基于非线性控制策略的多自主体系统有限时间一致性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机、通信,以及传感等技术的不断发展,多自主体系统在诸如军事、工业生产、航空航天、经济等领域获得了广泛的应用,因此,在近些年来越来越多的学者投身于多自主体系统的研究。一致性问题是多自主体系统协作控制中最为基础的研究方向之一。考虑到许多实际系统中对一致性快速实现的需求,尤其是对于有高精度和高速度以及控制能耗要求的控制问题,本文在分析了现有研究成果的不足的基础上,针对几个不同的方面,提出了几种不同的有限时间一致性协议,使得多自主体系统的一致性能够在有限时间内实现。
     首先,针对连续的一致性控制带来的控制能耗大的问题,分别研究了无领航者和领航者-跟随者多自主体系统的有限时间一致性问题,提出了两种非线性的事件触发控制策略,明显地减少了控制器更新频率和控制能量消耗,同时,还加快了系统的一致性收敛速度,提高了系统抗干扰能力,延长了系统寿命。此外,还给出了触发间隔时间的下界,保证了Zeno行为不存在。
     其次,针对科技和工程应用领域中,许多系统都会在运动过程中的某些固定时刻或者非固定时刻会出现状态瞬间突变的现象,基于脉冲控制理论,提出了两种脉冲有限时间一致性控制协议,分别研究了无领航者和领航者-跟随者两种情况下的多自主体系统的脉冲有限时间控制问题。给出了充分条件来保证所提出的控制协议比无脉冲情形下的有限时间控制协议具有更快的收敛速度,进一步满足实际控制系统对高速度的需求。同时,还可以通过间歇地(而非连续地)发送领航者状态信息到(至少)一个跟随者自主体,来实现系统运动过程对系统一致状态的改变,满足实际控制系统对高精度的需求。
     然后,针对自主体之间通信链路能够保持的情形,研究了固定拓扑结构下的一阶和二阶多自主体系统的有限时间一致性问题,分别设计了非线性的控制协议,给出了多自主体系统有限时间一致的充分条件。接下来,针对环境中障碍物的出现或者通信网络故障等因素造成的自主体之间通信链路的增加或者缺失,使得自主体之间的拓扑结构出现切换或者不连通的情况,又分别研究了固定拓扑和两种切换拓扑下的领航者-跟随者多自主体系统的有限时间一致性问题,引入了分布式的误差函数,以及并图的概念,进而设计了分布式的非线性控制协议,分别提出了基于固定拓扑、切换拓扑,以及切换并图的连通性的多自主体系统有限时间一致的充分条件。
     最后,针对实际应用中,复杂环境的影响以及任务分工的不同,组成多自主体系统的个体可能具有不同功能或者动力学特性的情况,研究了由一阶和二阶自主体组成的异构多自主体系统的有限时间一致性问题,设计了异构的非线性控制协议,根据Lyapunov理论,得到了在无论领航者为一阶或者二阶自主体,还是静态或者动态自主体的情形下,异构多自主体系统的一致性都能够在有限时间内实现的充分性条件。
With the development of technologies of computer, communication, and sensor,multi-agent systems have wildly applied in many fields, such as military affairs, industries,aerospace, economic, and so on. So, more and more researchers devote themselves to thestudy of multi-agent systems. Consensus is one of the most basic aspects in thecoordination control of multi-agent systems. Considering the requirement of fastconsensus speed in many practical systems, especially some control problems with highprecision and high speed requirement, some different finite-time consensus protocols areproposed from some different aspects, based on the analyzing of the lack of existingresults, such that the consensus of multi-agent systems can be achieved in finite time.
     Firstly, in order to overcome the problem of huge consumption of energy brought bycontinuously communication among agents, two nonlinear event-triggered controlstrategies are proposed for leadless and leader-follower multi-agent systems, respectively.Finite-time consensus can be achieved and the convergence speed can be speeded upunder proposed protocols, meanwhile, the consumption of energy and the frequencies ofcontrollers updating can be reduced, the capacity of resisting disturbance is improved, andthe system life is prolonged. Moreover, the bound of the triggering interval is provided toillustrate that no Zeno behavior exists.
     Secondly, consider that in the fields of technique and engineering applications, manysystems may encounter the phenomena of state changed instantaneously at some regulartimes or irregular times, two impulsive finite-time consensus protocols are proposed basedon the impulsive control theory. The impulsive finite-time consensus problems are studiedfor leadless multi-agent systems and leader-follower multi-agent systems, respectively.Sufficient conditions are given to ensure that the proposed control protocols have a muchfaster convergence speed than the finite-time protocols without impulse, which satisfy thehigh speed requirements of some practical control systems. Meanwhile, according tointermittently (rather than continuously) send the leader’s state to at least one follower, thechange of consensus state can be realized in the process of systems achieving consensus, which satisfy the high precision requirements of some practical control systems.
     Thirdly, consider the situation that the communication links of multi-agent systemscan be maintained, the finite-time consensus problems of first-order and second-ordermulti-agent systems with fixed communication topology are studied, nonlinear controlprotocols are respectively designed, and some sufficient conditions are given formulti-agent systems to achieve finite-time consensus. Then, consider the complicatedenvironment, in which the system topology can be switching or even unconnected due tothe appearing of obstacles or the adding or losing of links cased by the failed ofcommunication, the finite-time consensus problems of leader-follower multi-agentsystems with fixed topology and two kinds of switching topology are studied, respectively.Distributed error functions and the concept of union graphs are introduced, and distributednonlinear control protocols are designed accordingly. Sufficient conditions are proposedfor multi-agent systems with fixed topology, switching topology, and switching uniontopology, respectively.
     Finally, contrapose the situation that the agents in a multi-agent system may havedifferent functions or dynamics in practical applications due to the affection ofcomplicated environment and the different division of work, the finite-time consensusproblems of heterogeneous multi-agent systems composed of first-order and second-orderagents are studied. Nonlinear heterogeneous control protocol is designed. Based on theLyapunov theory, some sufficient conditions are obtained for heterogeneous multi-agentsystems to achieve (static or dynamic) consensus in finite time, no matter the leader is afirst-order or a second-order agent.
引文
[1]邢关生.移动机器人网络的分布式运动协调[D].天津:南开大学,2009.
    [2] Lynch N A. Distributed Algorithms[M]. San Francisco, CA: Morgan Kaufmann,1997.
    [3] DeGroot M H. Reaching a Consensus[J]. Journal of American Statistical Association,1974,69(345):118-121.
    [4] Benediktsson J A, Swain P H. Consensus Theoretic Classification Methods[J]. IEEE Transactionson Systems, Man and Cybernetics,1992,22(4):688-704.
    [5] Weller S C, Mann N C. Assessing Rater Performance without a ‘Gold Standard’ using ConsensusTheory[J]. Medical Decision Making,1997,17(1):71-79.
    [6] Rao B S, Durrant-Whyte H F. Fully Decentralised Algorithm for Multi-Sensor KalmanFiltering[C]//Control Theory and Applications, IEE Proceedings D. IET,1991,138(5):413-420.
    [7] Gupta V, Spanos D, Hassibi B, et al. On LQG Control Across a Stochastic Packet-DroppingLink[C]//Proceedings of the American Control Conference,2005,1:360-365.
    [8]洪奕光,翟超.多智能体系统动态协调与分布式控制设计[J].控制理论与应用,2011,28(10):1506-1512.
    [9]谭拂晓,关新平,刘德荣.非平衡拓扑结构的多智能体网络系统一致性协议[J].控制理论与应用,2009,26(10):1087-1092.
    [10]李宗刚,贾英民.一类具有群体Leader的多智能体系统的聚集行为[J].智能系统学报,2006,2(1):26-30.
    [11] Conte G, Pennesi P. The Rendezvous Problem with Discontinuous Control Policies[J]. IEEETransactions on Automatic Control,2010,55(1):279-283.
    [12] Fang J, Morse A S, Cao M. Multi-Agent Rendezvousing with a Finite Set of CandidateRendezvous Points[C]//Proceedings of the American Control Conference,2008:765-770.
    [13] Gustavi T, Dimarogonas D V, Egerstedt M, Hu X M. Sufficient Conditions for ConnectivityMaintenance and Rendezvous in Leader-Follower Networks[J]. Automatica,2010,46(1):133-139.
    [14] Gazi V, Passino K M. Stability Analysis of Social Foraging Swarms[J]. IEEE Transactions onSystems, Man, and Cybernetics Part B: Cybernetics,2004,34(1):539-557.
    [15] Blondel V D, Hendrickx J M, Olshevsky A, et al. Convergence in Multiagent Coordination,Consensus, and Flocking[C]//Proceedings of the Joint44th IEEE Conference on Decision andControl and European Control Conference,2005:2996-3000.
    [16] Shi H, Wang L, Chu T G. Virtual Leader Approach to Coordinated Control of Multiple MobileAgents with Asymmetric Interactions[J]. Physica D: Nonlinear Phenomena,2006,213(1):51-65.
    [17] Su H S, Wang X F, Lin Z L. Flocking of Multi-Agents with a Virtual Leader[J]. IEEE Transactionson Automatic Control,2009,54(2):293-307.
    [18]楚天广,陈志福,王龙,等.群体动力学与协调控制[C]//第26届中国控制会议论文集,2007:611-615.
    [19]程代展,陈翰馥.从群集到社会行为控制[J].科技导报,2004,8(1):4-7.
    [20] Tanner H G. Flocking in Fixed and Switching Networks[J]. IEEE Transactions on AutomaticControl,2007,52(5):863-868.
    [21]楚天广,杨正东,邓魁英,等.群体动力学与协调控制研究中的若干问题[J].控制理论与应用,2010,27(1):86-93.
    [22] Fax J A. Optimal and Cooperative Control of Vehicle Formation[D]. Pasadena, CA: ControlDynamical System, California Institute of Technology,2001.
    [23] Fax J A, Murray R M. Information Flow and Cooperative Control of Vehicle Formations[J]. IEEETransactions on Automatic Control,2004,49(9):1465-1476.
    [24] Olfati-Saber R, Murray R M. Consensus Problems in Networks of Agents with SwitchingTopology and Time-Delays[J]. IEEE Transactions on Automatic Control,2004,49(9):1520-1533.
    [25]程代展,郭宇骞.切换系统进展[J].控制理论与应用,2005,22(6):954-960.
    [26] Olfati-Saber R, Murray R M. Consensus Protocols for Networks of Dynamic Agents[C].Proceedings of the American Control Conference, Denver, USA,2003:951-956.
    [27] Olfati-Saber R, Fax J A, Murray R M. Consensus and Cooperation in Networked Multi-AgentSystems[J]. Proceedings of the IEEE,2007,95(1):215-233.
    [28]谢广明,王龙.线性切换系统在任意切换信号下渐近稳定的一个充分条件[C]//第21届中国控制会议论文集,2002:398-400.
    [29] Ren W, Atkins E. Second-Order Consensus Protocols in Multiple Vehicle Systems with LocalInteractions[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit,San Francisco, USA,2005:3689-3701.
    [30] Ren W, Atkins E M. Distributed Multi-vehicle Coordinated Control via Local InformationExchange[J]. International Journal of Robust Nonlinear Control,2007,17(10–11):1002-1033.
    [31] Ren W. Consensus Strategies for Cooperative Control of Vehicle Formations[J]. IET ControlTheory&Applications,2007,1(2):505-512.
    [32] Ren W. On Consensus Algorithms for Double-Integrator Dynamics[J]. IEEE Transactions onAutomatic Control,2008,53(6):2295-2300.
    [33] Ren W. Collective Motion from Consensus with Cartesian Coordinate Coupling[J]. IEEETransactions on Automatic Control,2009,54(6):1330-1335.
    [34] Cao Y C, Ren W. Sampled-Data Formation Control under Dynamic DirectedInteraction[C]//American Control Conference, St Louis, USA,2009:5186-5191.
    [35] Zhai G, Okuno S, Imae J, et al. Consensus Algorithms for Multi-Agent Systems: a MatrixInequality Based Approach[C]//Proceedings of the IEEE International Conference on Networking,Sensing and Control,2009:891-896.
    [36] Zhai G, Okuno S, Imae J, et al. A New Consensus Algorithm for Multi-Agent Systems viaDynamic Output Feedback Control[C]//IEEE International Conference on Control Applications&Intelligent Control,2009:890-895.
    [37] Cao Y,Li Y,Ren W,et al. Distributed Coordination of Networked Fractional-Order Systems[J].IEEE Transactions on Systems, Man, and Cybernetics, Part B,2010,40(2):362-370.
    [38] Cao Y,Ren W. Distributed Formation Control for Fractional-Order Systems:Dynamic Interactionand Absolute/Relative Damping[J]. Systems&Control Letters,2010,59(3-4):233-240.
    [39] Tanner H G, Christodoulakis D. Decentralized Cooperative Control of Heterogeneous VehicleGroups[J]. Robotics and Autonomous Systems,2007,55(11):811-823.
    [40] Liu C L, Liu F. Stationary Consensus of Heterogeneous Multi-Agent Systems with BoundedCommunication Delays[J]. Automatica,2011,47(9):2130-2133.
    [41] Song Y,Gu M. Quasi-Average Consensus in Undirected Networks of Multi-Agents with MixedOrder Integrators[J]. Control Engineering of China,2009,16(2):220-222.
    [42] Gu M Q, Song Y Z. Quasi-Average-Consensus of Directed Hybrid Swarm Agents[C]//Proceedingsof the27th Chinese Control Conference, Kunming, China,2008:519-523.
    [43] Zheng Y S,Wang L.Consensus of Heterogeneous Multi-Agent Systems without VelocityMeasurements[J]. International Journal of Control,2012,85(7):906-914.
    [44] Tian Y. High-Order Consensus of Heterogeneous Multi-Agent Systems[C]//Proceedings of the8thAsian Control Conferenee, Kaohsiung, China,2011:341-346.
    [45] Tian Y, Zhang Y.High-Order Consensus of Heterogeneous Multi-Agent Systems with UnknownCommunication Delays[J]. Automatica,2012,48(6):1205-1212.
    [46] Kim H,Shim H,Seo J H. Output Consensus of Heterogeneous Uncertain Linear Multi-AgentSystems[J]. IEEE Transactions on Automatic Control,2011,56(1):200-206.
    [47] Zhou J, Xiang L, Liu Z. Synchronization in Complex Delayed Dynamical Networks withImpulsive Effects[J]. Physica A,2007,384(2):684-692.
    [48] Zhou J, Wu Q J, Xiang L. Pinning Complex Delayed Dynamical Networks by a Single ImpulsiveController[J]. IEEE Transactions on Circuits and Systems-I,2011,58(12):2882-2893.
    [49] Guan Z H, Liu Z W, Feng G, et al. Synchronization of Complex Dynamical Networks withTime-Varying Delays via Impulsive Distributed Control[J]. IEEE Transactions on Circuits andSystems-I,2010,57(8):2182-2195.
    [50] Wu Q J, Zhou J, Lan X. Impulsive Consensus Seeking in Directed Networks of Multi-AgentSystems with Communication Time Delays[J]. International Journal of Systems Science,2012,43(8):1479-1491.
    [51] Zhang Q, Chen S H, Yu C C. Impulsive Consensus Problem of Second-Order Multi-AgentSystems with Switching Topologies[J]. Communications in Nonlinear Science and NumericalSimulation,2012,17(1):9-16.
    [52] Astr m K J. Event Based Control[M]. Analysis and Design of Nonlinear Control Systems.Springer Berlin Heidelberg,2008:127–147.
    [53] Astrom K, Bernhardsson B. Comparison of Riemann and Lebesgue Sampling for First OrderStochastic Systems[C]//Proceedings of the41st IEEE Conference on Decision and Control,2002,2:2011-2016.
    [54] Henningsson T, Johannesson E, Cervin A. Sporadic Event-Based Control of First Order LinearStochastic Systems[J]. Automatica,2008,44(11):2890-2895.
    [55] Rabi M, Johansson K H, Johansson M. Optimal Stopping for Event-Triggered Sensing andActuation[C]//Proceedings of the47st IEEE Conference on Decision and Control,2008,3607-3612.
    [56] Tabuada P. Event-Triggered Real-Time Scheduling of Stabilizing Control Tasks[J]. IEEETransactions on Automatic Control,2007,52(9):1680-1685.
    [57] Eqtami A, Dimarogonas D V, Kyriakopoulos K J. Event-Triggered Control for Discrete-TimeSystems[C]//American Control Conference,2010,4719-4724.
    [58] Seyboth G S, Dimarogonas D V, Johansson K H. Control of Multi-Agent Systems viaEvent-Based Communication[C]//Proceedings of the18th IFAC World Congress,2011,10086-10091.
    [59] Liu Z X, Chen Z Q. Reaching Consensus in Networks of Agents via Event-Triggered Control[J].Journal of Information and Computational Science,2011,8(3):393-402.
    [60] Zhang Y Q, Hong Y G. Distributed Event-Triggered Tracking Control of Multi-Agent Systemswith Active Leader[C]//Proceedings of the10th World Congress on Intelligent Control andAutomation,2012,1453-1458.
    [61] Hu J P. Second-Order Event-Triggered Multi-Agent Consensus Control[C]//Proceedings of the31st Chinese Control Conference,2012,25-27.
    [62]李世华,田玉平.非完整移动机器人的有限时间跟踪控制算法研究[J].控制与决策,2005,20(7):750-754.
    [63]洪奕光,王剑魁.一类非线性系统的非光滑有限时间镇定[J].中国科学(E辑),信息科学,2005,35(6):663-672.
    [64] Bhat S P, Bernstein D S. Continuous Finite-Time Stabilization of The Translational and RotationalDouble Integrators[J]. IEEE Transactions on Automatic Control,1998,43(5):678-682.
    [65] Bhat S P, Bernstein D S. Geometric Homogeneity with Applications to Finite-Time Stability[J].Mathematics of Control, Signals and Systems,2005,17(2):101-127.
    [66] Bhat S P, Bernstein D S. Finite-Time Stability of Homogeneous Systems[C]//American ControlConference, Albuquerque,1997,1073-1078.
    [67] Xiao F, Wang L, Chen J. General Distributed Protocols for Finite-Time Consensus of Multi-AgentSystems[C]//Joint48th IEEE Conference on Decision and Control and28th Chinese ControlConference,2009,4741-4746.
    [68] Xiao F, Wang L, Chen J, et al. Finite-Time Formation Control for Multi-Agent Systems[J].Automatica,2009,45(11):2605-2611.
    [69] Jiang F C, Wang L. Finite-Time Information Consensus for Multi-Agent Systems with Fixed andSwitching Topologies[J]. Physica D,2009,238(16):1550-1560.
    [70] Jiang F C, Wang L. Finite-Time Weighted Average Consensus with Respect to a MonotonicFunction and Its Application[J]. Systems&Control Letters,2011,60(9):718-725.
    [71] Sayyaadi H, Doostmohammadian M R. Finite-Time Consensus in Directed Switching NetworkTopologies and Time-Delayed Communications[J]. Scientia Iranica B,2011,18(1):75-85.
    [72] Wang L, Chen Z, Liu Z, et al. Finite Time Agreement Protocol Design of Multi-Agent Systemswith Communication Delays[J]. Asian Journal of Control,2009,11(3):281-286.
    [73] Wang X L, Hong Y G. Finite-Time Consensus for Multi-Agent Networks with Second-OrderAgent Dynamics[C]//IFAC. Seoul,2008,15185-15190.
    [74] Sun F L, Chen J C, Guan Z H, et al. Leader-Following Finite-Time Consensus for Multi-AgentSystems with Jointly-Reachable Leader[J]. Nonlinear Analysis: Real World Applications,2012,13(5):2271-2284.
    [75] Li S H, Du H B, Lin X Z. Finite-Time Consensus Algorithm for Multi-Agent Systems withDouble-Integrator Dynamics[J]. Automatica,2011,47(8):1706-1712.
    [76] Zheng Y S, Wang L. Finite-Time Consensus of Heterogeneous Multi-Agent Systems with andwithout Velocity Measurements[J]. Systems&Control Letters,2012,61(8):871-878.
    [77] Scutari G, Barbarossa S, Pescosolido L. Distributed Decision Through Self-Synchronizing SensorNetworks in The Presence of Propagation Delays and Asymmetric Channels[J]. IEEE Transactionson Signal Processing,2008,56(4):1667-1684.
    [78] Xiao L, Boyd S, Lall S. A Scheme for Asynchronous Distributed Sensor Fusion Based on AverageConsensus[C]//Proceedings of the International Conference on Information Processing in SensorNetworks, IPSN'05, Los Angeles, CA, April2005,63-70.
    [79]张洪华,林来兴.卫星编队飞行相对轨道的确定[J].宇航学报,2002,23(6):77-81.
    [80] Chu T, Wang L, Chen T, et al. Complex Emergent Dynamics of Anisotropic Swarms: Convergencevs. Oscillation[J]. Chaos Solitons Fractals,2006,30(4):875-885.
    [81] Dong W, Farrell A. Decentralized Cooperative Control of Multiple Nonholonomic DynamicSystems with Uncertainty[J]. Automatica,2009,45(3):706-710.
    [82] Zhou J, Wu X, Yu W, et al. Flocking of Multi-Agent Dynamical Systems Based on Pseudo-LeaderMechanism[J]. Systems&Control Letters,2012,61(1):195-202.
    [83] Dimarogonas D V, Johansson K H. Event-Triggered Cooperative control[C]//Proceedings of theEuropean Control Conference, Budapest, Hungary, August2009,3015-3020.
    [84] Dimarogonas D V, Johansson K H. Event-Triggered Control for Multi-AgentSystems[C]//Proceedings of48th IEEE Conference of Decision Control and28th Chinese ControlConference, Shanghai, China, December2009,7131-7136.
    [85] Wang X, Lemmon M D. Self-Triggered Feedback Control Systems with Fnite-Gain L2Stability[J].IEEE Transactions on Autommatic Control,2009,54(3):452-467.
    [86] Dimarogonas D V, Frazzoli E, Johansson K H. Distributed Event-Triggered Control forMulti-Agent Systems[J]. IEEE Transactions on Automatic Control,2012,57(5):1291-1297.
    [87] Dimarogonas D V, Frazzoli E. Distributed Event-Triggered Control Strategies for Multi-AgentSystems[C]. Proceedings of47th Annual Allerton Conference, USA,2009,906-910.
    [88] Fan Y, Feng G, Wang Y, et al. Distributed Event-Triggered Control of Multi-Agent Systems withCombinational Measurements[J]. Automatica,2013,49(2):671-675.
    [89] Seyboth G S, Dimarogonas D V, Johansson K H. Event-Based Broadcasting for Multi-AgentAverage Consensus[J]. Automatica,2013,49(1):245-252.
    [90] Godsil C, Royal G. Algebraic graph theory[M]. New York: Springer-Verlag,2001.
    [91] Bhat S P, Bernstein D S. Finite-Time Stability of Continuous Autonomous Systems[J]. SIAMJournal on Control and Optimization,2000,38(3):751-766.
    [92] Hong Y, Hu J, Gao L. Tracking Control for Multi-Agent Consensus with An Active Leader andVariable Topology[J]. Automatica,2008,42(7):1177-1182.
    [93] Bullo F, Cortés J, Martínez S. Distributed Control of Robotic Networks[M]. Princeton UniversityPress,2009.
    [94] Vicsek T. A question of scale[J]. Nature,2001,411(6836):421-421.
    [95] Yang E, Gu D. Nonlinear Formation-Keeping and Mooring Control of Multiple AutonomousUnderwater Vehicles[J]. IEEE/ASME Transactions on Mechatronics,2007,12(2):205-215.
    [96] Fax A, Murray R. Information Flow And Cooperative Control of Vehicle Formations[J]. IEEETransactions on Automatic Control,2004,49(9):1453-1464.
    [97] Carli R, Chiuso A, Schenato L, et al. Distributed Kalman Filtering Based on ConsensusStrategies[J]. IEEE Journal Selected Areas Communications,2008,26(4):622-633.
    [98] Ma C, Li T, Zhang J. Consensus Control for Leader-Following Multi-Agent Systems withMeasurement Noises[J]. Journal of Systems Science and Complexity,2010,23(1):35-49.
    [99] Zheng Y, Zhu Y, Wang L. Consensus of Heterogeneous Multi-Agent Systems[J]. IET ControlTheory Applications,2011,5(16):1881-1888.
    [100] Qing H, Haddad W M, Bhat S P. Finite-Time Semistability, Filippov Systems, and ConsensusProtocols for Nonlinear Dynamical Networks with Switching Topologies[J]. Nonlinear Analysis:Hybrid Systems,2010,4(3):557-573.
    [101] Franceschelli M, Giua A, Pisano A, et al. Finite-Time Consensus for Switching NetworkTopologies[J]. Nonlinear Analysis: Hybrid Systems,2013,10(1):83-93.
    [102] Zhang L P, Jiang H B, Bi Q S. Reliable Impulsive Synchronization for A Class of NonlinearChaotic Systems[J]. Chinese Physics B,2010,19(1):010507.
    [103] Zhou J, Wu Q J, Xiang L, et al. Impulsive Synchronization Seeking in General Complex DelayedDynamical Networks[J]. Nonlinear Analysis: Hybrid Systems,2011,5(3):513-524.
    [104] Yang Y Q, Cao J D. Exponential Synchronization of the Complex Dynamical Networks with ACoupling Delay and Impulsive Effects[J]. Nonlinear Analysis Real Word Applications,2010,11(3):1650-1659.
    [105] Jiang H B, Yu J J, Zhou C G. Consensus of Multi-Agent Linear Dynamic Systems via ImpulsiveControl Protocols[J]. International Journal of Systems Science,2011,42(6):967-976.
    [106] Jiang H B, Bi Q S. Impulsive Synchronization of Networked Nonlinear Dynamical Systems[J].Physics Letters A,2010,374(27):2723-2729.
    [107] Guan Z H, Liu Z W, Feng G, et al. Impulsive Consensus Algorithms for Second-OrderMulti-Agent Networks with Sampled Information[J]. Automatica,2012,48(7):1397-1404.
    [108] Huang M Y, Manton J H. Coordination and Consensus of Networked Agents with NoisyMeasurements: Stochastic Algorithms and Asymptotic Behavior[J]. SIAM Journal on Control andOptimization,2009,48(1):134-161.
    [109] Sergey G N, Wassim M H. Finite-Time Stabilization of Nonlinear Impulsive DynamicalSystem[J]. Nonlinear Analysis: Hybrid Systems,2008,2(3):832-845.
    [110] Olfati-Saber R. Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory[J]. IEEETransactions on Automatic Control,2006,51(3):410-420.
    [111] Luo R C, Chen T M. Development of A Multi-Behavior Based Mobile Robot for RemoteSupervisory Control Through the Internet[J]. IEEE/ASME Transactions on Mechatronics,2000,5(4):376-385.
    [112] Yang E F, Gu D B. Nonlinear Formation-Keeping and Mooring Control of Multiple AutonomousUnderwater Vehicles[J]. IEEE/ASME Transactions on Mechatronics,2007,12(2):164-178.
    [113] Yan J, Guan X P, Luo X Y, et al. Target Tracking and Obstacle Avoidance for Multi-AgentNetworks with Input Constraints[J]. International Journal of Automation and Computing,2011,8(1):46-53.
    [114] Zhu M, Martinez S. Discrete-Time Dynamic Average Consensus[J]. Automatica,2010,46(2):322-329.
    [115] Bauso D, Giarré L, Pesenti R. Non-Linear Protocols for Optimal Distributed Consensus inNetworks of Dynamic Agents[J]. Systems&Control Letters,2006,55(11):918-928.
    [116] Cortés J. Distributed Algorithms for Reaching Consensus on General Functions[J]. Automatica,2008,44(3):726-737.
    [117] Lin P, Qin K Y, Zhao H M, et al. A New Approach to Average Consensus Problems with MultipleTime-Delays and Jointly-Connected Topologies[J]. Journal of the Franklin Institute,2012,349(1):293-304.
    [118] Hu G Q. Robust Consensus Tracking of A Class of Second-Order Multi-Agent DynamicSystems[J]. Systems&Control Letters,2012,61(1):134-142.
    [119] Liu X W, Chen T P, Lu W L. Consensus Problem in Directed Networks of Multi-Agents viaNonlinear Protocols[J]. Physics Letters A,2009,373(35):3122-3127.
    [120] Wang L, Xiao F. Finite Time Consensus Problems for Networks of Dynamic Agents[J]. IEEETransactions on Automatic Control,2010,55(4):950-955.
    [121] Cucker F, Smale S. Emergent Behavior in Flocks[J]. IEEE Transactions on Automatic Control,2007,52(5):852-862.
    [122] Ren W, Beard R W, Atkins E. Information Consensus in Multivehicle Cooperative Control:Collective Group Behavior Through Local Interaction[J]. IEEE Control Systems,2007,27(2):71-82.
    [123] Song Q, Cao J D, Yu W W. Second-Order Leader-Following Consensus of NonlinearMulti-Agent Systems via Pinning Control[J]. Systems&Control Letters,2010,59(9):553-562.
    [124] Khoo S Y, Xie L H, Man Z H. Robust Finite-Time Consensus Tracking Algorithm for MultirobotSystems[J]. IEEE/ASME Transations on Mechatronics,2009,14(2):219-228.
    [125] Chen G, Lewis F L, Xie L H. Finite-Time Distributed Consensus via Binary Control Protocols[J].Automatica,2011,47(9):1962-1968.
    [126] Qian C, Lin W. A Continuous Feedback Approach to Global Strong Stabilization of NonlinearSystems[J]. IEEE Transactions on Automatic Control,2001,46(7):1061-1079.
    [127] Wang X L, Hong Y G. Distributed Finite-Time χ-Consensus Algorithms for Multi-AgentSystems with Variable Coupling Topology[J]. Journal of Systems Science and Complexity,2010,23(1):209-218.
    [128] Lin P, Jia Y M. Consensus of Second-Order Discrete-Time Multi-Agent Systems withNonuniform Time-Delays and Dynamically Changing Topologies[J]. Automatica,2009,45(9):2154-2158.
    [129] Xiao F, Wang L. State Consensus for Multi-Agent Systems with Switching Topologies andTime-Varying Delays[J]. International Journal of Control,2006,79(10):1277-1284.
    [130] Tian Y P, Liu C L. Consensus of Multi-Agent Systems with Diverse Input and CommunicationDelays[J]. IEEE Trasactions on Automatic Control,53(9):2122-2128.
    [131] Yan J, Guan X P, Luo X Y. Consensus Pursuit of Heterogeneous Multi-Agent Systems Under ADirected Acyclic Graph[J]. Chinese Physics B,2011,20(4):048901.
    [132] Ni W, Cheng D Z. Leader-Following Consensus of Multi-Agent Systems Under Fixed andSwitching Topologies[J]. Systems&Control Letters,2010,59(3-4):209-217.
    [133] Hong Y G, Gao L X, Cheng D Z, et al. Lyapunov-Based Approach to Multiagent Systems withSwitching Jointly Connected Interconnection[J]. IEEE Transactions on Automatic Control,52(5):943-948.
    [134] Lee D J, Spong M W. Agreement with Non-Uniform Information Delays[C]. Proceedings of theAmerican Control Conference, Minnesota, USA, June14-16,2006,756-761.
    [135]李世华,田玉平.一种非完整移动机器人有限时间跟踪控制算法[J].东南大学学报(自然科学版),2004,34(增刊):1-4.