基于群体动力学的交通协调控制理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从整体战略角度出发,将路网内所有交叉口作为研究对象,对交叉口与交叉口、交叉口与交叉口群、交叉口群与群之间进行有效的协调控制设计,实现整个控制区域内交通运行效果最优化,解决城市交通容量不足、交通拥堵和交通污染等问题,已成为城市交通控制系统发展的新要求。本文以群体动力学和交通协调控制理论为基础,研究交叉口群体间的关联关系,从双交叉口协调控制、干道协调控制、过饱和路网协调控制的角度探讨和研究群体动力学应用于交通协调控制的原理和方法。完成的主要科研工作与研究成果概括如下:
     1.对交通协调控制的基本模式进行了探讨,分析和总结了交叉口-交叉口、交叉口-交叉口群协调控制的基本方式;提出了基于群体动力学的交通协调控制理论需要解决的基本问题;最后,通过分析交通协调控制基本问题的特点,提出了基于群体动力学的交通协调控制研究的基本方法体系。
     2.提出类相位差的概念,通过分析车流的到达模式和延误特性,确定了在双交叉口协调控制中,交叉口所能采取的控制策略集;引入群体演化博弈方法,对每个控制决策局势进行收益分析,计算局势的平衡点和系统收益;从而确定系统博弈的最佳策略。在此基础上,提出完善的协调控制流程和模型方法,并设计蚁群算法进行模型求解。为双交叉口协调控制提供了新的方法,也为群体动力学在交通协调控制领域的深度应用建立了理论基础。
     3.提出了以宏观传输模型为基本框架的快速交通仿真模型和以交通最优运行为协调控制目标的双层规划模型,从而构建起以快速交通仿真为基础的优化控制方法。最后将该方法应用于虚拟路网的交通协调控制案例,并与Transyt-7F进行了对比,结果表明了该方法的有效性。
     4.对高交通需求下的干道协调控制策略进行了设计。采用递阶协调的方式,通过动态优化交叉口的周期和绿信比,实现干道主向交通流的理想相位差协调控制、同时对向交通流的优化协调控制策略。建立了交叉口绿信比优化调整的动力学算子,并对其稳定性做出了分析和验证;对主向交通流理想相位差协调方式的实现进行了探讨,建立了相邻交叉口的周期联动公式,给出干道交叉口周期调整算法,同时针对对向交通流引起的交叉口游离问题,结合宏观模型,给出相应的交叉口绿信比微调算法;综上这些,给出了基于群体动力学的干道交通协调控制方法的总流程。在此基础上,建立优化控制模型,并设计有效的求解算法对模型进行求解。最后对该方法的动态性能进行了详细分析。
     5.以第二章的交叉口协调方式分析为基础,提出了基于群体演化的过饱和交通协调控制模型与方法。方法首先对路网中的关键交叉口进行判别,形成以该关键交叉口(或群)为中心的多级边界交叉口群;依托这些边界交叉口群,对关键交叉口的交通需求进行管理,合理地限制过剩交通流流入关键区域,避免出现过饱和拥堵;由此生成基本的过饱和控制方案,以该方案为基础,对其进一步优化各项参数,最终得到优化的过饱和协调控制方案。通过具体案例将本章方法与TRANSYT-7F优化方法进行对比,证明了该方法的有效性。最后对方法的性能和特征做了深入考察。仿真结果表明,由于最终的协调控制方案由初始方案经过群体演化改造而来,其是否合理对最终方案的协调控制效果影响很大,在生成初始方案时应该考虑到交叉口群的实际交通需求;另外,由于车道组最大允许的饱和度上限关系到边界群的层深度,也对协调效果具有重要的影响。
Effective design on coordination control of intersection&intersection, intersection&group of intersections, and group&group from an overall strategy view, is the newestdemand of urban traffic control systems, for achieving the objectives that traffic optimalrunning, dealing with insufficient urban traffic capacity, traffic congestion and pollution. Inthis paper, using theries of group dynamics to research on two intersetions coordinationcontrol, artery coordination control and coordination control at oversaturated conditions arethe core objectives. And the main work and achieves are summarized as follows:
     1. The basic model of traffic coordination control are discussed and summarized, and soas the methods for intersetion&intersection coordination control, intersetion&group ofintersections. After that, some essential issues are presented for the promising trafficcoordination control theory based on group dynamics. And finally, through the analysis ofthe characteristics of these issues, the basic method systems of the theory are presented.
     2. The conception of mimetic phase difference is presented. We analysed thecharacterestics of the arrival model and delay model of traffic flows, and confirmed thecontrol strategies set of each intersection in two intersection coordination control. Then themethod of group evolutionary game is introduced. Each situation will be investigated. Thebalance point (the best point) and its benifit in the situations are calculated, and so the beststrategy in the game is confirmed. On this basis, traffic coordination control model andmethod based on group dynamics are suggested, and so does the corresponding solvingalgorithm. This research will be the newest part in traffic coordination control theory, and italso increases the depth of application of group dynamics.
     3. In order to seek an effective method of traffic coordination control for road networks,the traffic behaviors at intersections are analyzed based on the macroscopic transmissionmodel via a gridding procedure, and a new macroscopic simulation model is constructed tofast evaluate control schemes. Then, by taking the optimal traffic running as the objective, abi-level programming model for traffic coordination control is proposed. Moreover, bycombining the macroscopic simulation model with the proposed bi-level model, a method oftraffic coordination control based on the improved macroscopic traffic model is presented. The method is finally tested on a virtual network with three different traffic demands, and theresults are compared with those of the Transyt-7F method. It is found that the proposedmethod is feasible and is superior to the Transyt-7F method especially in the high demandscenario.
     4. Artery coordination control strategy is designed for high traffic demand situations.With the method of hierarchical coordination, dynamically adjusting and optimizing cycleand green ratio of intersetions, the main flow on artery will be controlled under ideal phasedifference, and at the same time opposite flow under optimized offset coordination. Groupdynamics is adopted to establish adjusting operator for green ratio. Then the stability of theoperator is verified. The main ideal method of phase difference coordination to traffic floware discussed, and the linkage formula of cycle and offsets of neighbor-intersections areestablished, and so does the adjustment algorithm for the cycle of each intersection. Anotherinching green ratio algorithm is presented, for the congestion dilemma of opposite trafficflow. And based on these, the optimization model is established. The solving algorithm isgiven subsequently. Finally, the dynamic performance of the method is analyzed in detail.
     5. The coordination model and method for oversaturated network is presented, based ongroup evolutionary and the discussion in Chapter2. In this method, the key intersection(s) inthe network must be firstly identified, and so one or more intersection group(s) can beformed, which are all key-interseciton-centered. These groups can accurately control thetraffic volumes that come into the key area, and so to manage the demand of the key area orintersection. This will be a valid method for avoiding key area congestion. Thus the basicscheme for oversaturated network control is produced. And all to do is to optimize the otherparameters of intersections further. On this basis, the coordination control method isestablished. Some simulations are used to test this method, and the results show theeffectiveness of the model and the method. Finally, some important factors that will affectthe performance of the method are further discussed, and some conclusions are found, thatmaybe effective approaches to promote the performace of the method.
引文
[1] Cohen S, Liu C. The bandwidth-constrained TRANSYT signal optimization program[J].Transportation Research Record,1986,1057:1-7.
    [2] Yagoda H, Principle E, Vick C, et al. Subdivision of signal systems into control areas[J].Traffic Engineering,1973,43(12):42-45.
    [3] Pinnell C, DeShazo J, Wilshire R. Areawide traffic control systems[J]. TrafficEngineering&Control,1975,45(4):16-21.
    [4] Liu J, Yang, Oliver W. Using Fuzzy Logic Control to Provide Intelligent TrafficManagement Service for High-Speed Networks[C]. IEEE Transactions on Network andService Management,2013.
    [5] Pamucar D, Lukovac V, Pejcic S. Application of adaptive neuro fuzzy inference systemin the process of transportation support[J]. Asia-Pacific Journal of Operational Research,2013,30(2).
    [6] Wang J, Yang Z. Traffic signal optimization control model based on evolutionaryalgorithms[J]. WIT Transactions on the Built Environment,2013,140:205-210.
    [7] Shigehiro Y, Miyakawa T, Masuda T. Road traffic control based on genetic algorithmfor reducing traffic congestion[J]. IEEJ Transactions on Electronics, Information andSystems,2011,131(6):1190-1198.
    [8] Yuan E, Li B, Feng Y. Optimal coordinated traffic control of adjacent intersectionsbased on multiple objectives programming techniques[C]. Proceedings of the27thChinese Control Conference, CCC,2008:587-591.
    [9] Felici G, Rinaldi G, Truemper K. Development of a centralized traffic control systembased on logic programming[C]. Proceedings of the International Conference onApplications of Advanced Technologies in Transportation Engineering,1996,573-577.
    [10]Heung T, Ho T, Fung Y. Coordinated road-junction traffic control by dynamicprogramming[J]. IEEE Transactions on Intelligent Transportation Systems,2005,6(3):341-350.
    [11]HuntP, Robertson D, Bretherton R. The SCOOT on-line traffic signal optimizationtechnique[J]. Traffic Engineering&Control.1982,23(4):190-192.
    [12]Luk J. Two traffic-responsive area traffic control methods: SCATS and SCOOT[J].Traffic Engineering&Control.1984,25(1):14-22.
    [13]Hegyi A, Schutter B, Hoogendoorn S, et al. A fuzzy decision support system for trafficcontrol centers[C]. IEEE Conference on Intelligent Transportation Systems, Proceedings,ITSC,2001,358-363.
    [14]Gal-Tzur A, Mahalel D, Prashker J. Decision support system for controlling trafficsignals[J]. Transportation Research Record,1993,1421:69-75.
    [15]Klein L, Yi P, Teng H. Decision support system for advanced traffic managementthrough data fusion[J]. Transportation Research Record,2002,1804:173-178.
    [16]Gartner N, Pooran F, Andrews C. Implementation of the OPAC adaptive control strategyin a traffic signal network[C]. IEEE Conference on Intelligent Transportation Systems,Proceedings, ITSC,2001,195-200.
    [17]孙文秀,张润彤.基于模糊预测控制的ATP系统建模与仿真[J].系统仿真学报.2010,25(8):1974-1980.
    [18]傅惠,胡刚,徐建闽等.基于神经网络的城市关联交叉口交通流预测控制方法[J].中国公路学报.2008,21(5):91-95.
    [19]周永华.交通流预测控制的机制与方法[J].中国公路学报.2007,20(1):107-111.
    [20]刘智勇,李水友.城市交通信号的ANN自校正预测控制[J].控制理论与应用.2003,20(6):933-937.
    [21]Ou H, Zhang, W, Zhang W, et al. Urban intelligent traffic control system based onmulti-agent technology[J]. Acta Electronica Sinica,2000,28(12):52-55.
    [22]梁超,范炳全,韩印.区域交通流协调控制方法[J].交通运输工程学报.2011,11(3):112-117.
    [23]汤旻安,任恩恩.基于多Agent的城市交通控制建模研究[J].交通信息与安全.2009,(5):52-56.
    [24]卢凯,徐建闽,叶瑞敏.经典干道协调控制信号配时数解算法的改进[J].公路交通科技.2009,16(1):120-124.
    [25]靳文舟,黄一峰,荣利利等.基于粒子群理论的干道协调控制优化研究[J].交通与计算机.2008,26(1):31-34.
    [26]卢凯,徐建闽.干道协调控制相位差模型及其优化方法[J].中国公路学报.2008,21(1):83-88.
    [27]孔祥杰,沈国江,孙优贤.基于多智能体的交通干线动态智能协调控制[J].解放军理工大学学报(自然科学版).2010,11(5):544-550.
    [28]刘智勇,吴今培,李秀平.城市交通干线递阶模糊控制[J].公路交通科技.1997,14(3):17-23.
    [29]史强,贾磊.基于模糊神经网络的交通干线分层递阶控制[J].控制工程.2006,13(6):543-546.
    [30]王亮,马寿峰,贺国光.一种交通控制与诱导递阶协调优化模型[J].系统工程理论与实践.2004,(6):126-133.
    [31]承向军,杜鹏,杨肇夏.基于多智能体的分布式交通信号协调控制方法[J].系统工程理论与实践.2005,(8):130-135.
    [32]徐杨,张玉林,孙婷婷,苏艳芳.基于多智能体交通绿波效应分布式协同控制算法[J].软件学报.2012,23(11):2937-2945.
    [33]马寿峰,李英,刘豹.一种基于agent协调的两路口交通控制方法[J].系统工程学报.2003,18(3):272-278.
    [34]张辉,杨玉珍,李振龙,陈阳舟.基于分布式Q学习的区域交通协调控制的研究[J].武汉理工大学学报(交通科学与工程版).2007,31(6):1121-1124.
    [35]刘智勇,李水友.基于免疫遗传算法的区域交通自适应协调控制[J].控制理论与应用.2006,23(1):119-125.
    [36]高海军,陈龙,石松泉.交通路口混合交通流的分布式模糊控制[J].中国公路学报.2003,16(4):67-71.
    [37]承向军,杨肇夏.一种分布式交通信号控制方法及仿真实现[J].系统仿真学报.2005,17(8):1970-1973.
    [38]NAC. Traffic control handbook[M]. Washington, D C. Federal Highway Administration,1975.
    [39]Chang E. How to decide the interconnection of isolated traffic signals[C]. Proceedings ofthe1985Winter simulation conference, San Francisco,1985,445-453.
    [40]TRB. Highway Capacity Manual1987[M]. Washington, D C. National research council,1987.
    [41]高云峰.动态交叉口群协调控制基础问题研究[D].上海:同济大学,2007.
    [42]段后利,李志恒,张毅,等.交通控制子区动态划分模型[J].吉林大学学报(工学版),2009,39(S2):13-18.
    [43]马万经,李晓丹,杨晓光.基于路径的信号控制交叉口关联度计算模型[J].同济大学学报(自然科学版),2009,37(11):1462-1466.
    [44]Walinchus R. Real-time network decomposition and subnetwork interfacing[J]. HighwayResearch Record,1971,366:20-28.
    [45]Lin L. A methodology and computer-aided system for signal grouping of computerizedtraffic signal design[C]. Proceedings of28th international symposium on antomotivetechnology and automation, Stuttgart,1995,239-246.
    [46]Tian Z, Urbanik T. A system partition approach to improve signal timing[C].Transprotation Research Board, Washington, D C.2003.
    [47]莫汉康,彭国雄,云美萍.诱导条件下交通控制子区自动划分[J].交通运输工程学报,2002,2(2):67-72.
    [48]杨庆芳,陈林.交通控制子区动态划分方法[J].吉林大学学报(工学版),2006,36(S2):139-142.
    [49]陈晓明.交通控制子区动态划分指标研究[D].长春:吉林大学,2007.
    [50]高自友,赵小梅,黄海军.复杂网络理论与城市交通系统复杂性问题的相关研究[J].交通运输系统工程与信息,2006,6(3):41-47.
    [51]Hillier J. Appendix to glasgow’s experiment in area traffic control[J]. TrafficEngineering&Control,1966,7(9):569-571.
    [52]Gazis D. Optimum control of a system of oversaturated intersections[J]. OperaionsResearch,1964,12(6):815-831.
    [53]Gazis D, Potts R. The oversaturated intersection[C]. Proceedings of2nd internationalsymposium on the theory of road traffic flow, Paris,1965,221-237.
    [54]Michalopoulos P, Stephanopoulos G. Oversaturated signal systems with queue lengthconstraints-II: systems of intersections[J]. Transportation Research,1977,11(6):423-428.
    [55]Chang T, Lin J. Optimal signal timing for an oversaturated intersection[J].Transportation Research, Part B,2000,34(6):471-491.
    [56]刘小明,唐少虎.基于连续通行量的干线绿波协调控制方法研究[J].交通运输系统工程与信息.2012,12(6):34-40.
    [57]中国公路学会《交通工程手册》编委会.交通工程手册.北京:人民交通出版社,1998.
    [58]Liu Y, Chang G L. An arterial signal optimization model for intersections experiencingqueue spillback and lane blockage[J]. Transportation Research Part C: EmergingTechnologies,2011,19(1):130-144.
    [59]Gartner N H, Stamatiadis C. Arterial-based control of traffic flow in urban gridnetworks[J]. Mathematical and Computer Modelling,2002,35(5-6):657-671.
    [60]常于涛,彭国雄.基亍遗传算法的城市干道协调控制[J].交通运输工程学报,2003,3(2):106-112.
    [61]王秋平,谭学龙.城市道路多交叉口信号协调控制优化研究[J].西安建筑科技大学学报:自然科学版,2008,40(3):429-433.
    [62]Wong S C. Group-based optimization of a time-dependent TRANSYT traffic model forarea traffic control[J]. Transportation Research Part B,2002(36):191-312.
    [63]温惠英,尹宏宾,徐建闽.一种信号交叉口模糊交通控制方法[J].华南理工大学学报(自然科学版).2001,29(12):22-25.
    [64]杨立才,贾磊,赵建玉等.基于粗集理论的交通控制系统研究[J].中国公路学报,2005,18(2):79-83.
    [65]Chiu S, Chand S. Development environment for fuzzy rule-based traffic control[J].Robotics and Computer-Integrated Manufacturing,1994,11(3):167-176.
    [66]Chou C, Teng J. A fuzzy logic controller for traffic junction signals[J]. InformationSciences,2002,143(1-4):73-97.
    [67]陈淑燕,陈森发,黄毅.单路口多相位交通信号模糊控制系统的设计[J].系统仿真学报.2002,(7):961-963.
    [68]沈国江,孙优贤.基于相序优化的多相位模糊交通控制[J].控制与决策.2002,17(S1):654-658.
    [69]Abdulhal B, Pringle P, Karakoulas G. Reinforcement learning for true adaptive trafficsignal control[J]. ASCE Journal of Transportation Engineering,2003,129(3):278-284.
    [70]夏新海,许伦辉.城市交叉口Agent间的多遇交互历史学习协调方法[J].华南理工大学学报(自然科学版).2011,39(3):114-119.
    [71]Bie Y, Wang D, Ma D, et al. A distributed algorithm for signal coordination of multipleagents with embedded platoon dispersion model[J]. Journal of Southeast University(English Edition).2011,27(3):311-315.
    [72]宫晓燕,李振龙.基于移动控制代理技术的交叉口交通信号控制算法[J].中国公路学报.2006,19(5):93-97.
    [73]杨兆升,刘喜敏,卢守峰.基于混合遗传算法的多Agent交通控制系统[J].交通运输系统工程与信息.2006,6(1):64-67.
    [74]俞峥,李建勇.多智能体在交通控制系统中的应用[J].交通运输工程学报.2001,1(1):55-57.
    [75]张飞舟,曹学军,孙敏.基于多智能体的城市交通集成控制系统设计[J].北京大学学报(自然科学版).2008,44(2):289-292.
    [76]孙剑,刘好德,李克平.城市干道交通信号协调控制仿真优化[J].同济大学学报(自然科学版).2009,37(11):1467-1471.
    [77]李晓东,曾凡智,陈广义,丁伟雄.城市交通多线路协调控制优化仿真系统设计[J].计算机工程与科学.2010,32(10):126-130.
    [78]高云峰,胡华,韩皓,杨晓光.城市道路交叉口群信号协调控制多目标优化与仿真[J].中国公路学报.2012,25(6):129-135.
    [79]Watanabe M S. Dynamics of group motions controlled by signal processing: Acellular-automaton model and its applications[J]. Communications in Nonlinear Scienceand Numerical Simulation,2006,11:624-634.
    [80]Grimshaw R, Pelinovsky D, Pelinovsky E, Talipova T. Wave group dynamics in weaklynonlinear long-wave models[J]. Physica D: Nonlinear Phenomena,2001,159(1):35-57.
    [81]Caginalp G, Merdan H. Asset price dynamics with heterogeneous groups[J]. Physica D:Nonlinear Phenomena,2007,225(1):43-54.
    [82]Gasser I, Werner B. Dynamical phenomena induced by bottleneck[J]. PhilosophicalTransactions of the Royal Society, Part A,2010,368:4543-4562.
    [83]薛志斌.智能群体系统集群行为的动力学建模与分析及其仿真研究[D].兰州理工大学,2012.
    [84]唐毅南.群体模型下的金融市场和资产定价研究[D].复旦大学,2009.
    [85]李一啸.基于复杂网络和演化博弈理论的社会-经济系统建模研究[D].浙江大学,2010.
    [86]何增镇.基于Multi-agent与博弈论的城市交通控制诱导系统及其关键技术研究.中南大学,2009.
    [87]孙书祥.群体动力学视域下的学习共同体建构[J].大江周刊:论坛.2013,(1):84-85.
    [88]王明忠,范翠英,周宗奎.主观群体动力学模型述评[J].心理科学进展.2010,(11):1789-1799.
    [89]Roman F, Verma H, Jermann P. Group dynamics findings from coordination in problemsolving and decision making meetings[C]. GROUP'12-Proceedings of the ACM2012International Conference on Support Group Work,2012,305-306.
    [90]Cepeda R, Olgac N. Stability analysis for the group dynamics consensus with timedelayed communications[J]. European Journal of Control,2012,18(5):456-468.
    [91]Dodds T, Ruddle R. Using mobile group dynamics and virtual time to improveteamwork in large-scale collaborative virtual environments[J]. Computers and Graphics,2009,33(2):130-138.
    [92]Zhou Y, Guan X, Zheng Q. Group dynamics in discussing incidental topics over onlinesocial networks[J]. IEEE Network,2010,24(6):42-47.
    [93]Grimshaw R, Pelinovsky D, Pelinovsky E. Wave group dynamics in weakly nonlinearlong-wave models[J]. Physica D: Nonlinear Phenomena,2001,159(1-2):35-57.
    [94]Dodds T, Ruddle Roy. Mobile group dynamics in large-scale collaborative virtualenvironments[C]. Proceedings-IEEE Virtual Reality, p59-66,2008, IEEE VirtualReality2008, VR.
    [95]Zhou Y, Guan X, Zheng Q. Analyzing group dynamics for incidental topics in onlinesocial networks[C]. Proceedings of the World Congress on Intelligent Control andAutomation,2010,1941-1946.
    [96]Kawauchi Y, Inaba M, Fukuda T. Genetic evolution and self-organization of cellularrobotic system[J]. JSME International Journal, Series C: Dynamics, Control, Robotics,Design and Manufacturing,1995,38(3):501-509.
    [97]Zhu M, Zhang X, Wang X. Computer integration system for autonomous intelligentrobot with self-organization structure[J]. Journal of Software,2000,11(3):368-371.
    [98]Zhang Y, Zhang J, Zhang L. A survivability information system based on serviceself-organization[C]. Proceedings-5th International Conference on Internet Computingfor Science and Engineering, ICICSE2010,158-161.
    [99]Barrett E, Howley E, Duggan J. Evolving group coordination in an N-player game[J].Lecture Notes in Computer Science (including subseries Lecture Notes in ArtificialIntelligence and Lecture Notes in Bioinformatics),2011,5777,450-457.
    [100] Sanchez E, Squillero G, Tonda A. Group evolution: Emerging synergy through acoordinated effort[C].2011IEEE Congress of Evolutionary Computation, CEC2011,2662-2668.
    [101] Roman F, Verma H, Jermann P. Group dynamics findings from coordination inproblem solving and decision making meetings[C]. GROUP'12-Proceedings of theACM2012International Conference on Support Group Work,2012,305-306.
    [102]卢冰原,程八一.具有模糊行程的城市物流动态费用多车型车辆调度问题研究[J].模糊系统与数学,2013,(1):177-184.
    [103]王杰,毕浩洋.一种基于粒子群优化的极限学习机[J].郑州大学学报:理学版.2013,(1):100-104.
    [104] Maric I. Optimization of self-organizing polynomial neural networks[J]. ExpertSystems with Applications,2013,40(11):4528-4538.
    [105]楚天广,杨正东,邓魁英.群体动力学与协调控制研究中的若干问题[J].控制理论与应用.2010,27(1):86-93.
    [106] Breder C. Equations descriptive offish schools and other animal aggregations[J].Ecology.1954,35(3):361-370.
    [107] Gazi V, Passino K. Stability analysis of swarms[J]. IEEE Transactions on AutomaticControl,2003,48(4):692-697.
    [108] Shi H, Wang L, Chu T. Virtual leader approach to coordinated control of multiplemobile agents with asymmetric interactions[J]. Physica D,2006,213(1):5l-65.
    [109] Xie G, Wang L. Consensus control for networks of dynamic agents via activeswitching topology[C]. Lecture Notes in Computer Science. Berlin: Springer-Verlag,2005,3612:424-433.
    [110] Xiao E, Wang L. State consensus for multi-agent systems with switching topologiesand time-varying delays[J]. International Journaal of Contro1.2006,79(10): l277-l284.
    [111] Vicsek T, Czirok A. Novel type of phase transition in a system of self-drivenparticles[J]. Physical Review E,1995,75(6):1226-1229.
    [112] Jadbabaie A, Lin J, Morse A. Coordination of groups of mobile autonomous agentsusing nearest neighbor rules[J]. IEEE Transactions on Automatic Control,2003,48(6):988-1001.
    [113]杨立才,贾磊,王红.双交叉口两级模糊协调控制算法的研究[J].系统工程理论与实践.2005,(6):33-38.
    [114]彭力,王巍.利用改进型遗传算法实现两路口交通灯控制[J].计算机应用.2007,27(4):994-996.
    [115] Bai J, Li S. Improved ant colony algorithm with emphasis on data processing anddynamic city choice[C].2009International Conference on Information Engineering andComputer Science, ICIECS2009, CD.
    [116] Liu Y, Chang Q, Xiong H. Improved ant colony algorithm for shortest path problemin time-dependent networks[J]. Journal of Beijing University of Aeronautics andAstronautics,2009,35(10):1245-1248.
    [117] Yu X, Recker W. Stochastic adaptive control model for traffic signal systems[J].Transportation Research Part C,2006,14:263–282.
    [118] Wang H. Modeling and analysis of traffic signal systems using Petri nets[D]. NewYork: Rensselaer Polytechnic Institute,1993.
    [119] Mariagrazia D, Maria P. An urban traffic network model via coloured timed Petrinets[J]. Control Engineering Practice.2006,14:1213–1229.
    [120]卢凯,郑淑鉴,徐建闽.面向双向不同带宽需求的绿波协调控制优化模型[J].交通运输工程学报,2011,11(5):101-108.
    [121]徐建闽,首艳芳,卢凯.基于双层规划模型的交通信号区域协调控制[J].华南理工大学学报(自然科学版),2011,39(3):95-100.
    [122] Aboudolas K, Papageorgiou M, Kouvelas A, et al. A rolling-horizonquadratic-programming approach to the signal control problem in large-scale congestedurban road networks[J]. Transportation Research Part C,2010,18:680-694.
    [123]龙建成.城市道路交通拥堵传播规律及消散控制策略研究[D].北京交通大学,2009.
    [124] Keshav Dahal, Khaled Almejalli, M. Alamgir Hossain. Decision support forcoordinated road traffic control actions[J]. Decision Support Systems,2012,http://dx.doi.org/10.1016/j.dss.2012.10.022, in press.
    [125] Abu G, Benekohal R. Design and evaluation of dynamic traffic managementstrategies for congested conditions[J]. Transportation Research Part A,2003,37:109-127.
    [126]卢凯.交通信号协调控制基础理论与关键技术研究[D].广州:华南理工大学,2010.
    [127]卢凯,徐建闽,郑淑鉴.协调控制子区快速动态划分方法研究[J].自动化学报.2012,38(2):279-287.
    [128] Zheng S, Xu J. Research on Red Wave and Green Wave Coordinated Control Modelin Arterial Road for Different Traffic Demands[C].2011International Conference onMultimedia Technology,2011,1661-1664.
    [129]李轶舜.过饱和区域交通管理与控制方法研究[D].广州:华南理工大学,2012.
    [130] Girianna M. Dynamic signal coordination models for a network with oversaturatedintersections[D]. Urbana: University of Illinois,2002.
    [131] Daganzo C. Urban gridlock: macroscopic modeling and mitigation approaches[J].Transportation Research Part B,2007,41(1):49-62.
    [132] Gal-Tzur A, Mahalel D, Prashker N. Signal design for congested networks based onmetering[J]. Transportation Research Record.1993,1398:111-118.
    [133]张勇,白玉,杨晓光.城市道路交通网络死锁控制策略[J].中国公路学报.2010,23(6):96-102.