葛根素纳米给药系统药动学特性及对脑缺血再灌注损伤的保护作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葛根素(Puerarin)是一种从中药豆科植物野葛、甘葛藤根中提取的异黄酮类活性成分。研究显示,葛根素具有抗氧化、降低胆固醇、降血糖、降血压、解酒保肝等药理活性,广泛用于心脑血管疾病和糖尿病等的治疗。体内体外研究表明,葛根素可以通过对炎症反应、细胞凋亡和中性粒细胞活化等的抑制作用对脑缺血造成的组织损伤有保护作用。但是溶解度小、体内半衰期短、脑组织中浓度低、口服生物利用度低等特点限制了其临床应用。
     近年来,纳米(nanoparticles, NP)载药系统被用于将药物传输入脑和改善生物利用度。聚合纳米粒作为药物载体,可以提高体内药物浓度、控制药物释放并且可以减少毒副作用,是当今研究的热点。聚氰基丙烯酸丁酯纳米粒(polybutylcyanacrylate nanoparticles, PBCN)载药系统可以通过表面修饰吐温80(PS80)运载药物穿过血脑屏障(blood brain barrier, BBB),同时该载药系统还可以提高药物的口服生物利用度。
     本研究以葛根素为模型药物,制备葛根素聚氰基丙烯酸丁酯纳米粒(puerarin polybutylcryanoacrylate nanoparticle, PUE-PBCN),通过静脉给药小鼠药代动力学和体内组织分布研究,大鼠口服给药体内药代动力学研究,以及脑缺血再灌注大鼠模型药效学研究,从药动学和药效学角度评价PBCN作为脑靶向给药载体的优势,并对其作为口服给药载体进行初步研究。
     选用乳化聚合法制备PUE-PBCN,在单因素考察的基础上,采用正交设计优化、筛选最佳处方和制备工艺,制备的工艺参数为:pH2, PUE0.3%(w/v), BCA0.6%(v/v), F68/Dex70(0.5%/0.5%, v/v),乳化温度25℃,搅拌速度400r/min,搅拌时间4h。依据优化处方制备的PUE-PBCN制剂的外观为白色带乳光胶体溶液,电镜下观察呈圆形,无粘连,平均包封率为48.75%,平均载药量为15.02%,粒径分布范围较窄,平均粒径159.4nm, zeta电位-15mV。对PUE-PBCN进行差示扫描量热法、红外光谱和X-射线衍射分析,发现制成纳米粒后PUE已被PBCN包裹或吸附,不再以晶体结构存在,而是以非晶态存在。利用透析法考察了PUE-PBCN的体外释药行为,结果表明体外释药符合双相动力学过程,前期药物快速释放,后期缓慢释放,与葛根素对照溶液相比,PUE-PBCN具有显著的缓释作用。稳定性考察实验显示PUE-PBCN4℃条件下保存较为稳定。
     小鼠体内PUE-PBCN的药代动力学和组织分布研究表明,小鼠尾静脉注射PUE-PBCN (10mg/kg)与相同剂量PUE注射液相比,药代动力学显著改变,药物体内滞留时间增加,血药浓度升高,AUC为后者的1.53倍。同时药物在各组织中的MRT显著增加,各组织AUC均较PUE注射液组增大,特别是脑组织AUC为PUE原药组的2.63倍;大鼠口服PUE-PBCN与PUE混悬液后体内药代动力学过程研究表明,与混悬液相比PBCN能够显著提高PUE的生物利用度,相对生物利用度为556.33%。
     以神经功能学评分、实验动物体重、脑含水量、脑梗死体积百分率、脑组织病理形念学变化及氧化应激为主要评价指标,从药效学方面观察了PUE-PBCN静脉注射给药对脑缺血再灌注损伤的保护作用。实验结果显示:假手术组大鼠无明显神经功能缺损症状,体重减轻最小,左右脑含水量相似,脑梗塞面积最小,脑组织病理组织学观察正常,脑组织和血清SOD活性均为各组中最高;模型组大鼠较假手术组观察到明显的神经功能缺陷,体重减轻最大,右侧缺血大脑的脑含水量显著高于左侧正常大脑,梗塞面积显著增大,病理组织学检查显示脑组织病变侧海马回及齿状回组织结构均消失,间质大面积高度水肿,脑组织和血清SOD活性显著最低,MDA含量增高;PUE及PUE-PBCN组均能够改善大鼠各项评价指标,其中PUE-PBCN组与同剂量PUE溶液组相比,药理活性显著提高。
     本研究结果证实了PBCN有助于PUE透过血脑屏障,显著增加PUE在脑组织的分布,改善PUE在胃肠道的吸收,提高了相对生物利用度,增强了PUE对局灶性脑缺血再灌注损伤的保护作用。本课题研究为探讨和总结葛根素脑靶向给药系统提供了实验依据,为缺血性脑卒中治疗探索新思路和新方法。
Puerarin is an isoflavone C-glycoside found in Traditional Chinese Medicinal herbs such as Pueraria lobata, Ohwi, and P.thomsonni Benth. During the last three decades, puerarin has become known for its profound pharmacological activities, including antioxidation, cholesterol-lowering, anti-diabetic, anti-hypertension, anti-alcoholism and hepatoprotection, and has been proved to be helpful in the treatment of cardiovascular, cerebralvascular and hyperglycemic diseases. It has been shown that Puerarin has the pharmacologic action of protecting against cerebral ischemia mediated by the inhibition of inflammatory responses, apoptosis, and neutrophil activation in vitro and in vivo. However, the poor solubility, short elimination half-life lower the drug concentration in brain and poor oral bioavailability limits the clinical advantages of puerarin.
     In recent years, nanoparticles (NP) technology was used to deliver drugs to the brain and improve the bioavailability. Polymeric nanoparticles was the focus of attention as potential drug systems currently, which could enhance the concentration and slow the release of drug as well as decrease the peripheral toxicity. As one promising delivery system, polybutylcyanacrylate nanoparticles (PBCN) have attracted considerable attention. PBCN coated with polysorbate80(Ps80) is able to deliver drug to cross the blood brain barrier (BBB) as well as improve the oral bioavailability.
     In the study,puerarin loaded polybutylcryanoacrylate nanoparticle (PUE-PBCN) was prepared, and the pharmacokinetics and tissue distribution in mice by intravenous administration of PUE-PBCN, and pharmacokinetic studies in rats by oral administration of PUE-PBCN, as well as the pharmacological effect of PUE-PBCN on the ischemia/reperfusion injury model in rats were studied. The results showed the possibility of PBCN as the drug delivery carriers of targeting brain and oral administration.
     PUE-PBCN was prepared by emulsion polymerization. Optimizing formulation was designed by orthogonal experiment on the basis of single factor study, and showed asfollows:pH2, PUE0.3%(w/v), BCA0.6%(v/v), F68/Dex70(0.5%/0.5%, v/v), the temperature of emulsification was at25℃, the speed and time of stirring were400r/min and4h, respectively.
     PUE-PBCN preparation was the white opalescent colloidal solution, exhibited a spherical shape under transmission electron microscopy with an average size of159.4nm, and the zeta potential was-15.0mV. Physicochemical state of PUE in PBCN was investigated by differential scanning colorimetry, X-ray diffraction and Fourier transform infrared spectroscopy. The in vitro release of PUE loaded PBCN showed an initial burst release followed by a sustained release. The preliminary stability study showed that the storage of PUE-PBCN at4℃could keep a good stability.
     The results of pharmacokinetic and biodistribution to brain performed in mice after intravenous administration showed that the drug concentrations in blood and brain for PUE-loaded PBCN were both greater than that for the free drug. The oral pharmacokinetic study in rats showed that the relative bioavailability of PUE encapsulated PBCN to the crude PUE was more than550%.
     Compared with free drug, the intravenous injection of puerarin loaded nanoparticles exerted the better neuroprotective effect on rats with focal cerebral ischemiec injury via significantly decreasing neurological deficit scores, increasing body weight, lowing brain water content, reducing the infarct volume, relieving brain tissue lesions, increasing SOD activity and decresing MDA level of brain tissue and serum.
     The conclusions of this study confirm that PBCN can help PUE through the blood-brain barrier, significantly increase the drug distribution in brain tissue, improve the gastrointestinal absorption of PUE and increase the relative bioavailability, and enhance the protective effect of puerarin on focal cerebral ischemia/reperfusion injury. The results of this project could explore and summarize puerarin brain targeted delivery system, provide a theoretical basis, and provide a new idea and method for the treatment of ischemic stroke.
引文
[1]Begley DJ. The blood-brain barrier:principles for targeting peptides and drugs to the central nervous system[J]. J Pharm Pharmacol,1996,48(2):136.
    [2]Neuwelt E, Abbott NJ, Abrey L, et al. Strategies to advance translational research into brain barriers[J]. Lancet Neurol,2008,7(1):84.
    [3]Pardridge WM. Blood-brain barrier drug targeting:the future of brain drug development[J]. Mol Interv,2003,3(2):90,51.
    [4]Misra A, Ganesh S, Shahiwala A, et al. Drug delivery to the central nervous system:a review[J]. J Pharm Pharm Sci,2003,6(2):252.
    [5]Oldendorf WH, Cornford ME, Brown WJ. The large apparent work capability of the blood-brain barrier:a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat[J]. Ann Neurol,1977,1(5):409.
    [6]Rip J, Schenk GJ, de Boer AG. Differential receptor-mediated drug targeting to the diseased brain[J]. Expert Opin Drug Deliv,2009,6(3):227.
    [7]Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier[J]. Nat Rev Neurosci,2006,7(1):41.
    [8]Pardridge WM, Kang YS, Buciak JL, et al. Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood-brain barrier in vivo in the primate[J]. Pharm Res, 1995,12(6):807.
    [9]Tiwari SB, Amiji MM. A review of nanocarrier-based CNS delivery systems[J]. Curr Drug Deliv,2006,3(2):219.
    [10]Yang H. Nanoparticle-mediated brain-specific drug delivery, imaging, and diagnosis[J]. Pharm Res,2010,27(9):1759.
    [11]Arumugam K, Subramanian GS, Mallayasamy SR, et al. A study of rivastigmine liposomes for delivery into the brain through intranasal route[J]. Acta Pharm,2008,58(3):287.
    [12]Pardridge WM. New approaches to drug delivery through the blood-brain barrier[J]. Trends Biotechnol,1994,12(6):239.
    [13]Pardridge WM, Boado RJ, Black KL, et al. Blood-brain barrier and new approaches to brain drug delivery[J]. West J Med,1992,156(3):281.
    [14]Gupta PK, Hung CT, Perrier DG. Quantitation of the release of doxorubicin from colloidal dosage forms using dynamic dialysis[J]. J Pharm Sci-Us,1987,76(2): 141.
    [15]Koo YE, Reddy GR, Bhojani M, et al. Brain cancer diagnosis and therapy with nanoplatforms[J]. Adv Drug Deliv Rev,2006,58(14):1556.
    [16]Bhaskar S, Tian F, Stoeger T, et al. Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging[J]. Part Fibre Toxicol,2010,7:3.
    [17]Muller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs--a review of drug nanocrystal technology and lipid nanoparticles[J]. J Biotechnol,2004,113(1-3):151.
    [18]Zara GP, Cavalli R, Bargoni A, et al. Intravenous administration to rabbits of non-stealth and stealth doxorubicin-loaded solid lipid nanoparticles at increasing concentrations of stealth agent:pharmacokinetics and distribution of doxorubicin in brain and other tissues[J]. J Drug Target,2002,10(4):327.
    [19]Lockman PR, Oyewumi MO, Koziara JM, et al. Brain uptake of thiamine-coated nanoparticles[J]. J Control Release,2003,93(3):271.
    [20]贾栋,高国栋,李永林.壳聚糖纳米粒载体转染Cu-SOD对缺血再灌注脑组织的作用[J].神经疾病与精神卫生,2007(2).
    [21]吴雁,王铁成,李明军等.负载两性霉素B壳聚糖-聚乳酸纳米粒的制备及其释药性能[J].中国组织工程研究与临床康复,2009,13(34):6685.
    [22]黄杰.Tat、叶酸介导磁性复合功能载体系统的研究[D].天津大学,2007.
    [23]Bazile DV, Ropert C, Huve P, et al. Body distribution of fully biodegradable [14C]-poly(lactic acid) nanoparticles coated with albumin after parenteral administration to rats[J]. Biomaterials,1992,13(15):1093.
    [24]Olivier JC. Drug transport to brain with targeted nanoparticles[J]. NeuroRx, 2005,2(1):108.
    [25]Calvo P, Gouritin B, Chacun H, et al. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery[J]. Pharm Res, 2001,18(8):1157.
    [26]Calvo P, Gouritin B, Brigger I, et al. PEGylated polycyanoacrylate nanoparticles as vector for drug delivery in prion diseases[J]. J Neurosci Methods, 2001,111(2):151.
    [27]Calvo P, Gouritin B, Villarroya H, et al. Quantification and localization of PEGylated polycyanoacrylate nanoparticles in brain and spinal cord during experimental allergic encephalomyelitis in the rat[J]. Eur J Neurosci,2002,15(8): 1317.
    [28]Kreuter J, Alyautdin RN, Kharkevich DA, et al. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles)[J]. Brain Res, 1995,674(1):171.
    [29]Behan N, Birkinshaw C. The mechanism of polymerisation of butyl cyanoacrylate in aqueous dispersions[J]. Macromol Rapid Comm,2000,21(13):884.
    [30]Behan N, Birkinshaw C, Clarke N. Poly n-butyl cyanoacrylate nanoparticles:a mechanistic study of polymerisation and particle formation[J]. Biomaterials,2001, 22(11):1335.
    [31]Gilbert RG. Emulsion Polymerization:A Mechanistic Approach. In. London: Academic Press; 1995. p 30.
    [32]Reddy LH, Murthy RR. Influence of polymerization technique and experimental variables on the particle properties and release kinetics of methotrexate from poly(butylcyanoacrylate) nanoparticles[J]. Acta Pharm,2004, 54(2):103.
    [33]Kreuter J. Nanoparticulate systems for brain delivery of drugs[J]. Adv Drug Deliv Rev,2001,47(1):65.
    [34]Kreuter J, Alyautdin RN, Kharkevich DA, et al. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles)[J]. Brain Res, 1995,674(1):171.
    [35]Schroeder U, Sommerfeld P, Ulrich S, et al. Nanoparticle technology for delivery of drugs across the blood-brain barrier[J]. J Pharm Sci,1998,87(11):1305.
    [36]Schroeder U, Sommerfeld P, Sabel BA. Efficacy of Oral Dalargin-loaded Nanoparticle Delivery across the Blood-Brain Barrier[J]. Peptides,1998,19(4):777.
    [37]Wong KS, Chen C, Ng PW, et al. Low-molecular-weight heparin compared with aspirin for the treatment of acute ischaemic stroke in Asian patients with large artery occlusive disease:a randomised study[J]. Lancet Neurol,2007,6(5):407.
    [38]Seshadri S, Beiser A, Kelly-Hayes M, et al. The lifetime risk of stroke: estimates from the Framingham Study[J]. Stroke,2006,37(2):345.
    [39]Lloyd-Jones D, Adams R, Carnethon M, et al. Heart disease and stroke statistics--2009 update:a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee[J]. Circulation,2009,119(3):480.
    [40]Feher A, Pusch G, Koltai K, et al. Statintherapy in the primary and the secondary prevention of ischaemic cerebrovascular diseases[J]. Int J Cardiol,2011, 148(2):131.
    [41]Iguchi Y, Kimura K, Sone K, et al. Stroke Incidence and Usage Rate of Thrombolysis in A Japanese Urban City:The Kurashiki Stroke Registry[J]. J Stroke Cerebrovasc Dis,2011.
    [42]Legos JJ, Tuma RF, Barone FC. Pharmacological interventions for stroke: failures and future[J]. Expert Opin Investig Drugs,2002,11(5):603.
    [43]Goldstein LB. Neuroprotective therapy for acute ischaemic stroke:down, but not out[J]. Lancet,2004,363(9407):414.
    [44]Lewen A, Matz P, Chan PH. Free radical pathways in CNS injury[J]. J Neurotrauma,2000,17(10):871.
    [45]Cao G, Minami M, Pei W, et al. Intracellular Bax translocation after transient cerebral ischemia:implications for a role of the mitochondrial apoptotic signaling pathway in ischemic neuronal death[J]. J Cereb Blood Flow Metab,2001,21(4): 321.
    [46]李曼霞,董志.脑缺血再灌注时血脑屏障损伤的炎性机制研究进展[J].解放军药学学报2007,23(1):60.
    [47]蔡竖平,桂秋萍,韩志涛等.脑缺血再灌注后海马迟发性神经元死亡的实验研究[J].军医进修学学院2002,23(4):268.
    [48]Kato S, Negishi K, Mawatari K, et al. A mechanism for glutamate toxicity in the C6 glioma cells involving inhibition of cystine uptake leading to glutathione depletion[J]. Neuroscience,1992,48(4):903.
    [49]Hsu CY, An G, Liu JS, et al. Expression of immediate early gene and growth factor mRNAs in a focal cerebral ischemia model in the rat[J]. Stroke,1993,24(12 Suppl):178.
    [50]中华医学会神经病学分会脑血管病学组急性缺血性脑卒中诊治指南撰写组.中国急性缺血性脑卒中诊治指南2010[J].尹华神经科杂志2010,43(2):146.
    [51]LaMonte MP, Nash ML, Wang DZ, et al. Argatroban anticoagulation in patients with acute ischemic stroke (ARGIS-1):a randomized, placebo-controlled safety study[J]. Stroke,2004,35(7):1677.
    [52]Ernst E. Complementary and alternative medicine in neurology:hype, hope and hazards[J]. Trends Neurosci,2002,25(12):644.
    [53]Tindle HA, Davis RB, Phillips RS, et al. Trends in use of complementary and alternative medicine by US adults:1997-2002[J]. Altern Ther Health Med,2005, 11(1):42.
    [54]Koehn FE, Carter GT. The evolving role of natural products in drug discovery[J]. Nat Rev Drug Discov,2005,4(3):206.
    [55]Newman DJ, Cragg GM, Snader KM. The influence of natural products upon drug discovery[J]. Nat Prod Rep,2000,17(3):215.
    [56]Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981-2002[J]. J Nat Prod,2003,66(7):1022.
    [57]王介明.2006年美国缺血性卒中一级预防指南要点简介[J].实用心脑肺血管病杂志2007,15(3):241.
    [58]成俊义.急性缺血性脑卒中药物治疗[J].天津药学,2009,21(4):50.
    [59]韩燕红,袁杰,沈顺娣等.脑卒中患者家庭照顾者抑郁及社会支持的纵向研究[J].中华护理杂志,2011,46(2):155.
    [60]袁爱民,许波华,周静.丹参注射液对脑缺血再灌注损伤大鼠的保护作用[J].中国临床研究,2011,24(12):1077.
    [61]叶龙彬,奚涛,陈峰等.丹参酮ⅡA对大鼠局灶性脑缺血再灌注损伤的保护作用[J].中国药科大学学报,2004,35(3):267.
    [62]杨宏,韩雪梅,许吉一等.大鼠脑缺血再灌注后PKCδ表达意义及银杏叶制剂的脑保护作用研究[J].中国老年学杂志2001,21(4):285.
    [63]孙丽莎,杨露春,程佩兰.达纳康对鼠脑缺血-再灌注后ICAM-1的影响[J].天津医药2002,30(3):161.
    [64]Thompson CB. Apoptosis in the pathogenesis and treatment of disease[J]. Science,1995,267(5203):1456.
    [65]Lin LL, Liu AJ, Liu JG, et al. Protective effects of scutellarin and breviscapine on brain and heart ischemia in rats[J]. J Cardiovasc Pharmacol,2007,50(3):327.
    [66]Wang M, Xie C, Cai RL, et al. Studies on antioxidant activities of breviscapine in the cell-free system[J]. Am J Chin Med,2008,36(6):1199.
    [67]付纯芳,贾琳琳,王浩任.葛根素预处理对大鼠脑缺血再灌注保护作用的初步研究[J].黑龙江医药科学2007,30(5):15,16.
    [68]毛庆军,夏瑞.葛根素对家兔脑缺血再灌注损伤的保护作用[J].中国医师杂志2007,9(9):1274.
    [69]张蕊,曹焕军,高尔.葛根素对家兔脑缺血再灌注损伤的抗自由基作用[J].潍坊医学院学报,2002,24(4):267.
    [70]陈孝伟,刘宁,谷有全等.红景天胶囊对脑缺血再灌注大鼠脑组织胶质纤维酸性蛋白表达的影响[J].兰州大学学报(医学版),2009,35(4):26.
    [71]隋汝波,李熙东,刘媛媛等.大鼠局灶性脑缺血再灌注血浆细胞因子和内皮素对红景天干预的反应[J].中国临床康复2006,10(35):23.
    [72]张宗艳.诺迪康胶囊对大鼠局灶性脑缺血再灌注损伤脑保护作用的实验研究[D].兰州大学,2008.
    [73]周本宏,刘刚,罗顺德.葛根素对红细胞膜脂质过氧化损伤的防护作用[J].中国医院药学杂志,2004,24(8):1437.
    [74]朱庆磊,高维海,吕欣然.葛根素对低密度脂蛋白氧化修饰的抑制作用[J]. 解放军药学学报2001,17(5):241.
    [75]吴艳,万华印.葛根素抗培养脑细胞缺氧-再给氧损伤作用[J].中国药理学通报2003,19(12):1437.
    [76]严群超,莫木顺,甘绍乃等.葛根素对急性冠脉综合征患者血清可溶性粘附分子的影响[J].辽宁中医杂志,2002,29(6):340.
    [77]Gao Q, Pan HY, Qiu S, et al. Atractyloside and 5-hydroxydecanoate block the protective effect of puerarin in isolated rat heart[J]. Life Sci,2006,79(3):217.
    [78]常志文,刘琦.缺血再灌注心肌细胞凋亡及药物干预[J].中国新药杂志,2000,17(3):28.
    [79]Qian Y, Li Z, Huang L, et al. Blocking effect of puerarin on calcium channel in isolated guinea pig ventricular myocytes[J]. Chin Med J (Engl),1999,112(9):787.
    [80]炎彬,孙虹,何希辉等.葛根黄酮及其葛根素在正常和脑缺血再灌大鼠体内药动学比较[J].中国学杂志,2004,39(3):207.
    [81]杨黎,何世银.葛根素对大鼠脑缺血再灌注后炎性细胞因子变化的影响[J].中国老年学杂志2003,23(3):173.
    [82]王世军,房秋寒,董军等.葛根素及心得安局部应用对家兔脑软膜微循环的影响[J].中国中西医结合杂志1996,16(S1):59.
    [83]陈沪生,王培仁,邵建华.葛根素的降压效果及机理的研究[J].山东医科大学学报,1987,25(3):28.
    [84]王序,韩桂秋,李荣芷等.现代生物分析法对常用中药的筛选研究[J].北京医科大学学报.1986,18(1):31.
    [85]黄兆铨,叶武,陈申杰等.葛根素对高血压患者血浆内皮素和一氧化氮的影响[J].中国现代应用药学1999,16(3):13.
    [86]Rachon D, Vortherms T, Scidlova-Wuttke D, et al. Dietary daidzein and puerarin do not affect pituitary LH expression but exert uterotropic effects in ovariectomized rats[J]. Maturitas,2007,57(2):161.
    [87]Hsu FL, Liu IM, Kuo DH, et al. Antihyperglycemic effect of puerarin in streptozotocin-induced diabetic rats[J]. J Nat Prod,2003,66(6):788.
    [88]Meezan E, Meezan EM, Jones K, et al. Contrasting effects of puerarin and daidzin on glucose homeostasis in mice[J]. JAgric Food Chem,2005,53(22):8760.
    [89]徐晓虹.葛根素注射液对慢性乙醇中毒小鼠记忆障碍的改善作用[J].中国药学杂志2003,38(1):33.
    [90]宋浩亮,陈士林,黄梦雨等.葛根素对酒醉小鼠行为学及抗氧化作用的研究[J].现代中药研究与实践2003,17(3):36.
    [91]Luo CF, Yuan M, Chen MS, et al. Pharmacokinetics, tissue distribution and relative bioavailability of puerarin solid lipid nanoparticles following oral administration[J]. Int J Pharm,2011,410(1-2):138.
    [92]Zhang Q, Lu C, Gui S, et al. Comparative study of puerarin tissue distribution in mice following administration as a nanoemulsion and a nanosuspension[J]. Asian Journal of Pharmaceutical Sciences,2010,5(1):26.
    [93]Li Y, Pan WS, Chen SL, et al. Pharmacokinetic, tissue distribution, and excretion of puerarin and puerarin-phospholipid complex in rats[J]. Drug Dev Ind Pharm,2006,32(4):413.
    [94]顾一珠,周文,翟光喜.葛根素脂质体的研制及其大鼠口服吸收[J].中药材,2007,30(8):970.
    [95]Yu A, Wang H, Wang J, et al. Formulation optimization and bioavailability after oral and nasal administration in rabbits of puerarin-loaded microemulsion[J]. J Pharm Sci,2011,100(3):933.
    [96]廖昌军,曹丽萍,高秀蓉等.葛根素β-环糊精包合物小鼠血浆中生物利用度研究[J].四川生理科学杂志,2009,31(2):64.
    [97]陈岩,陈大为,胡海洋等.布洛芬聚氰基丙烯酸烷酯纳米粒的制备[J].沈阳药科大学学报,2007(12):740.
    [98]Lv Q, Yu A, Xi Y, et al. Development and evaluation of penciclovir-loaded solid lipid nanoparticles for topical delivery[J]. Int J Pharm,2009,372(1-2):191.
    [99]Mulik R, Mahadik K, Paradkar A. Development of curcuminoids loaded poly(butyl) cyanoacrylate nanoparticles:Physicochemical characterization and stability study[J]. EurJPharm Sci,2009,37(3-4):395.
    [100]He W, Jiang X, Zhang ZR. Preparation and evaluation of poly-butyl cyanoacrylate nanoparticles for oral delivery of thymopentin[J]. J Pharm Sci,2008,97(6):2250.
    [101]彭应旭,廖工铁,张志荣.柔红霉素聚氰基丙烯酸正酯毫微粒制备工艺的优化[J].华西药学杂志1999(3):4.
    [102]Behan N, Birkinshaw C, Clarke N. Poly n-butyl cyanoacrylate nanoparticles:a mechanistic study of polymerisation and particle formation[J]. Biomaterials,2001, 22(11):1335.
    [103]Fawaz F, Guyot M, Lagueny AM, et al. Ciproflexacin-loaded polyisobutylcyanoacrylate nanoparticles:preparation and characterization[J]. Int J Pharm,1997,154(2):191.
    [104]EA R, EA R^editors. Bentley's Textbook of Pharmaceutics.8th ed*ed. London: Cassel and Collier Macmillan Publishers Ltd; 1977. p 93.
    [105]Sarmento B, Ferreira D, Veiga F, et al. Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies[J]. Carbohyd Polym,2006,66(1):1.
    [106]Sun M, Gao Y, Guo C, et al. Enhancement of transport of curcumin to brain in mice by poly (n-butylcyanoacrylate) nanoparticle[J]. Journal of Nanoparticle Research,2010,12(8):3111.
    [107]Simeonova M, Ivanova G, Enchev V, et al. Physicochemical characterization and in vitro behavior of daunorubicin-loaded poly (butylcyanoacrylate) nanoparticles [J]. Acta Biomaterialia,2009,5(6):2109.
    [108]Wilson B, Samanta MK, Santhi K, et al. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer's disease[J]. Brain Res,2008,1200:159.
    [109]Gao K, Jiang X. Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles[J]. Int J Pharm,2006,310(1):213.
    [110]Zambaux MF, Bonneaux F, Gref R, et al. Preparation and characterization of protein C-loaded PLA nanoparticles[J]. J Control Release,1999,60(2-3):179.
    [111]周祖康,顾锡人,马季铭.胶体化学基础.In.北京:北京大学出版社;1987.p 240-246.
    [112]徐巍.肝靶向性大蒜素聚氰基丙烯酸正丁酯纳米粒的研究[D].山东大学,2006.
    [113]Feng SS, Huang GF. Effects of emulsifiers on the controlled release of paclitaxel (Taxol (R)) from nanospheres of biodegradable polymers[J]. J Control Release,2001,71(1):53.
    [114]Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting[J]. Curr Opin Solid St M,2002,6(4):319.
    [115]邹东娜.苦参碱白蛋白亚微粒给药系统的实验研究[D].山东大学,2007.
    [116]Wilson B, Samanta MK, Santhi K, et al. Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles[J]. Eur J Pharm Biopharm,2008,70(1):75.
    [117]Duro R, Alvarez C, Martinez-Pacheco R, et al. The adsorption of cellulose ethers in aqueous suspensions of pyrantel pamoate:effects on zeta potential and stability[J]. Eur J Pharm Biopharm,1998,45(2):181.
    [118]左金琼.热分析中活化能的求解与分析[D].南京理工大学,2006.
    [119]Reddy LH, Murthy RR. Influence of polymerization technique and experimental variables on the particle properties and release kinetics of methotrexate from poly(butylcyanoacrylate) nanoparticles [J]. Acta Pharm,2004, 54(2):103.
    [120]田志宏,张秀华,田志广.X射线衍射技术在材料分析中的应用[J].工程与试验2009(3):40.
    [121]Ren F, Chen RD, Wang Y, et al. Paclitaxel-Loaded Poly(n-butylcyanoacrylate) Nanoparticle Delivery System to Overcome Multidrug Resistance in Ovarian Cancer[J]. Pharm Res,2011,28(4):897.
    [122]Reddy LH, Murthy RR. Influence of polymerization technique and experimental variables on the particle properties and release kinetics of methotrexate from poly(butylcyanoacrylate) nanoparticles[J]. Acta Pharm,2004, 54(2):103.
    [123]蒋卫中,范山湖,湛社霞等.表面活性剂对纳米Ti0_2制备及其光催化活性 的影响(Ⅰ)[J].中山大学学报(自然科学版),2001(2):58.
    [124]Li Y, Pan WS, Chen SL, et al. Pharmacokinetic, tissue distribution, and excretion of puerarin and puerarin-phospholipid complex in rats[J]. Drug Dev Ind Pharm,2006,32(4):413.
    [125]Douglas SJ, Illum L, Davis SS, et al. Particle size and size distribution of poly (butyl-2-cyanoacrylate) nanoparticles::I. Influence of physicochemical factors[J]. J Colloid Interf Sci,1984,101(1):149.
    [126]Ambruosi A, Yamamoto H, Kreuter J. Body distribution of polysorbate-80 and doxorubicin-loaded [14C]poly(butyl cyanoacrylate) nanoparticles after i.v. administration in rats[J]. J Drug Target,2005,13(10):535.
    [127]Alyautdin RN, Tezikov EB, Ramge P, et al. Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles:an in situ brain perfusion study[J]. J Microencapsul,1998,15(1):67.
    [128]Tr O Ster SD, M U Ller U, Kreuter J. Modification of the body distribution of poly (methyl methacrylate) nanoparticles in rats by coating with surfactants[J]. Int J Pharm,1990,61(1):85.
    [129]Sun M, Gao Y, Guo CY, et al. Enhancement of transport of curcumin to brain in mice by poly(n-butylcyanoacrylate) nanoparticle[J]. JOURNAL OF NANOPARTICLE RESEARCH,2010,12(8):3111.
    [130]Gulyaev AE, Gelperina SE, Skidan IN, et al. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles[J]. Pharm Res, 1999,16(10):1564.
    [131]Xu L, Fagan SC, Waller JL, et al. Low dose intravenous minocycline is neuroprotective after middle cerebral artery occlusion-reperfusion in rats[J]. BMC Neurol,2004,4:7.
    [132]Weiss CK, Kohnle MV, Landfester K, et al. The first step into the brain:uptake of NIO-PBCA nanoparticles by endothelial cells in vitro and in vivo, and direct evidence for their blood-brain barrier permeation[J]. ChemMedChem,2008,3(9): 1395.
    [133]Alyaudtin RN, Reichel A, Lobenberg R, et al. Interaction of poly(butylcyanoacrylate) nanoparticles with the blood-brain barrier in vivo and in vitro[J]. JDrug Target,2001,9(3):209.
    [134]Ramge P, Unger RE, Oltrogge JB, et al. Polysorbate-80 coating enhances uptake of polybutylcyanoacrylate (PBCA)-nanoparticles by human and bovine primary brain capillary endothelial cells[J]. Eur JNeurosci,2000,12(6):1931.
    [135]Garcia-Garcia E, Andrieux K, Gil S, et al. Colloidal carriers and blood-brain barrier (BBB) translocation:a way to deliver drugs to the brain?[J]. Int J Pharm, 2005,298(2):274.
    [136]Nerurkar MM, Burton PS, Borchardt RT. The use of surfactants to enhance the permeability of peptides through Caco-2 cells by inhibition of an apically polarized efflux system[J]. Pharm Res,1996,13(4):528.
    [137]Terasaki T, Hosoya K. The blood-brain barrier efflux transporters as a detoxifying system for the brain[J]. Adv Drug Deliver Rev,1999,36(2-3):195.
    [138]Nerurkar MM, Ho NF, Burton PS, et al. Mechanistic roles of neutral surfactants on concurrent polarized and passive membrane transport of a model peptide in Caco-2 cells[J]. J Pharm Sci,1997,86(7):813.
    [139]刘安昌.植物多酚姜黄素等药物相互作用的研究[D].山东大学,2011.
    [140]Liu J, Zhu J, Du Z, et al. Preparation and pharmacokinetic evaluation of Tashinone IIA solid lipid nanoparticles[J]. Drug Dev Ind Pharm,2005,31(6):551.
    [141]Gulyaev AE, Gelperina SE, Skidan IN, et al. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles[J]. Pharm Res, 1999,16(10):1564.
    [142]张晋,刘少杰,郑利强等.表面活性剂在药物制剂中的应用及其与药物分子之间的相互作用[J].山东大学学报(理学版),2006,41(4):131.
    [143]Dembri A, Montisci M, Gantier JC, et al. Targeting of 3' -Azido 3'-Deoxythymidine (AZT)-Loaded Poly(Isohexylcyanoacrylate) Nanospheres to the Gastrointestinal Mucosa and Associated Lymphoid Tissues[J]. Pharm Res,2001, 18(4):467.
    [144]Hussain N, Jaitley V, Florence AT. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics[J]. Adv Drug Deliv Rev,2001,50(1-2):107.
    [145]Gao Y, Wang Y, Ma Y, et al. Formulation optimization and in situ absorption in rat intestinal tract of quercetin-loaded microemulsion[J]. Colloids Surf B Biointerfaces,2009,71(2):306.
    [146]Venkatesan N, Uchino K, Amagase K, et al. Gastro-intestinal patch system for the delivery of erythropoietin[J]. J Control Release,2006,111(1-2):19.
    [147]Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke,1989,20(1):84.
    [148]Xu X, Zhang S, Zhang L, et al. The Neuroprotection of puerarin against cerebral ischemia is associated with the prevention of apoptosis in rats[J]. Planta Med,2005,71(7):585.
    [149]Wang G, Zhou L, Zhang Y, et al. Implication of the c-Jun-NH2-terminal kinase pathway in the neuroprotective effect of puerarin against 1-methyl-4-phenylpyridinium (MPP+)-induced apoptosis in PC-12 cells[J]. Neurosci Lett,2011,487(1):88.
    [150]Chang Y, Hsieh CY, Peng ZA, et al. Neuroprotective mechanisms of puerarin in middle cerebral artery occlusion-induced brain infarction in rats[J]. J Biomed Sci, 2009,16:9.
    [151]Pan HP, Li G. Protecting mechanism of puerarin on the brain neurocyte of rat in acute local ischemia brain injury and local cerebral ischemia-reperfusion injury[J]. Yakugaku Zasshi,2008,128(11):1689.
    [152]Zhang ZG, Zhang QZ, Cheng YN, et al. Antagonistic effects of ultra-low-molecular-weight heparin against cerebral ischemia/reperfusion injury in rats[J]. Pharmacol Res,2007,56(4):350.
    [153]Rogers DC, Campbell CA, Stretton JL, et al. Correlation between motor impairment and infarct volume after permanent and transient middle cerebral artery occlusion in the rat[J]. Stroke,1997,28(10):2060,2066.