基于分子动力学的车辆运行安全特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
跟驰和换道行为是影响车辆运行安全性的重要因素,也是目前驾驶行为和车辆主动安全领域的研究热点。通过车辆跟驰与换道行为建模,分析车辆运行安全特性,构建车辆运行安全预警系统,并应用于道路系统安全评估与预测,对解决自动驾驶行车安全和跟驰效率、提高道路交通安全都具有重要的理论价值和现实意义。
     本文依托国家自然科学基金项目“车辆道路协同安全状态演进”和“车辆跟驰的分子动力学解析及其模型研究”课题,应用分子动力学系统分析车辆的跟驰特性,建立基于需求安全距离的跟驰模型;对车辆运行过程中的跟驰-换道行为进行分析建模,界定了跟驰-换道安全区域;最后对车流运行安全进行了稳定性分析。本文研究工作包括以下几个部分:
     1.驾驶行为特性和车辆的跟驰特性分析。从分子动力学的角度,系统阐述了车辆跟驰的“低温”可“压缩”性和“高温”可“膨胀”性两种自然状态;提出了跟驰需求安全距离,从车队行进过程中车辆前向需求安全距离,侧向需求安全距离和要求安全距离三个方面分析车辆跟驰的需求安全特性,引入距离需求饱和系数对动静态需求安全距离进行定量建模与分析。
     2.建立基于需求安全距离的分子动力学跟驰模型。应用分子动力学对车辆跟驰特性进行研究,探索构建车辆跟驰的需求安全距离及其应用模型;基于刺激-反应模型,引入距离差项、速度差项和预测项建立多刺激分子跟驰模型,赋予驾驶员反应权重,运用数学演绎方法,推导出驾驶员对各种刺激反应同向性的状态方程。从纵向间距和速度两个方面分析了侧向需求安全距离对车辆跟驰行为的影响作用,构建侧向需求安全距离模型。
     3.车辆跟驰-换道的运行安全特性研究。基于车辆换道的动力学特性分析,根据换道过程中避免碰撞的条件,建立具体换道场景中的临界安全距离定量模型;在对应用模型进行仿真分析的基础上,界定了安全区域和非安全区域;仿真分析表明,通过在换道前调整速度和纵向间距,车辆可以减小换道过程中碰撞的可能性,研究成果可为自动换道辅助系统提供理论基础。
     4.车流运行安全稳定性分析。基于分子动力学理论,以平衡状态的车队为研究对象,采用微扰法从微观和宏观两方面对交通流进行稳定性分析。建立了基于需求安全距离的微扰跟驰模型;应用Matlab对微扰法研究结果进行数值仿真分析,得出了影响交通流稳定性和运行安全的因素,将为提高道路通行能力和交通运行安全提供理论依据。
Car following and lane changing behaviour are two factors influencing vehicleoperating safety,which have become an important content of drive behavior andvehicle active safety at present. Carrying out safety characteristics analysis forvehicle operating based on following and changing models, and structuring safetywarning system in vehicle operating applied into safety assessment and predictionfor road safety system, that has important theoretical value and practical significancein the aspects including solving the autonomous driving safety, following efficiencyand improving road safety.
     In this thesis, based on the National Natural Science Fund project:"State ofevolution for cooperative vehicles-infrastructure safety" and " Molecular dynamicsanalysis and the model of car following ", some critical issues have been given indeep study. Car following characteristics is analyzed using molecular dynamics,car-following model based on required safety distance is established; lane changingbehavior is analyzed, critical safety distance model is set up, and safety erea isdefined for lane changing; the stability of traffic flow operating safety is analyzed.
     The research of this dissertation can be summarized as following aspects:
     1. Analysis on driver behavior characteristics and the car-following behaviourare carried out. Based on molecular dynamics, the two nature state of car followingare systematically elaborated in car following, the state of "compression" in the "lowtemperature" and the state of "expansion" in the "high temperature"; and thenrequired safety distance is put forward, required safety characteristics is naalyzedfrom three aspects including front prior required safety distance, lateral requiredsafety distance and required safety distance, distance demand saturation coefficient isintroduced to quantitatively analyze and modeling dynamic and static required safetydistance.
     2. Car-following model of molecular dynamics is set up based on required safetydistance. Molecular dynamics was taken to analyze car following behavior and themolecular car following model with multiple stimulus is established. Based onstimulus-response model, giving the reaction weight to the items of distancedifference, velocity difference and prediction, using mathematical deduction method, the state equation is set up making known the drivers' response to various stimuli. Theinfluence on car following of lateral required safety distance is analyzed from theaspects of longitudinal distance and the speed, and the model of lateral requiredsafety distance is set up.
     3. The dynamic characteristics of lane changing is analyzed, the conditionsavoiding the collision was studied at the lane changing process, the quantitativemodel of the criticality safety distance is developed in the concrete lane changingscene, simulation analysis is carried out on the model, on the basis of which definesthe safety area and no-safety area. Results show that by adjusting speed andlongitudinal spacing before lane changing, vehicles can reduce the possibility ofcollision. The research results can provide theoretical basis for automatic lanechanging auxiliary system.
     4. Based on the molecular dynamics theory, taking balance motorcade as theresearch object, the perturbation method is used to analyse the stability of traffic flowfrom the microcosmic and macroscopic aspects. Perturbation-following model is setup based on the required safety distance. Numerical simulation analysis is carried outapplying Matlab on the research conclusion of the perturbation method, the factorsaffecting stability of traffic flow and traffic security are obtained. The results havegreat significance for improving traffic capacity and road safety.
引文
[1]Peden M M, Krug E, Mohan D, Hyder A, et al. A five-year WHO strategy for roadtraffic injury prevention[R]. Geneva: World Health Organization,2001.
    [2]公安部交通管理局.中华人民共和国道路交通事故统计年报(2002年度)[R].江苏:公安部交通管理科学研究所,2003.
    [3]公安部交通管理局.中华人民共和国道路交通事故统计年报(2003年度)[R].江苏:公安部交通管理科学研究所,2004.
    [4]公安部交通管理局.中华人民共和国道路交通事故统计年报(2004年度)[R].江苏:公安部交通管理科学研究所,2005.
    [5]公安部交通管理局.中华人民共和国道路交通事故统计年报(2005年度)[R].江苏:公安部交通管理科学研究所,2006.
    [6]公安部交通管理局.中华人民共和国道路交通事故统计年报(2006年度)[R].江苏:公安部交通管理科学研究所,2007.
    [7]公安部交通管理局.中华人民共和国道路交通事故统计年报(2007年度)[R].江苏:公安部交通管理科学研究所,2008.
    [8]公安部交通管理局.中华人民共和国道路交通事故统计年报(2008年度)[R].江苏:公安部交通管理科学研究所,2009.
    [9]公安部交通管理局.中华人民共和国道路交通事故统计年报(2009年度)[R].江苏:公安部交通管理科学研究所,2010.
    [10]公安部交通管理局.中华人民共和国道路交通事故统计年报(2009年度)[R].江苏:公安部交通管理科学研究所,2011.
    [11]公安部交通管理局.中华人民共和国道路交通事故统计年报(2009年度)[R].江苏:公安部交通管理科学研究所,2012.
    [12]段里仁.道路交通事故概论[M].北京:中国人民公安大学出版社,1997:3-67.
    [13]Reuschel A. Vehicle movement in a platoon[J]. Oesterreichisches IngenieurArchir,1995,4:193-215.
    [14]Pipes L A. An operational analysis of traffic dynamics [J]. Journal of AppliedPhysics,1953,24(3):274-281.
    [15]Gazis D C, Herman R, Potts R B. Car-following theory of steady-state trafficflow[J]. Operation Research,1959,7(4):499-505.
    [16]王殿海.交通流理论[M].北京:人民交通出版社,2001.
    [17]李力.现代交通流理论与应用(卷I-高速公路交通流)[M].北京:清华大学出版社,2011.
    [18]王殿海.交通系统分析[M].北京:人民交通出版社,2007.
    [19]Kometani E,Sasaki T. Dynamic behavior of traffic with a nolinear spacing-speedrelationship[C]. Elsevier: Proceedings of the symposium on theory of trafficflow.New York: Elsevier,1959:105-119.
    [20]Gipps P G. A Behavioral Car-following Model for Computer Simulation[J].Transportation Research Part B,1981,15(2):105-111.
    [21]A G R Bullen. Development of compact microsimulation for analyzing freewayoperations and design [J]. Transportation Research Record,1982,841:15-18.
    [22]Rathi A K,Santiago A J. The new NESSIM simulation program [J]. TrafficEngineering and Control,1990,30(5):317-320.
    [23]Wicks D A,Andrews B J. Development and testing of INTRAS,A microscopicfreeway simulation model[R]. Washington D C: U.S department of transportationReport,1980, FHWA/RD-80/106.
    [24]Aycin M F,Benekohal R F. Comparison of car-following models for simulation[J]. Transportation Research Record,1999,1678:116-127.
    [25] Aycin M F,Benekohal R F. Stability and performance of car-following models incongested traffic [J]. ACSE Journal of Traffic Engineering,2001,2(1):2-12.
    [26]Benekohal R F,Treiterer J. CARSIM: Car-following model for simulation oftraffic in normal and stop-and-go conditions[J]. Transportation Research Record,1988,1194:99-111.
    [27]Todosiev E P. The Action Point Model of the Driver Vehicle System [R]. Ohio:Ohio State University,1963.
    [28]Zhang Y L, Clark J E, James E C. A Multi-Regime Approach for MicroscopicTraffic Simulation[C]. Washington D C: Transportation Research Board77thAnnual Meeting,1998.
    [29]Wiedemann R, Reiter U. Microscopic Traffic Simulation/The SimulationSystem-Mission [R]. German Karlsruhe: University Karlsruhe,1992.
    [30]Fancher P, Bareket Z. An Evolving Model for Studying Driver/Vehicle SystemPerformance in the Longitudinal Control of Headway [C]. Washington D. C:Transportation Research Board77th Annual Meeting,1998.
    [31]Gunay B. Car following theory with lateral discomfort[J]. TransportationResearch Part B, Methodological,2007,41(7):722-735.
    [32]Kikuchi, Chakroborty. Car following model based on a fuzzy inference system[J].Transportation Research Record,1992,1365:82-91,.
    [33]Bando M, Hasebe K, Nayama A, et al. Dynamical model of traffic congestion andnumerical simulation[J]. Physical Revies E,1995,51(2):1035-1042.
    [34]Helbing D, Tilch B. Generalized force model of traffic dynamics[J]. PhysicalRevies E,1998,58(1):133-138.
    [35]Gipps P G.. A model for structure of lane-changing decisions[J].TransportationResearch Part B,1986,20(5):403-411.
    [36]Yang Q, Koutsopoulos H N. A microscopic traffic simulator for evaluation ofdynamic traffic management systems[J]. Transportation Research Part C,1996,4(3):113-129.
    [37]王武宏,孙逢春,曹琦.道路交通系统中驾驶行为理论与方法[M].北京:科学出版社,2001:145-149.
    [38]Dickerson J A,et a1.Lateral and Longitudinal Control Analysis[R].California:University of Southern California,1994:268-270.
    [39]Hidas P. Modeling lane changing and merging in microscopic trafficsimulation[J]. Transportation Research Part C,2002,10(5):351-371.
    [40]Zhang Y L, Owen L E, Clark J E. Multiregime approach for microscopic trafficsimulation[J]. Transportation Research Record,1998,1664:103-115.
    [41]Hunt J G, Lyons G D. Modeling of dual of dual-car-riageway lane-changing usingneural networks[J]. Transportation Research Part C,1994,2(4):231-245.
    [42]Wu J, Brackstone M, Mcdonald M. Fuzzy systems for motorway microscopicsimulation model[J]. Fuzzy Sets and Systems,2000,116(1):65-76.
    [43]张智勇,荣建,任福田.跟车模型研究综述[J].公路交通科技,2004,21(8):111-112.
    [44]章三乐,肖秋生,任福田.车辆跟驰理论的实用研究[J].北京工业大学学报,1992,18(3):20-26
    [45]段进宇.混合车流的通行能力[J].同济大学学报(自然科学版),1995,23(4):37-42.
    [46]贾洪飞,隽志才.基于期望间距的车辆跟驰模型的建立[J].中国公路学报,2000,13(4):86-87.
    [47]贾洪飞,隽志才,曹鹏.跟驰过程中驾驶员认知结构模型的建立[J].公路交通科技,2005,22(11):130-132.
    [48]陶鹏飞.基于心理场理论的驾驶行为建模[D].长春:吉林大学,2012.
    [49]李迎峰,史忠科,周致纳.基于时变期望车距与最大车速的跟驰模型[J].交通与计算机,2008,8(3):68-73.
    [50]许伦辉,罗强,吴建伟等.基于最小安全距离的车辆跟驰模型研究[J].公路交通科技,2010,27(10):94-100.
    [51]杨达,蒲云,杨飞,等.基于最优间距的车辆跟驰模型及其特性[J].西南交通大学学报,2012,47(5):889-894.
    [52]时伟,韦艳芳,李兴莉.一种基于最小可觉差的安全车距设计模型[J].交通运输系统工程与信息,2011,11(2):33-38.
    [53]王文清,王武宏,钟永刚,等.基于模糊推理的跟驰安全距离控制算法及实现[J].交通运输工程学报,2003,3(1):72-75.
    [54]钟益萍,张存保,石永辉.考虑驾驶员行为特性的模糊推理跟驰模型研究[J].交通信息与安全,2010,28(3):17-20.
    [55]吴超仲,严新平,马晓风.考虑驾驶员性格特性的跟驰模型[J].交通运输工程与信息学报,2007,4(1):18-22.
    [56]曲大义,管德永,刘志刚,等.中国城市混合交通流特性研究[J].青岛理工大学学报,2007,28(3):81-86.
    [57]潘玲.基于驾驶员认知过程的车辆跟驰模型的建立[D].长春:吉林大学,2006.
    [58]周立军.基于驾驶员信息处理特性的跟驰换道模型研究[D].长春:吉林大学,2008.
    [59]魏丽英,隽志才,田春林.驾驶员车道变换行为模拟分析[J].中国公路报,2001,14(1):77-80.
    [60]邹智军,杨东援.微观交通仿真中的车道变换模型[J].中国公路学报,2002,15(2):105-108.
    [61]王晓原,孟昭为,宿宝臣.微观仿真车道变换模型研究[J].上海理工大学报,2004,18(l):1-5.
    [62]李丹丹等.车辆换道控制策略及其灵敏度分析[J].系统工程学报,2005,21(2):206-210.
    [63]黄秋菊.车道变换行为特性及其对交通安全影响的研究[D].哈尔滨:哈尔滨工业大学,2007.
    [64]李迎峰,史忠科,周致纳.微观交通仿真中随机决策换道行为研究[J].系统仿真学报,2008,20(16):4273-4277.
    [65]Treiber M, Helbing D. Memory effects in miscroscopic traffic models and widescattering in flow density data[J]. Physical Review E,2003, vol.68id.046119.
    [66]许洪国,何彪.道路交通事故分析与再现[M].警官教育出版社,1996,12:14-19.
    [67]任有.交通环境下驾驶行为模拟与应急驾驶可靠性建模[D].长春:吉林大学,2007.
    [68]刘志强,歌如海,龚彪.道路交通安全工程[M].北京:化学工业出版社,2005.
    [69]辛德胜,林晓珑,卢云华.驾驶员动视力对交通安全的影响及检测系统的研究[J].汽车工程,1998,20(3):82-86.
    [70]Helly. Simulation of bottlenecks in single lane traffic flow[Z]. In symposium ontheory of traffic flow. Research Laboratories, General Motors, proceedings,1959:207-238.
    [71]Brackstone M, Sultan B, McDonald M. Motorway driver behaviour: Studies oncar following[J]. Transportation Research Part F,2002,5(1):31-46.
    [72]马俊.论驾驶员的感知特性及安全管理对策[J].交通科技,2000,17(10):89-92.
    [73]Regulinski T L, Askren W B. Stochastic modeling of human performanceeffectiveness functions[J]. In Proceedings of1972Annual Reliability andMaintainability Symposium,1972,02:45-48.
    [74]Rumar K. The basic driver error: Late detection[J]. Ergonomics,1990,33:1281-1290.
    [75]Lisbeth Harms. Variation in drivers congunative load effects of driving throughvillage areas and rural junctions[J]. Ergonomics,1991,34:19-23.
    [76]Thomas A, Ranney. Models of driving behavior: a review of their evaluation[J].Accident Analysis and Prevention,1994,26(6):733~750.
    [77]张殿业.驾驶员动态视野与行车安全可靠度[J].西南交通大学学报,2000,35(6):319-322.
    [78]Davis L C.Modifications of the optimal velocity traffic model to include delaydue to driver reaction time.www.elsevier.com/locate/physa.2007,6.
    [79]贺国光,万兴义,王东山.基于跟驰模型的交通流混沌研究[J].系统工程,2003,02:50-55
    [80]王浩.基于神经网络的模糊推理车辆跟驰模型[J].交通与计算机,2004,22(1):66-71
    [81] Seven M,Bart D M.Traffic Flow Theory[M]. Washington D C: TransportationResearch Board,2006.
    [82]贾洪飞.城市道路车辆跟驰行为神经网络模拟模型研究[D].长春:吉林大学,2002.
    [83] Banihan Gunay. Car following theory with lateral discomfort[J]. TransportationResearch Part B,2007,41(2007):722-735.
    [84]Wim van Winsum. The human element in car following models[J].Transportation Research Part F,1999,2(4):207-211.
    [85]张展宏.基于模拟器的驾驶员应急状态下刹车反应时间的研究[J].华北科技学院学报,2009,6(3):27-30.
    [86]Aarts L,Schagen I. Driving speed and the risk of road crashes: a review [J].Accident Analysis and Prevention,2006,38(2):215-224.
    [87]Charisma Farheen Choudhury. Modeling Driving Decisions with Latent Plans[D].Cambridge: Massachusetts institute of Technology,2007.
    [88]AYCIN M F, BENEKOHAL R. Linear Acceleration Car following ModelDevelopment and Validation[J].Transportation Research Record,1998,32:10-19.
    [89]王文清,王武宏,钟永刚等.基于模糊推理的跟驰安全距离控制算法及实现[J].交通运输工程学报,2003,3(1):72-75.
    [90]徐杰,杜文,孙宏.跟随车安全距离的分析[J].交通运输工程学报,2002,2(1):101—104
    [91]曲大义,杨建,陈秀锋等.车辆跟驰的分子动力学特性及其模型[J].吉林大学学报(工学版),2012,42(5):1198-1202.
    [92]张浩然,王炜,任刚.基于跟驰模型的安全车距[C].北京:第二届中国国际道路交通安全产品博览会暨智能交通论坛,2006.
    [93]潘登,郑应平.基于双曲函数的车辆减速策略及安全跟驰车距的计算[J].交通与计算机,2007,25(5):54-58.
    [94]Narendra K S, Balakrishnan J. Transportation Research Board of the NationalAcademies[C]. Automatic Control, IEEE Transactions on.8(6),2002.
    [95]Gazis D C, Herman R, Rothery R W. Nonlinear follow-the-leader models oftraffic flow[J]. Operation Research,1961,4(9):545-567.
    [96]罗强,许伦辉.基于最小安全距离的跟驰模型的建立和仿真研究[J].科学技术与工程,2010,10(2):569-573.
    [97] Michaels. Perceptual Factors in car following[C]. In the proceedings of thesecond international Symposium on the theory of road and traffic flow, OECD,44-59,1963.
    [98]陶鹏飞.考虑侧向车影响的跟驰行为分析与建模[D].长春:吉林大学,2009.
    [99]Jula H, Kosmatopoulos E B, Ioannou P A. Collision avoidance analysis for lanechanging and merging[J]. IEEE Transaction on Vehicular Technology,2000,49(6):2295-2308.
    [100] Alrik L, Svenson. Safety Evaluation of Lane Change Collision AvoidanceSystems Using the National Advanced Driving Simulation[J].National HighwayTraffic Safety Administration,2005:2280-2285
    [101]邹智军,杨东援.微观交通仿真中的车道变换模型[J].中国公路学报,2002,15(2):105-108.
    [102]Wang J S,Knipling R R. Lane Change/Merge: Problem Size Assessment andStatistical Description[R]. National Highway Traffic Safety Administration,1993:2280-2298.
    [103]Chovan J D, et a1. Examination of Lane Change Crashes and Potential IVHSCountermeasures[R]. National Highway Traffic Safety Administration,1994.
    [104] Alexander K, Elias B K, Petros A I. Strategies and Spacing Requirements forLane Changing and Merging in Automated Highway Systems[J]. IEEETransactions on Vehiclular Technology,2001,50(6):1568-1581.
    [105]Papadimitriou I, Tomizuka M. Fast Lane Changing Computations usingPolynomials[C]. Colorado: Proceedings of the American Control ConferenceDenver,2003.
    [106]王荣本,游峰,崔高健等.车辆安全换道分析[J].吉林大学学报(工学版),2005,35(2):58-61.
    [107]廖晓昕.稳定性分析、方法和应用[M].武汉:华中科技大学出版社,2002.
    [108] Holland E N. A generalized stability criterion for motorway traffic[J].Transportation Research Part B,1998,32(2):141-154.
    [109]Tang T Q, Huang H J, Gao Z Y. Stability of the car-following model on twolanes[J]. Physical Review E,2005,72,066124.
    [110] Tang T Q, Huang H J, Wong S C, Jiang R. Lane changing analysis for two-lanetraffic flow[J].Acta Mechanica Sinica,2007,23:49-54.
    [111]Daganzo C F. Fundamentals of Transportation and Traffic Operations[M].Oxford: Pergamon Press,2003.
    [112]高为炳.运动稳定性基础[M].高等教育出版社,1985.