基于纹理分析方法的DEM地形特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地形形态是地球内、外力地质作用对地壳综合作用的结果。地形形态的分析和量化研究不但在国民经济建设中有重要作用,也在地形实体形成、发展和演变的科学研究中具有实际价值。现有数字地形形态研究大多借助微观地形因子的空间变化特征探讨地形变化,能较好的描述地形局部特征,然而其在区域尺度、宏观尺度上对地形特征的认识较为薄弱,目前仍缺乏有效的宏观地形形态分析方法。本文以纹理分析为切入点,将图像纹理分析、计算机视觉的相关研究思路、理论与方法引入数字地形分析研究领域,用纹理分析方法揭示地形形态的宏观结构特征,从而为地形形态定量表达与地形形态分类等研究提供新的思路,对于深化DEM数字地形模拟与分析等基本理论问题的认识,拓展和完善面向区域、宏观地形特征的数字地形分析方法,提高对地形形态特征的理解和认知,进一步深化DEM地形分析在国民经济建设中的应用等,都具有重要的理论意义与实践价值。
     本文的主要内容和研究成果如下:
     (1)针对现有纹理概念的争议,结合地形渐变与突变特征并存的基本特点,提出一种将纹理的统计特征和结构特征相统一的纹理解释,使DEM模拟的地形特征与纹理分析的基本假设相统一。重新梳理了纹理的基本属性,重点就纹理的周期性、方向性、随机性和尺度依赖性特征进行探讨。
     (2)从人类视觉感知机制分析出发,以“预注意视觉理论”与“N阶统计理论”等为基础,提出一种基于纹理的多层次地形分析方法。该模型模拟了人类对地形特征的视觉感知过程,实现了由地形的全局统计特征量化到局部空间关系特征描述,由地形的不变性特征度量到空间异质性特征表达,由地形的单一尺度特征到多尺度特征量化。实验证明,这种逐层递进式的纹理分析和量化方法,能较好的揭示地形形态的各级空间结构特征。
     (3)针对基于纹理的多层次地形分析方法,逐层设计纹理量化模型和指标。分别利用Hu不变矩模型、空间灰度共生矩阵模型(GLCM)、改进三维空隙度模型(3D-LCA)和Daubechies-4小波分解模型,从地形的全局统计特征、顾及空间关系的局部形态特征、非线性多尺度特征、频率域多尺度特征等多个层而进行量化。进而以陕西省11个典型地形样区为例,围绕地形表达的方向性、尺度不变性、旋转不变性、模型分析范围和DEM尺度依赖性等特征,详细探讨了各层次纹理量化模型在地形形态定量描述上的适用性。
     (4)分别从纹理分析模型的多层次递进性,以及地形数据自身的多层次性和等级嵌套性两个视角切入,基于纹理的空间域特征和频率域特征,对陕西省典型样区进行地形分类研究。由于采用了逐层递进式的分类策略,使得不同地形类别间的分类指标显著性较高,尤其对于形态特征较为接近的地形样区也有较好的区分能力。其中,基于小波中频分量的地形分类精度优于基于低频分量的分类结果,最高分类精度可以达到88.68%。受边界效应等因素影响,小波分解层数和分类精度并不成线性关系,1:5万25米分辨率地形数据的最优分类层数为2层,分类特征向量由9个元素构成。
     基于以上研究,本文以纹理分析为切入点,从基本概念、分析方法、量化模型等方面探索了一套基于纹理的地形形态特征认知、分析、量化和应用的研究方法。研究表明,纹理分析从人类视觉感知的机理出发,采用逐层递进式的基本模式对地形形态的各级特征进行分析,更有利于全面、完整的探索和认知地形形态的外部空间展布特征和内部等级嵌套结构特征,研究成果可望为深层次地学应用研究提供借鉴。
Under the inner and outer geological forces, terrain surfaces show the complex morphological characteristics. The research on analysis and quantification of morphology and spatial structure of terrain surface not only play an important role in national economy, but also have actual values in scientific research on landform formation, development and evolution. The existing researches of morphological characteristics of landform mostly discuss landform changes recur to the spatial variable characteristics of topographic factors on micro scale, which can well describe the local morphological characteristics of terrain surface. But the knowledge of morphological characteristics of landform on macro scale is still insufficiency. And recently effective analysis methods of morphological and structural characteristics of landform on macro scale are still in shortage.
     In this paper, the theories and methods of image texture analysis and computer vision are introduced into DEM based digital terrain analysis. Texture analysis methods are used and improved to reveal the morphological and structural characteristics of landform on macro scale, which can be recognized as the new digital terrain analysis methods and ideas to the quantification and classification of landform morphological characteristics. The results show that it has the important academic significance and practical value in deepening the cognition of such basic theory questions as digital terrain modeling and analysis, expanding digital terrain analysis methods on the macro-level, improving the knowledge on morphological and structural characteristics of terrain surface and deepening the use of DEM based terrain analysis in the national economy construction.
     The mainly contents and research achievements of this paper are as follows:
     (1) According to the controversy of exist texture conception, basing on the basic characteristic of terrain gradient and mutation, this paper introduces a compositive explanation of texture which combines the statistics characteristics of texture with structure characteristics. Such basic attributes of texture as periodicity, directivity, randomness and scale dependence are discussed.
     (2) Basing on the human vision perception mechanism, this paper presents a multi-level texture analysis method which towards landform morphology cognition. This method simulates the visual perception process of landform and describes the morphological and spatial structural characteristics from global statistical features to local spatial relationship, from invariant features to spatial heterogeneity, from single-scale features to multi-scale features. Experiments show that this multi-layer progressive based texture analysis and quantitative method can effectively reveal the morphological and spatial structural features of land form at multi levels.
     (3) This paper designs a series of texture quantitative models and indicators layer by layer according to multi-level texture analysis method. Hu invariant moment model, spatial gray-level co-occurrence matrix model (GLCM), improved three dimensional lacunarity model (3D-LCA) and Daubechies-4 wavelet decomposition model are selected and improved to quantify the morphological and spatial structural features of landform. Then 11 typical landform sample areas in Shannxi Province are used as a case study for exploring the applicability of texture analysis models on multi levels in describing the morphological and spatial structural features in terms of the directivity, scale invariance, rotation invariance, analysis range of models and DEM resolution based scale dependency.
     (4) In view of multi-level properties of texture analysis models and hierarchical properties of DEM data, this paper studies the terrain recognition of 11 classical landform types in Shannxi Province based on the spatial domain and frequency domain characteristics of terrain surface. In virtue of layer-by-layer classification strategy, feature classification indexes of different terrain types have high significance. The accuracy of classification based on wavelet transformation in intermediate frequency component is higher than the results based on low frequency component. The highest classification accuracy is up to 88.68%. Affected by the boundary effects and other factors, wavelet decomposition levels are not absolutely matching the classification accuracy with linear relationship. The optimal decomposition levels of 25m DEM on a scale of 1:50000 are 2. and the eigenvector of classification is formed by 9 elements.
     On the basis of the above research, this paper explores a new research method of landform morphology cognitive, analysis, quantization and application based on texture analysis. The results show that texture analysis starts from human vision perceptive mechanism can effectively analyze and quantify the morphological and structural characteristics of terrain surface at multi levels of terrain morphology. Texture based digital terrain analysis methods can better explore and recognize the spatial distributing characteristics and the nested hierarchical structure characteristics of landform morphology.
引文
[1]Akkari H, Bhouri I, Ben A A, Multifractal modelling and 3D lacunarity analysis[J]. Physics Letters A,2009,373:3604-3609.
    [2]Allain C, Cloitre M, Characterizing the lacunarity of random and deterministic fractal sets[J]. Physical Review A,1991,44(6):3552.
    [3]Backes, A. R., Goncalves, W. N., Martinez, A. S., et al. Texture analysis and classification using deterministic touristwalk[J]. Pattern Recognition.2010,43: 685-694.
    [4]Barbara J. I., Stephen J. V., Brian K. S., Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley[J], Wisconsin, Geoderma,1997,77:137-154.
    [5]Barcelo, A., Montseny, E., Sobrevilla, P. Fuzzy Texture Unit and Fuzzy Texture Spectrum for Texture Characterization[J]. Fuzzy Sets and Systems.2007,158: 239-252.
    [6]Bashar M. K., Matsumoto T., Ohnishi N. Wavelet transform-based locally orderless images for texture segmentation[J]. Pattern Recognition Letters,2003, 24(15):2633-2650.
    [7]Beasom S L, A technique for assessing land surface ruggedness[J]. Journal of wildlife Management,1983,47(4):1163-1166.
    [8]Beddow J. K., Image Analysis Sourcebook[M]. American Universities Science and Technology Press.1997.
    [9]Berry J K, Beyond Mapping:Concepts. Algorithms, and Issues in GIS[M]. GIS World Inc.1993.
    [10]Bharati M. H., Liu J. J., Macgrgor J. F. Image texture analysis:Methods and comparisons[J]. Chemometrics and Intelligent Laboratory Systems,2004,72(11): 57-71.
    [11]Bolstad P.V., Stowe T., An Evaluation of DEM accuracy elevation, slope and aspect[J]. Photogrammetric Engineering and Remote Seneing,1994,60(11): 189-194.
    [12]Castilla, G.,Larkin, K.,Linke, J., et al. The impact of thematic resolution on the patch-mosaic model of natural landscapes[J]. Landscape Ecology.2009,24 (1): 15-23.
    [13]Chen D., Wang L., Texture features based on texture spectrum[J]. PR,1991,24: 391-399.
    [14]Chen C. C. Filtering methods for texture discrimination[J]. Pattern Recognition, 1999.20:783-790.
    [15]Chen J. L., Kunda A., Unsupervised texture segmentation using multichannel decomposition and hidden Markov models[J]. IEEE-IP.1995,4(5):603-619.
    [16]Daubechies I. Orthonormal bases of compactly supported wavelet. Communication on pure and applied mathematics,1988,909-996.
    [17]Day M J, Surface roughness as a discriminator of tropical karst styles. Z. Geomorph., Supp.1979,32:1-8.
    [18]Dong P, Test of a new lacunarity estimation method for image texture analysis. International Journal of Remote Sensing,2000,21 (17):3369-3373.
    [19]Dragut, L., Schauppenlehner, T., Muhar, A., et al. Optimization of scale and parametrization for terrain segmentation:An application to soil-landscape modeling[J]. Computers & Geosciences.2009,35 (9):1875-1883.
    [20]Florinsky I.V., Accuracy of local topographic variables derived from digital elevation model[J]. IJGIS,1998,12 (1):47-61.
    [21]Flusser J. Moment invariants in image analysis[C]. Proc. of World Academy of Science, Engineering and Technology,2006,11:196-201.
    [22]G. Ayala, J. Domingo. Spatial Size Distributions:Applications to Shape and Texture Analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,23(12),1430-1442.
    [23]Gefen Y, Meir Y, Mandelbrot B B et al., Geometric Implementation of hypercubic lattices with noninteger dimensionality by use of low lacunarity fractal lattices, Physical Review Letters,1983,50(3):145-148.
    [24]Greiner, T. Orthogonal and biorthogonal texture-matched wavelet filterbanks for hierarchical texture analysis [J]. Signal Processing.1996,54:1-22.
    [25]Grohmann C H, Smith M J, Riccomini C, Surface Roughness of Topography:A Multi-Scale Analysis of Landform Elements in Midland Valley, Scotland, Proceedings of Geomorphometry 2009,140-148.
    [26]Han J., Ma K. K., Rotation-invariant and scale-invariant Gabor feature for texture image retrieval[J]. Image and Vision Computing,2007,25:1474-1481.
    [27]Haralick, R. M. Statistical and structural approaches to texture[J]. Proceedings of IEEE.1979,67 (5):45-69.
    [28]Haralick R. M., Shanmugam K., Dinstein I. H. Textural features for image classification[J]. IEEE Trans. on SMC,1973,3(6):610-621.
    [29]Hengl T, Reuter H I, Geomorphometry-Concepts, Software, Applications[M]. Developments in Soil Science. Elsevier,2008.
    [30]Hobson R D, Surface roughness in topography:quantitative approach. In Chorley R J, [Ed.], Spatial Analysis in Geomorphology, Methuer, London,1972, 225-245.
    [31]Hu M., Visual pattern recognition by moment invariants[J]. IRE Trans. Inf. Theor.,1962, IT-8:179-187.
    [32]Hsiao J. Y., Sawchuk A. A., Supervised textured image segmentation using features smoothing and probabilistic relaxation techniques[J], IEEE-PAMI,1989. 11(2):1279-1292.
    [33]Idrissa M., Acheroy M. Texture classification using Gabor filters[J], Pattern Recognition Lett,2002.23(9):1095-1102.
    [34]J. L. Chen, A. A. Kundu, Rotation and gray scaled transform invariant texture identification using wavelet decomposition and hidden Markov model[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence.1994,16 (2): 208-214.
    [35]J. Zhang, T. Tan. Brief review of invariant texture analysis methods[J], Pattern Recognition.2002,35 (11):735-747.
    [36]Jain A. K., Farrokhinia F., Unsupervised texture segmentation using Gabor filters[J]. P. R.,1991,24(12):1167-1186.
    [37]Jenness J S, Calculating landscape surface area from digital elevation models. Wildlife Society Bulletin,2004,32(3):829-839.
    [38]Jenssen, R., Eltoft, T. Independent component analysis for texture segmentation [J]. Pattern Recognition 2003,36:2301-2315.
    [39]Julesz B., Experiments in the visual perception of texture[J]. Scientific American, 1975,232:34-43.
    [40]K.J. Khouzani, H. Soltanian-Zadeh, Radon transform orientation estimation for rotation invariant texture analysis[J], IEEE Transaction on Pattern Analysis and Machine Intelligence,2005,27:1004-1008.
    [41]Kassim A A, Mannan M A, Mian Z, Texture analysis methods for tool condition monitoring. Image and Vision Computing,2007,25(7):1080-1090.
    [42]Kaye B H, A Random Walk Through Fractal Dimensions, New York:VCH Publisher,1989.
    [43]Khotanzad A., Chen J. Y., Unsupervised segmentation of textured images by edge detection in multidimensional features[J]. IEEE-PAMI,1989,11(4): 414-421.
    [44]L. A. Boggess, F. J. Nareowish. A first course in wavelets with Fourier analysis [A]. Prentiee Hall,2001.
    [45]Laine A., Fan J., Texture classification by wavelet packet signatures[J]. IEEE-PAMI,1993,15(11):1186-1191.
    [46]Laws K. L., Rapid texture identification[J]. SPIE,1980,238:376-380.
    [47]Lopes, R., Betrouni, N. Fractal and multifractal analysis:A review[J]. Medical Image Analysis.2009,13:634-649.
    [48]Lu C. S., Chung P. C., Chen C. F. Unsupervised texture segmentation via wavelet transform[J]. Pattern Recognition,1997,30(5):729-742.
    [49]Maillard, P., Comparing Texture Analysis Methods through Classification[J]. Photogrammetric Engineering & Remote Sensing.2003,69 (4):357-367.
    [50]Mandelbrot B. B. The Fractal Geometry of Nature[M]. New York:W. H. Freeman,1982:1-10.
    [51]Materka A, Strzelecki M, Texture analysis methods-a review, Technical University of Lodz, Institute of Electronics, COST B11 report, Brussels,1998.
    [52]Myint S W, Lam N. A study of lacunarity-based texture analysis approaches to improve urban image classification. Computers. Environment and Urban Systems,2005,29:501-523.
    [53]Myshkin, N. K., Grigoriev, A. Y., Chizhik, S. A., et al. Surface roughness and texture analysis in microscale[J]. Wear.2003.254:1001-1009.
    [54]Nanni, L., Lumini, A., Brahnam, S., Local binary patterns variants as texture descriptors for medical image analysis[J]. Artificial Intelligence in Medicine. 2010,37(12):7888-7894.
    [55]Ngan H. Y. T., Pang G. K. H. Regularity analysis for patterned texture inspection. IEEE Trans on Automation Science and Engineering[J].2009.6(1):131-144.
    [56]Ojala T. et al. A comparative study of texture measures with classifications based on feature distributions[J]. Pattern Recognitions,1996,29(1):51-59.
    [57]Plotnick R E, Gardner R H, O'Neill R V, Lacunarity indices as measures of landscape texture. Landscape Ecology,1993,8(3):201-211.
    [58]Plotnick R E, Gardner R H, Hargrove W W et al., Lacunarity analysis:A general technique for the analysis of spatial patterns. Physical Review E,1996,53 (5): 5461-5468.
    [59]Rohrmus, D. R. Invariant and adaptive geometrical texture features for defect detection and classification[J]. Pattern Recognition.2005,38:1546-1559.
    [60]Russ J. C., The Image Processing Handbook (4th Ed.) [M], CRC Press,2002.
    [61]S. Abdulkadir, T. Ibrahim, M. Cevdet Ince, Wavelet packet neural networks for texture classification[J], Expert Systems with Applications.2007,32(2): 527-533.
    [62]S. Arivazhagan, L. Ganesan, S. Padam Priyal, Texture classification using Gabor wavelets based rotation invariant features[J], Pattern Recognition Letters,2006, 27(16):1976-1982.
    [63]S. S. Xiao, Y.X. Wu, Rotation-invariant texture analysis using Radon and Fourier transforms[C], Journal of Physics Conference Series,2006,48:1459-1464.
    [64]Sarkar N, Chaudhur B B, An efficient approach to estimate fractal dimension of textural images. Pattern Recognition,1992,25:1035-1041.
    [65]Shary P. A., Sharaya L S, Mitusov A V. Fundamental quantitative methods of land surface analysis[J]. Geoderma,2002,107:1-32.
    [66]Tang G A, Research on the accuracy of digital elevation models. Beijing: Science Press,2000.
    [67]Tsai D. M., Huang T. Y., Automated surface inspection for statistical textures[J]. Image and Vision Computing,2003.21:307-323.
    [68]W. Pan. T.D. Bui, C.Y. Suen, Rotation invariant texture classification by ridgelet transform and frequency-orientation space decomposition[J], Signal Processing, 2008,88(1):189-199.
    [69]Wechsler W., Texture analysis-a survey[J]. Signal Processing,1980,2:271-280.
    [70]Wood, J, The geomorphological characterization of Digital Elevation Models[D]. PhD Thesis Department of Geography. University of Lancaster. UK,1996.
    [71]Wilson J P, Gallant J C, Terrain Analysis-Principles and Applications. John Wiley & Sons, Inc.,2006.
    [72]Wu J, Multiscale analysis of landscape heterogeneity:Scale variance and pattern metrics. Geographic Information Sciences,2000.6 (1):6-19.
    [73]Wu J, Hobbs R J. Key Topics in Landscape Ecology. Cambridge University Press,2007.
    [74]Zhang. J., Tan, T. Brief review of invariant texture analysis methods[J]. Pattern Recognition.2002.35:735-747.
    [75]Zhou, Q., Relief shading using digital elevation models. Computers and Geosciences,1992,18(8):1035-1045.
    [76]薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报,2006,(1):155-158.
    [77]柴宗新,按相对高度划分地形基本形态的建议[M],中国地理学会地形研究文集,北京:科学出版社,1983,90-97.
    [78]陈刚,鄂栋臣.基于纹理分析和支持向量机的极地冰雪覆盖区的云层检测[J].武汉大学学报(信息科学版).2006,(5):403-406.
    [79]陈述彭.地学的探索——地图学[M].北京:科学出版社,1990.
    [80]承继成,江美球.流域地形系统[M].北京:科学出版社,1986.
    [81]段光明,李思昆,曾亮,等.一种高效的大规模三维地形遥感影像纹理映射方法[J].系统仿真学报.2008,(S1):396-403.
    [82]甘枝茂,黄土高原地形与土壤侵蚀研究[M].西安:陕西人民出版社,1989.
    [83]高玄彧,地形基本形态的位差分类法[J],陕西师大学报(自然科学版),1995,9(2):46-53
    [84]高玄彧,地形基本形态的主客分类法[J],山地学报,2004,22(3):261-266
    [85]高永英,章毓晋.基于多级描述模型的渐进式图像内容理解[J].电子学报.2001,29(10):1376-1380.
    [86]黄桂兰,郑肇葆.模糊聚类分析用于基于分形的影像纹理分类[J].武汉测绘科技大学学报.1995,(2):112-117.
    [87]黄桂兰,郑肇葆.一种基于马尔可夫随机场的影像纹理分类方法[J].武汉测绘科技大学学报.1996,(3):232-241.
    [88]黄桂兰,郑肇葆.航片影像纹理分类方法的探讨[J].测绘通报.1997,(6):38-41.
    [89]黄桂兰,郑肇葆.纹理模型法用于影像纹理分类[J].武汉测绘科技大学学报.1998,(1):40-42.
    [90]黄桂兰,郑肇葆.分形几何在影像纹理分类中的应用[J].测绘学报.1995,(04):283-292.
    [91]黄桂兰,郑肇葆.空间灰度相关在影像纹理分类中的应用及分析[J].武汉测绘科技大学学报.1995,(4):301-304.
    [92]黄桂兰,郑肇葆.模糊聚类分析用于基于分形的影像纹理分类[J].武汉测绘科技大学学报.1995,(2):112-117.
    [93]黄听,张良培,邵振锋,等.基于独立分量分析的纹理特征维数减少[J].武汉大学学报(信息科学版).2006,(12):1055-1058.
    [94]李德仁,陈晓勇,数学形态学及其在二值影像分析中的应用[J],武汉测绘科技大学学报,1989,14(3):18-34.
    [95]李德仁,张继贤.影像纹理分析的现状和方法(一)[J],武测科技,1993,(3):30-37.
    [96]李德仁,张继贤.影像纹理分析的现状和方法(二)[J],武测科技,1993,(4):16-25.
    [97]李峰,曹鹏,李春月,等.基于小波包变换和蚁群算法的纹理分类[J].计算机工程与应用.2009,(28):202-204.
    [98]李毅,阢秋琦.应用支持向量机的纹理分类[J].通信学报,2005,16(1):114-119.
    [99]李钜章,中国地形形态基本类型数量指标初探[J],地理学报,1982.37(1):327-335.
    [100]李龙燕,胡福乔.基于Gabor小波滤波器的遥感图像多频道纹理分析[J].计算机工程.2003,(20):127-129.
    [101]李志林,朱庆.数字高程模型(第二版)[M].武汉:武汉大学出版社,2003.
    [102]刘东生.中国的黄土堆积[M].北京:科学出版社,1965.
    [103]刘飞龙,陈云浩,李京.遥感影像纹理分析方法综述与展望[J].遥感技术与应用,2003,18(6):441-447.
    [104]刘泓.纹理图象的分析与识别研究[D].上海大学博十学位论文.1999.
    [105]刘辉,谈正,周军.基于各向异性分离的纹理图象分析及重构[J].中国图象图形学报.1998,(5):390-394.
    [106]刘辉,赵荣椿.基于方向性的多通道纹理图象分析及重构[J].中国图象图形学报.2002,(10A):1005-1008.
    [107]刘明霞,侯迎坤,郭小春,等.新的纹理图像特征提取方法[J].计算机应用.2009,(12):3434-3436.
    [108]刘琼,周慧灿,王耀南.基于对数极坐标频谱的Gabor纹理分析[J].计算机工程与应用.2007,(29):68-70.
    [109]刘晓民.纹理研究及其应用综述[J].测控技术,2008,27(5):49.
    [110]刘晓民.纹理研究综述[J].计算机应用研究,2008,25(8):2284-2288.
    [111]刘学军,卢华兴,任政等,论DEM地形分析中的尺度问题[J],地理研究,2007,26(3):433-442
    [112]刘学军,王彦芳,晋蓓.利用点扩散函数进行DEM尺度转换[J].武汉大学学报(信息科学版).2009,(12):1458-1462.
    [113]刘忠伟,章毓晋.基于特征的图象查询和检索系统[J].应用基础与工程科学学报.2000,8(1):69-77.
    [114]罗沄,章毓晋,高永英.基于分析的图像有意义区域提取[J].计算机学报.2000,23(12):1313-1319.
    [115]李伯宇.图像纹理分析及分类方法研究[D].复旦大学博士学位论文.2007.
    [116]龙毅,周侗,汤国安,等.典型黄土地形类型区的地形复杂度分形研究[J].山地学报,2007,(4):385-392.
    [117]陆军,王润生.区域结构及多尺度纹理分析[J].国防科技大学学报.2000,(6):91-95.
    [118]闾国年,钱亚东,陈钟明,基于栅格数字高程模型提取特征地形技术研究[J],地理学报,1998,53(6):567-574.
    [119]孟勇,洪丹辉,毛丹.测度熵在图像纹理分析中的应用[J].计算机应用与软件.2000,(8):52-56.
    [120]乔玉龙.小波在纹理图像处理中的应用研究[D].哈尔滨工业大学博士学位论文.2006.
    [121]任仙怡,张桂林,陈朝阳.基于纹理谱的纹理分割方法[J].中国图像图形学报,1998,3(12):983-986.
    [122]苏时雨,李钜章,苏映平等,中国1:100万地形图设计中若干问题的探讨[J],地理学报,1982,37(1):8-16.
    [123]孙建国,杨树文,段焕娥,等.基于光谱和纹理特征的山区高分辨率遥感影像分类[J].测绘科学.2009,(6):92-93.
    [124]谭郁松.自然图像处理理论和方法研究[D].国防科学技术大学博士学位论文.2004.
    [125]汤国安,杨玮莹,杨听等.对DEM地形定量因子挖掘中若干问题的探讨[J].测绘科学.2003,(1):28-32.
    [126]汤国安,刘学军,房亮等,DEM及数字地形分析中尺度问题研究综述[J].武汉大学学报(信息科学版).2006,31(12):1059-1066.
    [127]汤国安,刘学军,闾国年.数字高程模型及地学分析的原理与方法[M].北京:科学出版社,2006.
    [128]田箐,余英林.基于视觉感知的人脸目标感兴趣区域检测[J].计算机工程与应用,2002,(2):117-121.
    [129]汪闽,张星月.基于模板分解与递归式滤波的遥感图像快速Gabor纹理特征提取[J].测绘学报.2009,38(6):488-493.
    [130]王克奇,白雪冰,王辉.基于小波变换的木材表面纹理分类[J].哈尔滨工业大学学报.2009,(9):232-234.
    [131]王雷,汤国安,刘学军,等.DEM地形复杂度指数及提取方法研究[J].水土保持通报,2004,24(4):55-58.
    [132]工雷光,刘国英,梅天灿,等.一种光谱与纹理特征加权的高分辨率遥感纹理分割算法[J].光学学报.2009,(11):3010-3017.
    [133]工耀南,工绍源,毛建旭.基于分形维数的图像纹理分析[J].湖南大学学报(自然科学版).2006,(5):67-72.
    [134]王震,王执铨.图像纹理分析与纹理测度[J].南京理工大学学报(自然科学版).2002,(S1):36-42.
    [135]王佐成.基于纹理的遥感图像分类研究[D].西南交通大学博士学位论文.2007.
    [136]温智婕.图像纹理特征表示方法研究与应用[D].大连理工大学博士学位论文.2008.
    [137]吴伯甫,陈明荣,陈宗兴等.中国的黄土高原[M].陕西:陕西人民出版社,1991.
    [138]吴高洪,章毓晋,林行刚.基于分形的自然纹理自相关描述和分类[J].清华大学学报(自然科学版).2000,40(03):90-93.
    [139]吴高洪,章毓晋,林行刚.利用特征加权进行基于小波变换的纹理分类[J].模式识别与人工智能.1999,12(3):262-267.
    [140]吴高洪,章毓晋,林行刚.利用小波变换和特征加权进行纹理分割[J].中国图象图形学报.2001,6(4):333-337.
    [141]吴均,赵忠明.利用基于小波的尺度共生矩阵进行纹理分析[J].遥感学报.2001,(2):100-103.
    [142]吴涛,秦昆,肖启芝,等.图像纹理特征数据挖掘的不确定性分析[J].计算机工程与设计.2007,(12):2905-2908.
    [143]夏勇.基于特征的纹理图像分割技术研究[D].西北工业大学博士学位论文2006.
    [144]项健,范影乐,庞全.基于多特征多分类器融合的图像纹理分类[J].计算机工程与应用,2006,33:153-156.
    [145]向世明.纹理图像统计及其应用研究[D].中科院计算所博士学位论文.2004.
    [146]许存禄.图像纹理分析的新方法及其应用[D].复旦大学博士学位论文.2005.
    [147]杨淑莹,胡军,曹作良.基于图像纹理分析的目标物体识别方法[J].天津理工学院学报,2001,17(4):31-33.
    [148]于海鹏,刘一星,张斌等.应用空间灰度共生矩阵定量分析木材表面纹理特征[J].林业科学.2004,(6):121-129.
    [149]于海鹏.基于数字图像处理学的木材纹理定量化研究[D].东北林业大学博士学位论文.2005.
    [150]苑丽红,孙爽滋,付丽.灰度共生矩阵检索纹理图像的算法研究[J].计算机科学.2009,(11):300-303.
    [151]张继贤,李德仁.影像纹理的多标度分形分析[J].武汉测绘科技大学学报.1995,(2):106-111.
    [152]张继贤,李德仁.基于纹理质地子特征的影像纹理分形分析[J].测绘学报.1995,(4):267-274.
    [153]张继贤,李德仁.影象纹理的多尺度分析[J].遥感学报.1996,(1):1-13.
    [154]张继贤,柳健.基于能量分解的影像纹理多尺度分析[J].电子学报.1997,(12):15-20.
    [155]郑肇葆.马尔柯夫场在影像纹理模拟中的应用[J].测绘学报.1993,(4):255-262.
    [156]郑肇葆,黄桂兰.航空影像纹理分类的最小二乘法和问题的分析[J].测绘学报.1996,(2):121-126.
    [157]郑肇葆,郑宏,潘励.纹理分类中遗传算法参数的选择[J].测绘学报.2000,(1):35-39.
    [158]郑肇葆,周月琴.马尔柯夫随机场的参数估计与影像纹理分类[J].测绘学报.1995,(1):45-51.
    [159]钟业勋,魏文展,李占元,基本地形形态数学定义的研究[J],测绘科学,2002,27(3):16-18.
    [160]周廷儒,施雅凤,陈述彭.中国地形区划草案[M].北京:科学出版社,1956.
    [161]褚标.小波理论在图像去噪与纹理分析中的应用研究[D].合肥工业大学博士学位论文.2008.
    [162]朱长青,杨启和,朱文忠.基于小波变换特征的遥感地形影像纹理分析和分类[J].测绘学报.1996,(4):252-256.
    [163]朱长青,杨晓梅.具有更佳分辨率的小波特征的遥感影像纹理分类[J],地理研究,1997,16(1):53-59.
    [164]朱长青.小波分析理论与影像分析[M],测绘出版社,1998.
    [165]朱庆,赵杰,钟正等,基于规则格网DEM的地形特征提取算法[J],测绘学报,2004,33(1):77-82.
    [166]祝国瑞,张根寿.地图分析[M].北京:测绘出版社,1994.
    [167]周成虎,程维明,钱金凯.数字地形遥感解析与制图[M].北京:科学出版社,2009
    [168]周启鸣,刘学军.数字地形分析[M].北京:科学出版社.2006.