,2011,1(27):255-260.
    [5]陈大鹏等.DEA方法在工业厂址选择中的应用研究[J].西安建筑科技大学学报(自然科学版),2012,3(44):364-368.
    [6]陈娟.湖北省农村生物质能源产业布局与发展研究[D].武汉:华中农业大学,2012.
    [7]戴伯勋,沈宏达.现代产业经济学[M].北京:经济管理出版社,2001.
    [8]丁声俊.国外生物柴油的发展状况、政策及趋势[J].中国油脂,2010,35(7):14.
    [9]丁声俊.国外生物能源的法制建设及对中国的借鉴(下).世界农业,2010(3):8-52.
    [10]董聪等.生物质发电厂规划选址模型的建立及应用[J].太阳能学报,2012,10(33):1732-1737.
    [11]都晓岩.泛黄海地区海洋产业布局研究[D].青岛:中国海洋大学,2008.
    [12]方创琳.中国城市化进程中的风能资源开发与非并网风电产业基地空间布局模式[J].资源科学,2009,11(38):1602-1611.
    [13]方精云等.中国木本植物分布图集[M].北京:高等教育出版社,2009.
    [14]高德健,张彩虹.发展木本生物柴油的环境效益及路径分析[J].环境保护,2014(5):47-48.
    [15]高珊.基于时间petri网的选矿厂厂址选择研究[D].西安:西安建筑科技大学,2011.
    [16]高文永.中国农业生物质能资源评价与产业发展模式研究[D].北京:中国农业科学院,2010.
    [17]关伟,胡艳慧.基于市域范围的高新技术产业布局模式研究[J].人文地理,2008,(3):92-96.
    [18]国家林业局.林业生物柴油原料林基地“十一五”建设方案[Z].北京,2007.
    [19]国家林业局.林业生物质能源发展战略报告[Z].北京,2008.
    [20]国家林业局.能源林可持续培育指南[Z].北京,2011.
    [21]国家林业局.全国林业生物质能发展规划(2011-2020年)[Z].北京,2013.
    [22]国家能源局.生物质发展“十二五”规划[Z].北京,2012.
    [23]侯元凯.生物柴油树种栽培与利用[M].北京:中国农业出版社,2007.
    [24]胡志远等.不同原料制备生物柴油生命周期能耗和排放评价[J].农业工程学报.2006,22(11):141-146.
    [25]黄雷等.能源产业发展区域布局分析[J].林业经济问题,2006,26(5):385-387.
    [26]姜书.中国林木生物质能源产业化政策研究[D].北京:北京林业大学,2009.
    [27]寇建平.中国生物质能利用现状及展望.农业部2007生物质能源发展与农产品贸易研讨会,北京.
    [28]李佳才,陈工.国际经验与中国可再生能源配额制(RPS)设计[J].太平洋学报,2008,(10):44-51.
    [29]李君华,彭玉兰.中国制造业空间布局影响因素的实证研究[J].南方经济,2010,(7):28-40.
    [30]李琳,郑骥.我国生物质能行业发展现状及建议[J].中国环保产业,2010,(12):50-54.
    [31]李孟刚,蒋志敏.产业经济学理论发展综述[J].中国流通经济,2009(4):30-32.
    [32]李孟刚.产业经济学[M].北京:高等教育出版社,2008.
    [33]李细斌,王均国.发展生物柴油的可行性分析及产业化建议[J].湖北农业科学,2008,47(11):1364-1368.
    [34]林水富,沈芸.发展木本油料生物柴油产业的思考[J].林业经济问题,2010,2(30):131-135.
    [35]刘春宇.新疆石油产业发展研究[D].乌鲁木齐:新疆农业大学,2007.
    [36]刘刚,沈镭.中国生物质能源的定量评价及其地理分布[J].自然资源学报,2007,22(1):9-19.
    [37]刘涛等.区域产业布局模式识别:评价指标体系与实证检验[J].地理科学,2010,2(30):190-196.
    [38]刘轩等.关于小桐子生物柴油产业的再思考——以攀枝花为例[J].林业经济,2010,7:86-89.
    [39]陆明召.林木生物能源产业发展现状与对策分析[J].农业科技,2012,7(12):252-253.
    [40]鹿清华等.生物柴油经济性及政策研究初探[J].当代石油化工,2007,15(3):28-39.
    [41]罗建勋.四川小桐子分布特点及适生环境选择初探[J].西南林学院学报,2007,27(3):6-9.
    [42]孟祥梅等.生物柴油研究现状和发展方向[J].煤气与热力,2009,29(2):20-23.
    [43]闵恩泽.以植物油为原料发展我国生物柴油炼油厂的探讨[J].石油学报(石油加工),2005,3(21):25-28.
    [44]牛青萍.小桐子油代替柴油运转小型柴油机的试验研究[J].农业机械学报,1985,(2):96-98.
    [45]牛叔文等.电能消费与人文发展水平之间的关联分析——基于50个面板数据的实证研究[J].经济地理,2013,5:
    [46]农业部农业贸易促进中心贸易政策研究所,中国农业科学院农业信息研究所国际情报研究室.全球生物柴油产量下滑[J].世界农业,2013,(5):149.
    [47]钱能志.林业生物柴油[M].北京:中国林业出版社,2007.
    [48]乔文俊.FDI对我国产业布局安全的影响研究[D].北京交通大学,2012年6月.
    [49]任绯.基于GIS技术的厂址选择方法研究[J].甘肃科技纵横,2009,1(38):35-36.
    [50]任辉.有色工业厂址选择及其方案定量评价的研究[D].西安:西安建筑科技大学,2011.
    [51]沈涛等.论西安市体育产业区位优势与产业布局模式的构建[J].山西师大体育学院学报,2006,2(21):1-4.
    [52]时立文SPSS19.0统计分析从入门到精通[M].北京:清华大学出版社,2012.
    [53]史忠良.产业经济学[M].北京:经济管理出版社,2005.
    [54]宋拾平等.论高新技术产业布局评价指标体系的构建[J].经济研究导刊,2010,(22):177-179.
    [55]宋新华.宁夏矿产资源产业布局研究[D].北京:中国地质大学,2010.
    [56]孙承华.中国燃料酒精产业发展模式与政策研究[J].哈尔滨:哈尔滨工业大学,2002.12.
    [57]孙海萍.生物柴油产业现状分析及发展思考[J].市场研究,2013,(3):63-66.
    [58]孙久文,叶裕民.区域经济学教程[M].北京:中国人民大学出版社,2010.
    [59]汤国安,杨昕ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社,2006.
    [60]滕弘飞,黎自强,史彦军等.一种同构、非同构布局模式构造算法[J].计算机学报,2006,29(6):985-991.
    [61]王积欣.林木果油制取生物柴油项目的经济性与政策性讨论[J].化学工业,2008,1(26):8-10.
    [62]王剑.火力发电厂厂址选择及其优化理论研究[D].西安:西安建筑科技大学,2006.
    [63]王剑辉.祁漫塔格地区矿产资源分布与产业布局[D].北京:中国地质大学,2011.
    [64]王连茂.江西林木生物质能源产业化研究[D].北京:北京林业大学,2009.
    [65]王玲.我国公路运输成本结构及驱动因素——基于GTC模型的实证研究[J].北京交通大学学报(社会科学版),2013,4(12):7-13.
    [66]王茂丽等.世界生物柴油的发展现状及对中国油料市场的影响[J].生态经济,2010,(3):55-57.
    [67]王秋平等.基于离差最大化的灰色关联投影法在厂址选择综合评价中的应用[J].西安建筑科技大学学报(自然科学版),2013,3(45):356-360.
    [68]王涛.中国主要生物质燃料油木本能源植物资源概况与展望[J].科技导报,2005,23(5):12-14.
    [69]王武魁等.北京林业生物质资源空间密度分布计算及加工点选址优化[J].北京林业大学学报,2010,6(32):71-79.
    [70]王兴国.国外生物柴油产业化发展现状及对我国的启示[J].粮食与食品工业,2006,16(3):4145.
    [71]魏玮,刘志红.印度生物燃料政策的演进、经验及其对中国的启示[J].经济问题探索,2012,(12):149-153.
    [72]吴慧中,王英林.一种立体空间布局模型及布局算法[J].计算机学报,1994,17(11):835-841.
    [73]吴明作等.国内外木本生物柴油的应用研究现状及我国的研究展望[J].西部林业科学,2007,2(36):130-134.
    [74]吴伟光,黄季焜.林业生物柴油原料小桐子种植的经济可行性分析[J].中国农村经济,2010,7:56-63.
    [75]吴伟光、黄季焜.我国西南地区生物柴油原料小桐子发展潜力研究[M].北京:中国农业出版社,2012.
    [76]吴伟光.我国林业生物柴油发展现状及其面临的主要挑战[A].International Conference on Biomass Energy Technologies Proceeding (Volume 1) [C].2008:561-570.
    [77]武素功,陈平.开发利用小桐子油替代柴油的可行性研究[J].自然资源,1988,(4):58-63.
    [78]肖周燕.我国家庭动态变化对二氧化碳排放的影响分析[J].人口·资源·环境,2012,1(36):52-62.
    [79]小宫山宏,迫田章义,松村幸彦.(日)日本生物质综合战略[M].北京:中国环境科学出版社,2005,73-86.
    [80]谢凌峰.基于可持续发展观的珠江三角洲港口资源整合研究[D].南京:河海大学,2005.
    [81]忻艳,张彩虹.攀枝花小桐子资源供应潜力分析[J].合作经济与科技,2011(5):10-11.
    [82]徐传谌等.产业经济学[M].北京:科学出版社,2007.
    [83]徐敬俊.海洋产业布局的基本理论研究暨实证分析[D].青岛:中国海洋大学,2010.
    [84]徐薇.我国生物柴油产业发展研究[D].北京:北京林业大学,2008.
    [85]许建耘.印度石油公司生产生物柴油的新技术[J].石油炼制与化工,2013,44:14.
    [86]晏敏,张昌期,刘育琪.平面布局的一个拓扑模型:方图[J].小型微型计算机系统,1989,10(2):23-32.
    [87]杨丽莉.基于产业集群的物流园区产业布局评价研究[D].北京:北京交通大学,2011.
    [88]杨颖,田从学.我国生物柴油产业现状及发展对策[J].中国粮油学报,2010,2(25):150-154.
    [89]于海楠.我国海洋产业布局评价及优化研究[D].青岛:中国海洋大学,2009.
    [90]员普超,张彩虹.基于模糊数学方法的油料能源林市场开发潜力评估模型研究[J].中国市场,2012,(15):101-114.
    [91]张丹.基于层次分析法的湖北省公务员能力测评体系研究[D].武汉:华中科技大学,2011.
    [92]张兰.林木生物质能源发展研究综述[J].经济问题探索,2012,(10):186-190.
    [93]张启明.陕西省文化产业布局评价与优化研究[D].西安:西北大学,2011.
    [94]张小平等.基于集聚效应的产业布局优化研究[J].商业时代,2011,(4):119-120.
    [95]张晓华,刘玮.河北省农村生物质能源发展的激励政策研究[J].金融教学与研究,2011,(2):58-62.
    [96]赵娥.我国木本生物柴油市场潜力及优先开发区域选择研究[D].北京:北京林业大学,2011.
    [97]赵琳等.云南干热河谷木本生物柴油树种产业化开发潜力研究[J].生物质化学工程,2006,1:353-357.
    [98]中国林木生物质能源发展潜力研究课题组.中国林木生物质能源发展潜力研究报告[J].中国林业产业.2006(6):5-11.
    [99]周娟等.基于主成分回归的我国铅锌产业布局影响因素研究[J].科技研究管理,2012,(12):172-175.
    [100]周培培.河北省畜牧产业布局评价与优化研究[D].保定:河北农业大学,2013.
    [101]朱克力.基于GIS的中国钢铁产业布局研究[D].重庆:重庆大学,2008.
    [102]邹慧霞.基于模糊物元分析法的石油化工厂址选择及其厂址评价研究[D].西安:西安建筑科技大学,2009.
    [103]Achten, W. M. J.; Verchot, L.; Franken, Y. J.; Mathijs, E.; Singh, V.P.; Aerts, R.; Muys, B.:Jatropha Bio-diesel Production and Use, Biomass and Bioenergy, Vol.32, Issues 12, 2008.
    [104]Allen, J., Brownr, M., Hunter, A., Boyd, J. and Palmer, H. Logistics management and costs of biomass fuel supply[J]. International Journal of Physical Distribution & Logistics Management. 1998,28 (6):463-477.
    [105]Benito GM., Sanchez D.R., Sainz O.H. Effects of climate change on the distribution of Iberian tree species. Applied Vegetation Science.2008,11,69-178.
    [106]Bjornstad, E. An engineering economics approach to the estimation of forest fuel supply inNorth-Trondelag county, Norway [J]. Journal of Forest Economics.2005,10 (4):161-188.
    [107]Brown, Lester R., Distillery Demand for Grain to Fuel Cars Vastly Understated:World May Be Facing Highest Grain Prices in History[R]. Report of Earth Policy Institute, Washington DC,2007.
    [108]Bryant L.The development of the diesel engine[J].Technology and Culture,1976, (17):432-446.
    [109]Christine S.S. Potential spread of recently naturalised plants in New Zealand under climate change. Climate Change.2012:1-13.
    [110]Esnaf S etal. A fuzzy clustering-based hybrid method for a multi-facility location problem[J]. Intell Manuf,2009 (20):259-265.
    [111]Fengli Zhang etal. A GIS-based method for identifying the optimal location for a facility to convert forest biomass to biofuel[J].Biomass and bioenergy,2011 (35):3951-3961.
    [112]Fernholz, K. Bratkonich, S. Bowyer, J. Alison Lindburg. Energy from woody biomass:a review of harvesting guidelines and a discussion of related challenges. Dovetail Partners, Inc.2009, www.dovetailinc.org.
    [113]Francis, G, R.Edinger, and K.Becker.A concept for simultaneous wasteland reclamation, fuel production, and socio-economic development in degraded areas in india:Need, potential and perspectives of Jatropha plantations [J].Natural Resources Forum,2005,29:12-24.
    [114]Gingras, J. F. Harvesting small trees and forest residues [J]. Biomass Bioenergy.1995,9 (5): 153-160.
    [115]Guisan A., Zimmermann N.E. Predictive habitat distribution models in ecology. Ecological Modelling.2000,35,147-186.
    [116]Hakkila, P.; Parikka, M. Fuel resources from the forest[J]. Bioenergy from sustainable forestry, Forestry Sciences.2002,71:19-48.
    [117]Harrison P. A., Berry P.M., Butt N., et al. Modeling climate change impacts on species'distributions at the European scale:implications for conservation policy. Environmental Science and Policy.2006,9,116-128.
    [118]Henning, R.K.Jatropha curcas in Africa-an Evaluation.2003.[EB/EL].http: //www.jatropha.de/.[2009-3-15]
    [119]Hicks J. Modeling the multi-modal transport of logs and the effects of changing fuel prices. Master thesis. Civil and Environmental Engineering Department, Houghton, Michigan Technological University; 2009.
    [120]Koizumi, T., and K.Ohga.Biofuels Policies in Asian Countries:Impact of the Expended Biofuels Programs on World Agricultural Markets.Journal of Agricultural&Food Industrial Organization, 2007,5 (2):1-22.
    [121]Leticia G.M. and Laura A. Modeling the effect of climate change on the distribution of Oak and Pine species of Mexico. Conservation Biology.2007,21 (6),1545-1555.
    [122]Leung J. Anew graph-theoretic heuristic for facility layout[J].Management Science,1992,38(4): 594-605.
    [123]Luque, S.; Muralidhara, H. S.:Biofuel Technological Assessment:A Critical Review, Report for IFPRI, Nov.,2008.
    [124]Malinen, J.; Pesonen, M.; Maatta, T.; Kajanus, M. Potential harvest for wood fuels (energy wood) from logging residues and first thinnings in Southern Finland [J]. Biomass and Bioenergy, 2001,20 (3):189-196.
    [125]Marta R.S., Matinez I., Carreno f., et al. Poor effectiveness of the Natura 2000 network protecting Mediterranean lichen species. Journal of Nature Conservation.2013,21 (1):1-9.
    [126]McKenzie D., Peterson D.W., Peterson D.L. et al. Climate and biophysical controls on conifer species distributions in mountain forests of Washington State. Journal of Biogeography.2003,30: 1093-1108.
    [127]Mitehell W J, Steadman J P, Liggett R S. Synthesis and optimization of small rectangular floor plans [J].Environment and Planning,1976,3 (13):37-70.
    [128]Mola-Yudego, B.; Aronsson, P. Yield models for commercial willow biomass plantations in Sweden[J]. Biomass and Bioenergy,2008,32 (9):829-837.
    [129]Muttiah RS, Engel BA, Jones DD. Waste disposal site selection using GIS-based simulated annealing[J]. Comput Geosci,1996 (22):1013-1017.
    [130]Openshaw, K.A review of Jatropha Curcas:an oil plant of unfulfilled promise[J].Biomass and Bioenergy,2000,19 (1):1-15.
    [131]Overend, R.P. The average haul distance and transportation work factors for biomass delivered to a central plant [J]. Biomss.1982,2:75-79.
    [132]Peter C.I., Ripley B.S., Robertson M.P. Environmental limits to the distribution of Scaevola plumier along the South African coast. Journal of Vegetation Science.2003, (14):89-98.
    [133]Pimentel, David, Tad W. Patzek, Ethanol production Using Corn, Switch grass, and Wood; Biodiesel production Using Soybean and Sunflower[J].Natural Resources Researeh.2005,14 (1): 65-76.
    [134]Planning Commission of Government of India (2003).Report of the Commission on Development of Bio-fuel, Planning Commission, Government of India, New Delhi.[EB/OL]http://planning commission.nic.in/reports/genrep/cmtt bio.pdf.[2008-6-15].
    [135]Radhakrishna Rao. An energetic future with jatropha[J]. Appropriate Technology,2004,31 (3): 56.
    [136]Roos, A. Policy and institutional factors affecting forest energy, Bioenergy from Sustainable Forestry[J].Forestry Sciences,2002,71:299-320.
    [137]Runge, C.F. and B. Senauer. Biofuel:corn is not the king of this growing domain.Nature,2007, 450 (7169):478-479.
    [138]Searchinger, Timothy, Ralph Heimlich, R.A. Houghton, Fengxia Dong, Amani Elobeid, Jacinto Fabiosa. Simla Tokgoz, Dermot Hayes, Tun-Hsiang Yu.Use of U.S.CroPlands for Biofuels Inereases Greenhouse Gases Through Emissions from Land-Use Change[J].Science,2008,319: 1238-1240.
    [139]Skov F., Svenning J.C. Limited filling of the potential range in European tree species. Ecology Letters.2004, (7):565-573.
    [140]Smeets, E.; Faaij, A. Bioenergy potentials from forestry in 2050 An assessment of the drivers that determine the potential [J]. Climatic Change,2007,81:353-390.
    [141]Sokhansanj, S.; Kumar, A.; Turhollow, A.F.. Development and implementation of integrated biomass supply analysis and logistics model (IBSAL)[J]. Biomass and Bioenergy,2006,30 (10): 838-847.
    [142]Tabari M, Kaboli A, Aryanezhad MB, Shahanaghi K, Siadat A.A new method for location selection:a hybrid analysis[J]. ApplMath Comput,2008 (206):598-606.
    [143]van Dyken, S.; Bakken, B.H.; Skjelbred, H.I. Linear mixed-integer models for biomass supply chains with transport, storage and processing [J]. Energy,2010,35 (3):1338-1350.
    [144]Vayssieres M.P., Plant R.E., Allen-Diaz B.H. Classification trees:an alternative non-parametric approach for predicting species distributions. Journal of Vegetation Science.2000, (11):679-694.
    [145]Wiemer, H.J.Financial and Economic Analysis of the Jatropha System.1996, [EB/OL]http: //www.jatropha.de/documents/Wiemer-Mali Jan1996.pdf.[2009-3-15].
    [146]Wiemer, H.J.Financial and Economic Analysis of the Jatropha System.1996, [EB/OL]http: //www.jatropha.de/documents/Wiemer-Mali Jan1996.pdf. [2009-3-15].
    [147]Yamamoto, H.; Fujino, J.; Yamaji, K. Evaluation of bioenergy potential with a multi-regional global-land-use-and-energy model [J]. Biomass and Bioenergy,2001,21 (3):185-203.
    [148]Yoshioka, T., Aruga, K., Nitami, T., Sakai, H. and Kobayashi, H. A case study on the costs and the fuel consumption of harvesting, transporting, and chipping chains for logging residues in Japan[J]. Biomass Bioenergy.2006,30 (4):342-348.
    [149]Young, H.E. Biomass utilization and management implications[C]. In Weyerhaeuser Science Symposium 3, Forest-to-Mill Challenges of the Future.1980:65-80.