基于含能热塑性弹性体的高能发射药研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代先进武器系统对弹药提出了大威力和高生存能力的要求,研究开发低敏感高能发射药成为21世纪发射药及其装药发展的重要趋势之一。传统发射药的敏感性是由硝化棉和硝化甘油内在的热分解特性决定的。因此,发展低敏感高能发射药的关键是获得能替代硝化棉和硝化甘油等传统含能材料的低感度高能添加剂和性能优良的含能粘结剂。在这类发射药研究中,国内目前研究一般以交联固化型的GAP、AMMO等作为含能粘结剂,但它们存在需要加入固化剂、返工品处理困难等缺点,而综合性能优良的含能热塑性弹性体又由于技术原因未能用于发射药配方的试制;低感度高能添加剂可通过对高能添加剂进行表面包覆来获得,但采用的惰性包覆材料又会对它们的能量性能产生消极的作用。适用的含能热塑性弹性体和高能量低感度高能添加剂的合成和制备技术是低敏感高能发射药研究的难题。
     本课题从含能热塑性弹性体(ETPE)的角度入手,为解决当前低敏感高能发射药研究中存在的难题,设计了以GAP基含能热塑性弹性体为粘结剂、以含能热塑性弹性体包覆过的RDX作为主要高能添加剂的高能发射药。通过配方设计、能量分析、粒度级配研究、高能添加剂包覆钝感处理、成型加工工艺研究等阶段制备得到了具有较好力学强度、燃烧稳定的ETPE基高能发射药。
     从性能、来源、成本等方面对发射药组分进行选择。确定RDX作为发射药的主要能量来源,以CL-20为辅助的高能添加剂;确定以GAP基含能热塑性弹性体与硝化棉作为发射药用含能粘结剂,含能增塑剂可根据不同需要进行适当选择。
     通过能量计算软件对发射药配方进行能量特性分析。相同火药力的不同配方中,ETPE含量较高的配方具有较大的比容与较低的爆温。发射药RDX/ETPE/NC/A3(ETPE/NC=50/50)的固含量为70%时,火药力可达到1190kJ·kg-1以上,爆温3210K左右。以BTTN作为增塑剂的RDX/ETPE/NC/BTTN (ETPE/NC=70/30)发射药配方在较宽的配比范围内火药力都能达到1200kJ·kg-1.
     采用振实密度仪对RDX颗粒进行粒度级配研究。两种粒径的颗粒按照粗细7:3的比例进行混合使用可使体系的堆积率最高。含三种粒径的颗粒进行堆积时,粒径由大到小按照7:1:2或者6:1:3的比例堆积,可得到最大堆积率。
     通过沉淀法采用含能热塑性弹性体对RDX进行表面包覆,获得了较高能量的低感度RDX。按照包覆量1%、包覆温度30℃、包覆时间30min、助剂量1.5m1的包覆条件所制得的样品,XPS分析得出包覆度为72.5%;有机元素分析确定包覆层质量分数为0.98%,与投料值1%基本相当;RDX的撞击感度特性落高从25.6cm提高至47.9cm,摩擦感度爆炸百分数由72%降至40%。包覆后的RDX颗粒较包覆前的RDX颗粒具有良好的流散性,安息角从51.6°下降到40°左右;采用包覆过的RDX的发射药混合物料具有较低的药浆粘度。
     以硝化棉作为载体吸附ETPE得到混合粘结剂微粒,有效改善了含ETPE的发射药的物料混合均匀性,并通过溶剂法经压伸成型制备得到了高RDX含量(>70%)的ETPE基高能发射药样品。药粒的抗压强度可达30MPa以上,火药力1170kJ·kg-1-1210kJ·kg-1.定容燃烧试验中,随RDX含量的增加,发射药的燃速加快;发射药在燃烧过程中压力波动不明显,在不同的压力区间具有不同的燃速压力指数。
     发射药配方RDX/ETPE/NC (77.9/10.9/10.9)与RDX/CL-20/ETPE/NC (64.7/10.3/12.4/12.4)实测火药力分别达到1215kJ·kg-1与1251kJ·kg-1,定容燃烧实验中,dp/dt-t及L-B曲线表明发射药的燃烧过程均较稳定,且具有较好的力学强度,该发射药配方具有进一步研究的意义。
The continuing demand for high performance and low vulnerability of ammunition in the advanced weapon system makes insensitive high energy propellants the most promising trend of gun propellants and charges in the21st century. The sensitivity of traditional propellant is determined by the thermal decomposition characteristics of nitrocellulose and nitroglycerine. So getting some new high energy additives and binders with low sensitivity which can alternative the normal energetic materials such as nitrocellulose and nitroglycerine plays a key role in the development of insensitive high energy propellant.However, some crosslinking binders needing curing agent to mold are the main energetic binders in current domestic research of insensitive high energy propellant instead of energetic thermoplastic elastomers (ETPE) with excellent performance due to technical reasons.The sensitivity of high energy additives particles can be reduced by surface coating, and the coating materials should be energetic as far as possible to avoid energy loss. Unfortunately, both of the two problems remain to be solved.
     To solve the problems, the thesis designed a high energy propellant based on GAP-ETPE, containing GAP-ETPE as binder and RDX which is coated by GAP-ETPE as high energy additive.The propellants with good mechanical strength stable combustion were prepared via several steps:formulation design, energy analysis, particle size gradation, surface coating of high energy additives and molding process study.
     The components of the propellants were seclected according to the properties, resources, cost, etc. RDX is the main energy source of the propellant while CL-20can be used as the assisted high energy additive. GAP-based energetic thermoplastic elastomers and nitrocellulose were chosen to be the energetic binder, and different energetic plasticizers can be used in different conditions.
     The analysis of energy characteristics of the propellant formulations were carried out by the programmed energy calculation software. The higher the ETPE content is, the higher the specific volume and the lower the explosion temperature are when formulations with the same impetus. The impetus can be more than1190kJ-kg"1when the RDX content of propellant RDX/ETPE/NC/A3(ETPE/NC=50/50)is70%and the explosion temperature is around3210K. The impetus of the propellant RDX/ETPE/NC/BTTN (ETPE/NC=70/30) can reach1200kJ·kg-1within a wide range.
     The study of RDX particle size gradation was carried out by tap density tester. In binary packing mixtures, the packing efficiency can reach the maximum value when the volume fraction of coarse-fine RDX particles is7:3. The packing efficiency can reach the maximum value when the volume fraction of coarse-middle-fine glass beads is7:1:2or6:1:3in ternary packing mixtures.
     GAP-based energetic polyurethane elastomer was introduced to coat RDX by liquid precipitation method. Coating conditions were as follows:coating amount(1%), coating time(30min), coating temperature(30℃), precipitant(1.5ml).It is found that the flowability improves obviously compared to uncoated RDX. It is experimentally shown that coating degree R is72.5%and the mass fraction of coating layer is0.98%, which agrees well with the initial value(1%). By coating of RDX with1%GAP-ETPE, the characteristic height of impact sensitivity (H50) of RDX particles is increased from25.6cm to47.9cm, and the friction probability is reduced from72%to40%.The dynamic viscosity of propellant slurry is lower when containing coated RDX.
     The thesis prepared binder particles by using NC as a carrier to absorb ETPE which is greatly improving the uniformity of mixing propellant materials, and then the ETPE-based high energy propellants with high RDX content(>70%) were prepared via solvent method and extrusion. The compression strength of the propellants can be above30Mpa and the impetus is from1170KJ·kg-1to1210kJ·kg-1. In constant-volume combustion experiments, the higher RDX content is, the faster burning speed is. The fluctuation of the pressure is not obvious during the burning process and the propellants have different burning rate pressure exponents in different pressure ranges.
     The measured impetus of the propellant formulations RDX/ETPE/NC (77.9/10.9/10.9) and RDX/CL-20/ETPE/NC (64.7/10.3/12.4/12.4) are1215kJ·kg-1and1251kJ·kg-1, respe-ctively. In constant-volume combustion experiments, the dp/dt-t and L-B curves showed that the burning process of the propellants were both fairly stable, and considering their better mechanical strength, the further research of the propellant formulations is meaningful.
引文
[1]王泽山.发射药技术的展望[J].华北工学院学报(社科版),2001:36-40.
    [2]王泽山.含能材料概论[M].哈尔滨:哈尔滨工业大学出版社,2006.
    [3]李凤生,郭效德,刘冠鹏,等.新型火药设计与制造[M].北京:国防工业出版社,2008.
    [4]陆安舫,李顺风,薛幸福,等.国外火药性能手册[M].北京:兵器工业出版社,1990.
    [5]陆安舫.80年代美国发射药发展状况[J].火炸药,1993(1):9~15.
    [6]徐复铭.21世纪先进发射药:低敏感高能发射药(1)——新材料和新实验技术[J].火炸药学报,2003,27(5):551~560.
    [7]李上文,赵凤起.国外固体推进剂研究与开发的趋势[J].固体火箭技术,2002,25(2):36-42.
    [8]吴晓青,马忠亮,萧忠良,等.一种低易损发射药燃烧性能的研究[J].华北工学院学报,2001,22(1):4-7.
    [9]廖听.低易损性发射药性能研究[D].南京理工大学,2004.
    [10]陈荣盛,郑剑,熊中年.化学交联型PU弹性体网络结构参数的理论计算方法[J].火炸药,1996,1:35-42.
    [11]Rodney Willer,Richard Biddle.Characterization of Commercial TPE for LOVA Gun Propellant [C].21th International Annual Conference of ICT,1990.
    [12]吴晓青,萧忠良,王环,等.几种粘结剂在低易损发射药中的应用[J].火炸药学报,2003,26(2):41-42.
    [13]Yano S, Danish E, Hsia Y, et al. Transient methemoglobinemia with acidosis in infants [J]. Journal of Pediatric Hematology/Oncology,1982,100(3):415-418.
    [14]Beardell J. LOVA propellant-An Overview [C]. Third International Gun propellant Symposium, Picatinny Arsenal, NJ,1984.
    [15]Rose A, Pesce-Rodriquez, Frederick J. S., et al. Pyrolysis GC-FTIR Studies of a LOVA Propellant Formulation Series [R]. AD-A448242,1991.
    [16]Kimura I, Arisawa H, Shimidzu T. Propellant response to cook-off, bullet impact and spall impact monitored by pressure in a closed vessel [J]. Kayaku Gakkashi,1996,57: 28-34.
    [17]Arisawa H. Investigation of Burning Characteristics of Gun Propellant by Rapid Depressurization Extinguishment [C]. Proceeding of 17th International Sympo-siumon Ballistic,1998.
    [18]Pillai A, Joshi M, Barve A, et al. Cellulose Acetate Binder-based LOVA Gun Propellant for Tank Guns [J]. Defence Science Journal,1999,49(2):141-149.
    [19]Robert B, Jerald C, William W. Edwards. Synthesis of ABA triblock polymers and AnB star polymers from cyclic ethers [P]. USP:4952644,1990.
    [20]Manser G, Fletcher R. Nitramine oxetanes and polyethers formed therefrom [P]. USP: 4707540,1987.
    [21]Nair J, Setpute R, Police B, et al. Synthesis and characterization of bis-azido methyl oxetane and its polymer and copolymer with tetrahydrofuran[J]. Defence Science Journal, 2002,52(2):147-156.
    [22]何利明,肖忠良,张续柱,等.国外火药含能粘结剂研究动态[J].含能材料,2003,11(2):99~102.
    [23]Desai H, Cunliffe A, Hamid J, et al. Synthesis and characterization of α,ω-hydroxy and nitrato telechelic oligomers of 3,3-(nitratomethyl)methyl oxetane (NIMMO) and glycidyl nitrate(GLYN) [J]. Polymer,1996,37(15):3461-3469.
    [24]Desai H, Cunliffe A, Lewis T, et al. Synthesis of narrow molecular weight α,ω-hydroxyl telechlic poly(glycidyl nitrate) and estimation of theoretical heat of explosion[J]. Polymer, 1996,37(15):3471-3476.
    [25]Vandenberg E, Woods F.Polyethers Containing Azidomethyl Side Chains [P]. USP: 3645917,1972.
    [26]Michael D,Christopher M,David E.An Advanced GAP/AN/TAGN Propellant. Part Ⅱ: Stability and Storage Life [J].Propellants, Explosives, Pyrotechnics,2007,32 (3): 227-234.
    [27]庞爱民,郑剑.高能固体推进技术未来发展展望[J].固体火箭技术,2004,27(4):289~293.
    [28]Mehmet S, Bahattin M, Olgun G. Baysal Determination of solubility parameters of poly(epichlorohydrin) and poly(glycidyl azide) networks [J]. Polymer,1997,38(8): 1945-1947.
    [29]王天放,李疏芬.新型高能聚合物GAP的热分解和燃烧[J].火炸药学报,2005,28(1):5-8.
    [30]陈智群,刘艳,刘子如,等.GAP热分解动力学和机理研究[J].固体火箭技术,2003,26(4):52~54.
    [31]Mostafa A, Geoffrey A. Synthesis and the preliminary analysis of block copolymers of 3,3'-bis(azidomethyl)-oxetane and 3-nitratomethyl-3-methyloxetane [J].Journal of Polymer Science Part A:Polymer Chemistry,1990,28(9):2393-2401.
    [32]李娜,甘孝贤,邢颖,等.含能粘合剂PAMMO的合成与性能研究[J].含能材料,2007, 15(1):53~55.
    [33]董军,甘孝贤,卢先明,等.含能黏合剂PAMMO的间接合成[J].化学推进剂与高分子材料,2008,6(2):33~36.
    [34]Robert W. Polyoxetane thermoplastic elastomers as gun propellant binders[C].6th International Gun Propellant & Propulsion Symposium,1994.
    [35]李辰芳.含能BAMO/AMMO粘合剂及其在固体推进剂中的应用研究[J].飞航导弹,1997,1:42~45.
    [36]张续柱,经德齐.聚NIMMO的合成及其在火药中的应用[M].含能材料,2002,10(4):189~191.
    [37]王庆法,米镇涛,张香文,等.硝酸酯类含能粘合剂绿色合成研究进展[J].化学推进剂与高分子材料,2008,6(2):11~15.
    [38]Ampleman G. New Insensitive melt-cast explosives based on energetic thermoplastic elastomers [C]. Insensitive Munitions & Energetic Materials technology Symposium, Quebec,2001.
    [39]Braithwaite P, Edwards W, Sanderson A. The Synthesis and combustion of high energy thermoplastic elastomer Binders [A]. Karlsruhe,2001.
    [40]Sylvain D, Andre M, Ampleman G. Energetic compolyurethane thermoplastic elastomers [P]. Canada, CA2330713.2001,9.
    [41]刘晶如,罗运军,杨寅.GAP推进剂粘合剂固化体系力学性能的研究[J].精细化工,2007,24(11):1128~1135.
    [42]Kirshenbaum M,.Avrami L,Strauss B.Sensitivity Characterization of Low Vulnerability (LOVA) Propellants. Large Caliber Weapon Sustens Labortory, USARDC/AMCCOM, COVER,NJ,1982
    [43]Rodney W, Richard B. Characterization of Commercial TP for LOVA Gun Propellant[C].21 th Intemational Annual Conference of ICT.1990
    [44]Beardell A. LOVA Propellant-An Overview. Third International Gun Propellant Symposium,Picatinny Arsenal,NJ,Otober30,1984.
    [45]Kimura J. Cellulose Acetate Nitratein Polymeric Materiala Encyclopedia[M].CRC Press, 1984.
    [46]Arisawa H. Investigation of Burning Characteristics of Gun Propellant by Rapid Depressurization Extinguishment[C]. Proceeding of 17th International Symposium on Ballistic,1998.
    [47]Kimura J, Arisawa H. Propellant Response to Coofof Bullet Impact and Spall Impact Monitored by Pressure in a Closed Vessel [C].28th International Annual Conference of ICT, Karlsruhe, FRG,1997.
    [48]Pesce R.Pyrolusis GC-FTIR Studies of a LOVA Propellant Formulation Series.AD-A242844.
    [49]Braithwaite.Development of Improved Ar tillery Gun Propellants[C].30th International Annual Conference of ICT,1999.
    [50]Pillai GS. Cellulose Acetate Binder-based LOVA Gun Propellant for Tank Guns[J].Def Sci.J.1999.
    [51]Harris L. Thermoplastic elastomer (TPE) gun propellant[C].1998 Insensitive Munitions and energetic materials technology Symposium. San Diego:CA,1998.
    [52]Damse R, Singh A. High energy propellants for advanced gun ammunition based on RDX, GAP and TAGN compositions[J]. Propellants, Explosives, Pyrotechnics, 2007,32(1):52-60.
    [53]Sanghavi R, Kamale P,Shaikh M, et al. Glycidyl azide polymer-based enhanced energy LOVA gun propellant[J]. Defence Science Juurnal,2006,56(3):407-416.
    [54]Kim E, Yang V, Liau Y. Modeling of HMX/GAP peeudo-propellant combustion[J]. Combustion and flame,2002(131):227-245.
    [55]Kubota M. Combustion of energetic azide polymers[J]. Propulsion and Power, 1995,11(4):67-682.
    [56]Kubota M, Kuwahara T. Combustion of GAP/HMX and GAP/TAGN energetic composite materials[J]. Propellants, Explosives, Pyrotechnics,2000(25):86-91.
    [57]Harris L, Manning T, Klingamank, et al. Thermoplastic elastomer (TPE) gun propellant[C]. Proceedings of the 1997 Jannaf Combustion Subcommittee Meeting. West Palm Beach:CPLA Publication,1997.
    [58]赵晓梅.ETPE发射药点火燃烧特性及影响因素研究[D].西安:西安近代化学研究所,2009.
    [59]宋秀铎,赵凤起,王江宁,等.BAMO-AMMO的热行为及其含能组分的相容性[J].火炸药学报,2002,2(1):9-10.
    [60]赵瑛,杨丽侠,刘毅,等.硝胺粒度及类型对BAMO-AMMO基ETPE发射药燃烧性能的影响[J].含能材料,2010,18(4):397-401.
    [61]张志忠,王伯周,姬月萍,等.部分新高能量密度材料的国内研究进展[J].火炸药学报,2008,31(2):93~99.
    [62]蔡华强,舒远杰,郁卫飞,等.FOX-7的合成和反应机理研究[J].化学学报,2004(3):295~301.
    [63]Harold R. Gas Generating Composition Comprising Guanylurea Dinitramide [P]. USP: 6117255,1999.
    [64]Bemm U, Bergman H, et al. FOX-12, a new energetic material with low sensitivity for propellants and explosires applications[A]. Insensitive Munition & Energetic materials texhnology symposium[C],1998.
    [65]杨通辉,何金选,张海林.N-脒基脲二硝酰胺盐(FOX-12)的合成与表征[J].含能材料,2001,12(1):36-37.
    [66]David E. Characterrization of ADN and ADN-based propellants [J]. Propellant, explosives, Pyroteehnics,2005,30(2):1050-1055.
    [67]杨荣杰.二硝酰胺铵(ADN)的燃烧特性研究进展[J].推进技术,2003,24(2):98-104.
    [68]Lobbecke L. Krause H. Pfeil A. Thermal analysis of mmonium dinitramide decompo-sition[J]. Propellant, explosives, Pyroteehnics,1997,22:184-188.
    [69]张光全.1,3,3-三硝基氮杂环丁烷(TNAZ)的工业合成现状及其应用进展[J].含能材料,2002,10(4):174~177.
    [70]Hiskey M, Coburn M. Synthesis of 1,3,3-trinjtroazetidine[P]. USP 5336784,1994.
    [71]Zdenek J, Svatopluk Z, Muhamed S.1,3,3-trinjtroazetidine(TNAZ)—Synthesis and properties[J]. Journal of energetic materials,2001,19:219-239.
    [721陈鲁英,杨培进,张林军,等.CL-20炸药性能研究[J].火炸药学报,2003,26(3):65~67.
    [73]金韶华,翟密橙,刘进全,等.六硝基六氮杂异戊兹烷的制备工艺及性能研究[J].含能材料,2006,14(3):165~167.
    [74]Simpson R, Urtiew P, Ornellas D, er al. CL-20 performance exceeds that of HMX and its sensitivity is moderate [J]. Propellant, explosives, Pyroteehnics,1997,22:249.
    [75]Wardle R, Hinshaw J. Polycyclic polyamides as precursors for energetic polycyclic polynitramine oxidizers[P]. UK 23332929,1999.
    [76]孙亚斌,周集义.含能增塑剂研究进展[J].化学推进基与高分子材料,2003,1(5):20~23.
    [77]Horst G. Bis(dinitropropyl)formal/dinitrobupyl dinitropropyl formal plasticizer [P]. USP: 4997499,1991.
    [78]Provatas. Energetic polymers and plasticizers for explosive formulations-A review of recent advances. Australia:Defence Science and Technology Organisation (DSTO), 2000.
    [79]Detlef D. Synthesis and characterization of azido plasticizer.31th International Annual Conferrence of the ICT,2000.
    [80]陆安舫.新型含能增塑剂—硝氧乙基硝胺族化合物发展概况[J].含能材料,1988,6(1):43-48.
    [81]沙恒,杨红梅,李一苇.含能材料研究的新进展(II)[J].华北工学院学报,1997,18(4):314~319.
    [82]Ronald L. Azido nitramine. US4450110,1984.
    [83]杨河,罗发,梁勇.GAP作为高能LOVA发射药粘结剂的应用分析[J].四川兵工学报,2003,24(4):39-40.
    [84]赵晓梅.ETPE发射药点火燃烧特性及影响因素研究[D].西安:西安近代化学研究所,2009.
    [85]赵瑛,杨丽侠,刘毅,等.硝胺粒度及类型对BAMO-AMMO基ETPE发射药燃烧性能的影响[J].含能材料,2010,18(4):397401.
    [86]宋秀铎,赵凤起,王江宁,等.BAMO-AMMO的热行为及其含能组分的相容性[J].火炸药学报,2002,2(1):9-10.
    [87]左海丽.GAP基含能热塑性弹性体研究[D].南京:南京理工大学,2011.
    [88]范克雷维伦.聚合物的性质——性质的估算及其与化学结构的关系[M].北京:科学出版社.1981.
    [89]顾书英,任杰.聚合物基复合材料[M].北京:化学工业出版社.2007,3.
    [90]周伟,愈炜,周持兴.相形态对聚合物反应共混过程的影响[J].高分子学报,2010,(6):747~752.
    [91]Niehaus M, Compounding of Glycidyl Azide Polymer with Nitrocellulose and its Influence on the Properties of Propellants [J]. Propellants, Explosives, Pyrotechnics,2000, 25:236-40.
    [92]李平,陈强,李旭利,等.GAP共聚体系静态力学性能研究[J].火炸药学报,2000,(2):23~25,28.
    [93]Kwan A, Fung W. Packing density measurement and modeling of fine aggregate and mortar[J].Cement and concrete composites,2009(31):349-357.
    [94]Xie Y, Liu B, Yin J, et al. Optimum mix parameters of high-strength self-consolidating concrete with ultra-pulverized fly ash [J].Cement and concrete research, 2002,32(3):477-480.
    [95]Zheng J, Carlson W, Reed J. The packing density of binary powder mixtures[J]. Journal of European Ceramic Society,1995(15):479-483.
    [96]刘永杰,孙杰璟,沈远胜.尖棱状两组份颗粒堆积密度的研究[J].中国粉体技术,2006(4):34-36.
    [97]肖忠明,任丽云,郭军萍,等.提高水泥中的粗颗粒含量对水泥颗粒堆积密度的影 响[J].水泥,2009(12):10-12.
    [98]祝洪喜,邓承继,白晨,等.耐火材料连续颗粒分布的紧密堆积模型[J].武汉科技大学学报,2008,31(2):159-163.
    [99]Yu A, Standish N, Mclean A. Porosity calculation of binary mixtures of nonspherical particles[J] Journal of American ceramic society,1993,76(11):2813-2816.
    [100]Liu S, Ha Z Y. Prediction of random packing limit for multimodal particle mixtures [J]. Powder technology,2002(126):283-296.
    [101]Westman A, Hugill H. The packing of particles[J]. Journal of American ceramic society,1930,13(10):767-779.
    [102]Yu A, Standish N. Estimation of the porosity of particle mixtures by a linear-mixture packing model[J]. Industrial and engineering chemistry research,1991(30):1372-1395.
    [103]Ouchlyama N, Tanaka T. Porosity Estimation for random packings of spherical particles [J]. Industrial and engineering chemistry research fundamentals,1984 (23):490-493.
    [104]Rousseau R, Parks R M. Size-dependent growth of magnesium sulfate heptahydrate [J].Industrial and engineering chemistry research fundamentals,1981 (20):71-76.
    [105]Dias R, Teixeira J, Mota M, et al. Particulate binary mixtures:dependence of packing porosity on particle size ratio [J]. Industrial and engineering chemistry research fundamentals,2004(43):7912-7919.
    [106]Yu A, Bridgwater J, Burbidge A. On the modeling of the packing of fine particles [J]. Powder technology,1997 (92):185-194.
    [107]Fayed M, Otten L.粉体工程手册[M].卢善慈,王佩云,编.北京:化学工业出版社,1992.
    [108]Oberth A, Bruenner R. Binder filler interaction and propellant mechanical properties [M]. Transaction of society of Technology,1965.
    [109]Jianfu C, Yinghong X, Fangxia J, et al. Effect of coupling agent on mechanical properly of AN/PU energy composite[J]. Journal of Applied Polymer Science,1997,63(10).
    [110]姚维尚,戴健吾.氧化剂包覆对固体推进剂力学性能的影响[J].兵工学报(火化工分册),1993(1):1-4.
    [111]组户朗治.微胶囊化工艺学[M].北京:轻工业出版社,1989.
    [112]Demzrt. Microencapsulation, micromolecules, iniferters. New York:1998.
    [113]王申,冯薇,谭惠民,等.缓释型玫瑰香精微胶囊整理剂的研制[J],精细化工,2002,6:538-540.
    [114]马小明.食品工业中的微胶囊技术[M].北京:学苑出版社,1991.
    [115]梁治齐.微胶囊技术及其应用[M].北京:中国轻工业出版社,1999.
    [116]管蓉.高分子材料在微胶囊技术中的应用[J].高分子材料科学与工程,1997,13(5): 133-138.
    [117]Allen H. Reaction product of phosphine oxide with carboxylic acids[P]. US:3762972, 1973.
    [118]Javitt N.26-Hydroxycholesterol and derivatives and analogs thereof in regulation of cholesterol accumulation in body tissue[P]. US:4427668,1984.
    [119]Oberth A. Bonding agents for polyurethane[P]. US:4000023,1976.
    [120]Bruenner R, Oberth A. Bonding agents for polyurethane[P]. US:4410376,1983.
    [121]陈洛亮,张树华.高能推进剂用键合剂的筛选[J].黎明化工,1990.
    [122]陈洛亮,蒋萍,赵怡高.高能丁羟推进剂用键合剂分子设计与应用[J].化学推进剂与高分子材料,2003,1(5):1-3.
    [123]陈洛亮,吕国会,侯玉清,等.海因键合剂的合成及应用研究[J].化学推进剂与高分子材料,2002,(4):26-28.
    [124]John F. Bonding agent for HMX[P]. US:4350542,1982.
    [125]John P. Bonding agent for composite propellants[P]. US:4944815,1990.
    [126]张娟,焦清介,李江存,等.不同包覆材料对RDX表面改性的对比研究[J].火工品,2006,(3):23-26.
    [127]李江存,焦清介,任慧,等.海因/三嗪类复合键合剂包覆黑索今的研究[J].含能材料,2008,16(1):56-59.
    [128]李江存,焦清介,任慧,等.层层组装法制备NC-BA-RDX包覆球[J].固体火箭技术,2008,31(3):247-251.
    [129]王敦举,张景林.键合剂与固体填料RDX的界面相互作用研究[J].火工品,2009(2):13-16.
    [130]KIM C. Filler reinforcement of polyurethane binder using a neutral polymeric bonding agent[P]. US:4915755,1990.
    [131]张晓宏,赵凤起,谭惠民.用键合剂改善硝胺CMDB推进剂的力学性能[J].火炸药学报,2005,28(2):1-5.
    [132]杨春盛.双基推进剂硝胺脱湿及其键合剂分子设计[J].火炸药学报,1997,20(3):25-28.
    [133]KIM C. Development of neutral polymeric bonding agents for propellants with polar composites filled with organic nitramine crystals [J]. Propellants, Explosives, Pyrotechnics.1992,17(1):38-42.
    [134]KIM C. The mechanism of filler reinforcement from addition of neutral polymeric bonding agents to energetic polar propellant[J]. Propellants, Explosives, Pyrotechnics.1992,17(2):51-58.
    [135]王北海.NEPE推进剂用中性聚合物键合剂的分子设计[J].固体火箭技术,1994,17(3):47-53.
    [136]王北海.中性聚合物键合剂的分子设计和合成[J].推进技术,1995,16(4):71-76.
    [137]吴文辉,黎玉钦,张聪,等.中性聚合物键合剂对硝胺推进剂相界面的作用[J].推进技术,2001,22(4):337-340.
    [138]申红光,邓剑如.新型中性聚合物键合剂设计与合成[J].固体火箭技术,2009,32(5):531-534.
    [139]潘碧峰,罗运军,谭惠民.固体推进剂中性高分子键合剂[J].航天发射技术,2009.
    [140]潘碧峰,罗运军,谭惠民.树形分子键合剂与HMX的相互作用[J].火炸药学报,2004,27(3):25-28.
    [141]潘碧峰,张磊,罗运军,等.树形键合剂包覆RDX及其相互作用研究[J].推进技术,2003,24(5):470-473
    [142]潘碧峰,罗运军,谭惠民.CL-20与树形分子键合剂的粘附性能研究[J].含能材料,2004,12(4):199-202.
    [143]潘碧峰,罗运军,谭惠民.树形分子键合剂包覆AP及其相互作用研究[J].含能材料2004,12(1):6-9.
    [144]Smith. Pressable plastic-bound explosive composition[P]. US:0072503,2005.
    [145]廖肃然,罗运军,杨寅,等.用支化水性聚氨酯包覆]HNIW的研究[J].火炸药学报,2006,29(5):22-24.
    [146]陆铭,孙杰,陈煜,等.包覆方法对PBX-RDX撞击感度的影响[J].含能材料,2004,12(6):333-337.
    [147]陆铭,陈煜,罗运军,等.水性聚氨酯乳液的制备及其包覆RDX的研究[J].推进技术,2005,26(1):89-92.
    [148]陆铭,孙杰,陈煜,等.聚氨酯-丙烯酸酯核/壳乳液的制备及其包覆的RDX[J].火炸药学报,2004,27(3):17-20.
    [1491陆铭,陈煜,孙杰,等.水性聚氨酯乳液的制备及其在含硝胺推进剂中的应用[J].精细化工,2004,21(11):876-880.
    [150]杨寅,罗运军,酒永斌,等.热塑性聚氨酯弹性体包覆CL-20及对NEPE推进剂性能影响[J].固体火箭技术,2008,31(4):358-364.
    [151]孟征,欧育湘,刘进全,等.水性聚氨酯乳液破乳法包覆钝感s-HNIW的影响因素[J].含能材料,2007,15(4):387-390.
    [152]Wei Zhang, Xuezhong Fan, Hongjian Wei, et al. Application of nitramines coated with nitrocellulose in minimum signature isocyanate-cured propellants[J]. Propellants, Explosives, Pyrotechnics,2008,33 (4):279-285.
    [153]刘小刚,王克强,邵重斌,等.硝化棉包覆黑索今的新方法[J].含能材料,2003,11(3):153-154.
    [154]Mattos E, Moreira E, Diniz M, et al. Characterization of polymer-coated RDX and HMX particles[J]. Propellants, Explosives, Pyrotechnics,2008,33 (1):44-50.
    [155]金韶华,于绍兴,欧育湘,等.六硝基六氮杂异戊兹烷包覆钝感的探索[J].含能材料,2004,12(3):147-150.
    [156]李永祥,马建福,刘天生,等.某高聚物包覆RDX的影响因素[J].含能材料,2005,13(6):382-384.
    [157]梁逸群,张景林,姜夏冰,等.超细A5传爆药的制备及表征[J].含能材料,2008,16(5):515-518.
    [158]王晓丽,焦清介,李国新,等钝化黑索今薄膜及其感度的研究[J].火工品,2003(3):23-26.
    [159]张树海,苟瑞君,张景林,等.硝胺照耀的超临界溶液快速膨胀包覆技术研究[J].火工品,2004(2):20-23.
    [160]Manning T, Strauss B. Reduction of energetic filler sensitivity in propellants through coating[P]. US:6524706,2003.
    [161]孙杰,黄辉,张勇,等.TATB原位包覆HMX的研究[J].含能材料,2006,14(5):330-332.
    [162]陆明,周新利.RDX的TNT包覆钝感研究[J].火炸药学报,2006,29(6):16-18.
    [163]Chongwei An, Fengsheng Li, Xiaolan Song, et al. Surface coating of RDX with a composite of TNT and an energetic-polymer and its safety investigation[J]. Propellants, Explosives, Pyrotechnics,2009,34 (5):400-405.
    [164]Chongwei An, Jingyu Wang, Wenzheng Xu, et al. Preparation anf properties of HMX coated with a composite of TNT/energetic material [J]. Propellants, Explosives, PyrotechnicsEarly View.
    [165]Kwang-Joo Kim, Hyoun-Soo Kim. Agglomeration of NTO on the surface of HMX particles in water-NMP solvent[J]. Cryst.Rss.Technol,2008,43 (1):87-92.
    [166]刘云飞.包覆固体填料改善复合固体推进剂燃烧和力学性能的研究[D].北京:北京理工大学,1997.
    [167]郑孟菊,俞统昌,张银亮.炸药的性能及测试技术[M].北京:兵器工业出版社,1990.
    [168]欧育湘,刘进全.高能量密度化合物[M].北京:国防工业出版社,2005.