细颗粒声场流态化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮化硅是一种具备优异性能的陶瓷材料,其粉体的制备工艺有多种,其中,流化床中直接燃烧化合制取氮化硅粉技术比较容易实现工业化和大型化。由于硅粉原料的粒径较小,流化中易产生活塞流、沟流、团聚等现象,使得流化质量恶化。为改善流化状况,提出了外加声场强化流化的方法。
     本文通过冷态实验和理论模型推导相结合的方式,研究硅粉在声场流化床中的流化特性。论文工作主要包括三部分:
     (1)综述了国内外改善细颗粒流化质量方法的研究现状,分析各种方法的特点。声场流态化以其不受物料限制、结构简单、效果明显的优点,最适用于氮化硅粉制备工艺。通过研究声场流态化领域取得的进展,了解不同声场因素的作用规律。
     (2)设计和搭建了声强化流化床冷态实验装置,包括流化床本体、声发生和声测试系统、压力测试系统。在该声强化流化试验台上进行了流化特性实验,研究声压级、声频率、声波形等声场参数和床高、粒径等物性参数对细颗粒流化质量的影响。得到如下结论:床高对临界流化速度几乎没有影响;声压级升高,临界流化速度下降;声频率存在一个界限,高于该界限时,对临界流化速度影响甚微,低于该界限时,临界流化速度陡降;相比三角波和方波,正弦波具有更好的作用效果;外加声场可以使难流化的C类颗粒流化,使易于流化的A类颗粒临界流化速度显著降低。综合比较得出实验条件下的最佳声参数为140dB、100Hz的正弦波。
     (3)根据能量平衡模型,推导出细颗粒临界流化速度的计算公式,对A类颗粒在较宽的频率范围内适用。并可用来预测不同温度下的临界流化速度。
     论文通过实验和理论研究,得到声场对流化质量的影响规律,不仅为硅粉氮化研究提供依据,还可为声场流态化的进一步研究和应用奠定基础。
Silicon nitride is a sort of ceramic material of excellent performance and has diverse preparations of its powder, of which the technology to generate silicon nitride powder directly through combustion in fluidized bed is more feasible to industrialize and be used in large scale.
     Due to the tiny size of raw silicon powder, phenomena such as plug flow, channeling, and agglomeration are easy to occur during the fluidizing procedure, deteriorating the quality of fluidization. To improve the fluidization quality, sound assist method to enhance fluidization was proposed.
     This paper is dedicated to study the fluidization characteristics of silicon powder in the fluidized bed of acoustic field through Cold state experiments. It consists of three parts:
     (1) Status quo to improve the quality of fine particles flow at home and abroad was reviewed, and the characteristics of various methods was analyzed. Sound field stands out to be the most suitable for preparation of silicon nitride powder owing to its unconstrained admit to the fluidized material, simple structure, and the distinct effect. Through the progress of sound assist fluidization, behaviors of different sound field parameters could be understood.
     (2) A device designed for the sound strengthen CFB Cold experiment was built, including fluidized bed body, a sound system and sound testing, pressure testing system. Experiments taken have studied the effect on fluidization quality for particles brought forth by acoustic parameters such as sound pressure level, sound frequency, sound wave and physical parameters such as bed height, particle size and so on.
     Following conclusions were derived from these experiments: 1. the critical flow rate was hardly affected by the bed height; 2. the critical flow rate declined when the sound pressure level increased; 3. there is a threshold frequency, above which the critical flow rate was almost not influenced, while abrupt drop can be observed under the frequency; 4. compared to triangle wave and square wave, sine wave has better effect; 5. acoustic field could help to fiuidize group C which is difficult to fluidize under normal state and would significantly decrease the critical flow rate of group A which is easy to fluidize.
     Comprehensive comparison showed that the best sound parameters for the test are 140 dB, 100 Hz, sine wave.
     (3) According to the energy balance model, the formula for calculating the critical fluidization rate of fine particles could be derived, which is applicable for group A with a wide frequency range, and the critical flow rate under different temperature could be predicted.
     This paper aims at the fundamental disciplines the sound field imposed on the critical fluidization rate. It has provided the basis for research on direct nitridation of silicon in fluidized bed, furthermore laying the foundation for research and application of sound field fluidization.
引文
[1]金涌,祝京旭,汪展文,等.流态化工程原理[M].北京:清华大学出版社,2001:2,6-9,13.14,18,36-37.
    [2]张蕴璧.流态化选论[M].西安:西北大学出版社,1989:1-2,4-5.
    [3]吴占松,马润田,汪展文.流态化技术基础及应用[M].北京:化学工业出版社,2006:5.
    [4]岑可法,倪明江,骆仲泱,等.循环流化床锅炉理论设计与运行[M].北京:中国电力出版社,1997:26,66-67,500-501.
    [5]D.Geldart.Types of Gas Fluidization[J].Powder Technology,1973,(7):285-292.
    [6]周涛.粘性颗粒聚团流态化实验与理论研究[D].北京:中国科学院化工冶金研究所,1998.
    [7]吕雪松,王兆霖,李洪钟.粘附性颗粒流态化研究进展[J].化工冶金,1999,20(1):98-104.
    [8]刘会娥,郭庆杰,陈爽,等.粒径及声场对SiO_2超细颗粒流化行为的影响[J].过程工程学报,2007,7(6):1066-1070.
    [9]H.O.Kono.Characterization of the emulsion phase in fine particle fluidized beds[J].Powder Technology,1986,48(1):51-58.
    [10]H.O.Kono.Segregation and agglomeration of type C powders from homogeneously aerated type A-C powder mixtures during fluidization[J].Powder Technology,1987,53(3):163-168.
    [11]H.Li.Hydrodynamic behavior ofaerogel powders in high velocity fluidized beds[J].Powder Technology,1990,60(2):121-129.
    [12]薛惠芳.大颗粒作用下的细粉流化床的流动性能[J].化工冶金,1993,14(4):345-349.
    [13]Liu Yaodian,S.Kimura.Fluidization and Entrainment of Difficult-to-fluidize Fine Powder Mixed with Easy-to-fluidize Large Particles[J].Powder Technology,1993,75(2):189-196.
    [14]Wang Zhaolin,Moonson Kwauk,Li Hongzhong.Fluidization of Fine Particles[J].Chemical EngineeringScience,1998,53(3):377-395.
    [15]王兆霖,李洪钟.超细颗粒气固相加工的流化床反应器[P].中国专利:CN1198962A,1998-11-18.
    [16]周涛,李洪钟.粘附性颗粒添加组份流态化实验[J].化工冶金,1998,19(3): 231-236.
    [17]李爱蓉,周勇,石炎福,等.纳米颗粒Si02中添加大粒径组分的流化性能[J].化工设计,2004,14(1):43-45.
    [18]宋莲英,周涛,杨静思,等.细颗粒添加组分流态化研究进展[J].中国粉体技术,2007,(6):30-35.
    [19]K.Kusakabe,T.Kuriyama,S.Morooka.Fluidization of Fine Particles at Reduced Pressure[J].Powder Technology,1989,58(2):125-130.
    [20]E.Jaraiz,S.Kimura,O.Levenspiel.Vibrating Beds of Fine Particles:Estimation of Interparticle Forces from Expansion and Pressure Drop Experiments[J].Powder Technology,1991,72(1):23-30.
    [21]唐洪波.微细粉体在振动流化床中聚团行为的研究[J].化学工业与工程,1996,13(3):6-10.
    [22]陈建平,汪展文,金涌,等.细颗粒振动流态化行为的二维床观察[J].高校化学工程学报,1996,10(1):41-44.
    [23]K.Noda,Y.Mawatari,S.Uchida.Flow Patterns of Fine Particles in a Vibrated Fluidized bed under atmospheric or reduced pressure[J].Powder Technology,1998,99(1):11-14.
    [24]Yoshihide Mawatari,Tetsu Koide,Yuji Tatemoto,et al.Effect of Particle Diameter on Fluidization under Vibration[J].Powder Technology,2002,123(1):69-74.
    [25]Yoshihide Mawatari,Yuji Tatemoto,Katsuji Noda.Prediction of Minimum Fluidization Velocity for Vibrated Fluidized Bed[J].Powder Technology,2003(1),131:66-70.
    [26]C.Nam,R.Pfeffer,R.N.Dave,et al.Aerated Vibrofluidization of Silica Nanoparticles[J].AIChEJoumal,2004,50(8):1776-1785.
    [27]周涛,葛志强,叶红齐.纳米颗粒流态化的方法[P].中国专利:CN1689942A,2005-11-02.
    [28]杨静思,周涛,宋莲英,等.细颗粒振动流态化研究进展[J].化工时刊,2007,21(3):30-34.
    [29]Qingshan Zhu,Hongzhong Li.Study on Magnetic Fluidization of Group C Powders[J].PowderTeehnology,1996,86(2):179-185.
    [30]吕雪松,赵昱,李洪钟.横向旋转磁场流化床[P]。中国专利:CN2336853Y,1999-09-08.
    [31]骆振福,樊茂明,陈清如.磁场流化床的稳定性研究[J].中国矿业大学学报,2001,30(4):350-353.
    [32]R.D.Morse.Sonic Energy in Granular Solid Fluidization[J].Industrial and Engineering Chemistry,1955,4(6):1170-1175.
    [33]N.A.Moussa,A.A.Fowle,M.M.Delichatsios,et al.DOE Final Rep.Morgantown Energy Technology Center Morgantown[J].PA,1982.
    [34]W.Nowak,M.Hasatani,M.Derczynski.Fluidization and Heat Transfer of Fine Particles in an Acoustic Field[J].AIChESymposium Series,1993,89(296):137-149.
    [35]R.Chirone,L.Massimilla,S.Russo.Bubble-free Fluidization of a Cohesive Powder in an Acoustic Field[J].Chemical Engineering Science,1993,48(1):41-52.
    [36]P.Russo,R.Chirone,L.Massimilla,et al.The Influence of the Frequency of Acoustic Waves on Sound-assisted Fluidization of Beds of Fine Particles[J].Powder Technology,1995,82(3):219-230.
    [37]E.K.Levy,I.Shnitzer,T.Masaki,et al.Effect of Acoustic Field on Bubbling in a Gas FluidizedBed[J].Powder Technology,1997,90:53-57.
    [38]C.A.Herrera,E.K.Levy.Bubbling Characteristics of Sound-assisted Fluidized Beds[J].Powder Technology,2001,119:229-240.
    [39]Chao Zhu,Guangliang Liu,Qun Yu,et al.Sound Assisted Fluidization of Nanoparticle Agglomerates[J].Powder Technology,2004,141:119-123.
    [40]Chunbao Xu,Yi Cheng,Jesse Zhu.Fluidization of Fine Particles in a Sound Field and Identification of Group C/A Particles Using Acoustic Waves[J].Powder Technology,2006,161:227-234.
    [41]Qingjie Guo,Huie Liu,Wenzhong Shen,et al.Influence of Sound Wave Characteristics on Fluidization Behaviors of Ultraflne Particles[J].Chemical Engineering Journal,2006,119:1-9.
    [42]R.D.Venkatesh,J.Chaouki,D.Klvana.Fluidization of Cryogels in a Conical Column[J].Powder Technology,1996,89(3):179-186.
    [43]洪若瑜.内循环和外循环流化床中超细粉流态化的研究[D].北京:中国科学院化工冶金研究所,1996.
    [44]A.Dutta,L.V.Dullea.Evaluation of a Novel Plate-tube Distributor in Fine Powder Fluidization[J].AIChE Symposium Series,1992,88(289):137-148.
    [45]王兆霖,李洪钟.超细颗粒气固相加工的流化床反应器[P].中国专利:CN1198962A,1998-11-18.
    [46]童华,李洪钟.超细及粘性颗粒气固相反应用的循环流化床反应器[P].中国专利:CN1485127A,2004-03-31.
    [47]昌友权.化工原理[M].北京:中国计量出版社,2006:132.
    [48]梁华琼.超细粉在声场流化床中的流化特性[D].四川:四川大学,2003.
    [49]梁华琼,周勇,李爱蓉,等.超细颗粒在声场流化床中的流化特性[J].高校化学工程学报,2004,18(5):579-584.
    [50]段蜀波,梁华琼,王亮,等.纳米TiO_2颗粒在声场流化床中的流化特性[J].化学反应工程与工艺,2005,21(1):6-11.
    [51]段蜀波,王亮,周勇,等.纳米SiO_2颗粒在二维声场流化床中的流化特性[J].四川理工学院学报(自然科学版),2005,18(1):1-5.
    [52]李彦,王铭华,郭庆杰.超细颗粒外场流态化研究进展[J].中国粉体技术,2005,(5):31-35.
    [53]王铭华,郭庆杰,陈爽.超细颗粒声场流态化机理研究[J].中国石油大学学报(自然科学版),2006,30(6):132-136.
    [54]李彦,刘会娥,郭庆杰,等.声场作用下纳米颗粒的流化行为[J].中国石油大学学报(自然科学版),2007,31(5):99-103.
    [55]J.Chaouki,C.Chavarie,D.Klvana.Effect of Interparticle Forces on the Hydrodynamic Behaviour of Fluidized Aerogels[J].Powder Technology,1985,43(2):117-125.
    [56]M.Horio,Y.Iwadate.The Prediction of Sizes of Agglomerates Formed in Fluidization Beds[A].In:Preprint for the 5~(th) World Congress of Chemical Engineering[C].San Diego,California,1996:571.
    [57]王兆霖,吕雪松,胡金辉,等.粘附性颗粒流态化聚团尺寸的预测模型[J].化工冶金,1998,19(3):225-230.
    [58]周涛,李洪钟.粘性颗粒流化床中聚团大小的计算模型[J].化学反应工程与工艺,1999,15(1):45-50.
    [59]S.Morooka,K.Kusakabe,A.Kokata,et al.Fluidization State of Ultrafin Powders[J].Chemical Engineefing,1988,21(1):41-46.
    [60]Chumbao Xu,Jesse Zhu.Experimental and Theoretical Study on the Agglomeration Arising from Fluidization of Cohesive Particles-effects of Mechanical Vibration[J].Chemical Engineering Science,2005,60(23):6530-6541.
    [61]Qingjie Guo,Xiangping Yang,Wenzhong Shen,et al.Agglomerate Size in an Acoustic Fluidized Bed with Sound Assistance[J].Chemical Engineering and Procssing,2007,46(4):307-313.
    [62]Qingjie Guo,Xiangping Yang,Wenzhong Shen,et al.Agglomerate Size in an Acoustic Fluidized Bed with Sound Assistance[J].Chemical Engineering and Procssing,2007,46(4):307-313.
    [63]王擎,骆仲泱,李绚天 等.循环流化床流动密封阀型返料装置的设计方法探讨[J].动力工程,1999,19(2):24-28.
    [64]王鸿合,张斌.布袋除尘器技术及其应用[J].吉林电力,2004,(5):14-17,46.
    [65]许莲芝,吕晓敏.国内除尘器分析比较[J].棉花加工技术,2004,(1):25-26.
    [66]许肖梅.声学基础[M].北京:科学出版社,2003:239.
    [67]H.Krupp,G.Sperling.Theory of adhesion of small particles[J].Journal of Applied Physics,1996,37:4176-4180.
    [68]H.Krupp.Particle adhesion theory and experiment[J].Advances in Colloid and Interface Science,1967,1:111-239.
    [69]岑可法,樊建人.工程气固多相流动的理论及计算[M].浙江:浙江大学出版社,1990:307.