铜包铝线坯高速TIG焊工艺与焊缝跟踪及熔宽控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜包铝线缆制造过程中,焊接质量是影响成材率的主要因素。由于线坯所用的铜带厚度很薄,焊接速度又很高,进行焊接质量的实时传感与控制十分困难,相关的研究也很少。本文在分析了铜包铝线坯高速TIG焊接生产工艺、钨极偏离焊缝和熔宽变化对焊接接头微观组织和力学性能影响的基础上,确定在该工艺条件下焊缝跟踪系统所应达到的焊缝实时传感及自动跟踪控制精度和熔宽实时传感及自动控制的精度。同时,对铜包铝线坯高速TIG焊接焊缝视觉传感及自动跟踪、熔宽视觉传感与自动控制方面进行了深入研究。
     研究结果表明:焊接电流在180A~200A范围内时熔宽变化范围为0.860 mm~1.217 mm,焊缝区组织致密、无明显的焊接缺陷。热影响区的厚度很薄,为等轴晶,与基体相比晶粒略有长大。随着焊接电流的提高焊缝区柱状晶的直径和热影响区的厚度、晶粒大小有增加的趋势;钨极偏离焊缝0.1mm、0.2mm与钨极未偏离焊缝时的焊缝组织、热影响区组织变化不大,焊缝均为较粗大单相α柱状晶,热影响区与基体比较长大不明显,仍保持等轴晶形态。钨极偏离焊缝中心距离小于0.2mm时,未发现各区组织存在明显变化,未发现焊缝区、热影响区有未熔合及未熔透等焊接缺陷。
     在铜包铝线坯高速TIG焊接生产中,采用视频摄像传感器超前于钨极20 mm检测铜带对口缝可以获得清晰的对口缝图像,采用专用的设计电路对视频信号进行处理,降低了图像信息处理时间,实现焊缝自动跟踪。实验测试结果为:在焊缝偏差为0.1 mm,采集两帧数据时系统响应周期为115 ms,采集六帧数据时系统响应周期为195 ms;系统焊缝跟踪误差为:±0.13 mm。
     以弧光为主动光源,经过对弧光的中性减光和采用中心波长为677 nm的窄带滤光处理,采用视频摄像传感器获得了清晰的熔池图像。为了实现快速响应,满足高速焊接生产的要求,采用特殊电路对视频信号进行处理。该处理过程耗时为纳秒级,并准确获得了熔池宽度方波信号,实现了对熔宽的实时检测及自动控制。实验测试证明:采集四帧数据时系统响应周期为80 ms,系统熔宽控制误差为:±0.14 mm。
Copper-clad aluminum cable is bimetal compound cable that is produced on the method of copper level covering aluminum core. It is a good inner conductor to replace copper manufacturing RF coaxial cable. Using quality copper-clad aluminum cable instead of copper cable has a broad application prospects.
     Clad-process welding copper clad aluminum cable is the welding produces aluminum core covered by copper strip and TIG welding is commonly used welding method. But in the actual production, one hand, as the impact of the covering process, and often there is departure between electrode and Copper strip opposite seam; On the other hand, for the changes of copper the thickness, Using constant current welding often have some defects such as faulty fusion or melting loss. And the actual production welding speed is quickly. Rely on the operator to manually tracking seam welding current adjustment and it is very difficult to eliminate defects produced, and often produce a lot of waste, but also seriously affect the continuity of production, therefore, achieving Copper-clad aluminum wire welding seam automatic tracking and welding pool width control is very necessary
     Because copper cable used very thin, high welding speed, a constant current TIG welding, the welding process for welding quality of real-time sensing and control is very difficult, and very few relevant research. Based on careful analysis of the TIG welding production process of copper clad aluminum strip and the Tungsten deviating from welding seam and the influence of welding pool width change on the welded joint microstructure and mechanical properties .The process established under the conditions in the seam tracking system should meet the real-time sensing and automatic seam tracking control accuracy and welding pool width real-time sensing and automatic control accuracy, at the same time, carry out in-depth research on Copper-clad aluminum cable billet on the high-speed TIG welding seam visual sensing and automatic seam tracking and sensing welding pool width and control.
     The results showed that weld tungsten deviated from 0.1 mm, 0.2mm and tungsten did not deviate from the welding seam, the heat-affected zone microstructure changed little, the microstructure were large single-phaseαcoarse columnar crystals, and the heat-affected zone and the bases did not grow greatly, remained equiaxed grain. Weld tungsten from the centre was less than 0.2 mm, found no significant microstructure change in the different district and found no weld heat-affected zone of fusion and non-penetration welding defects, etc. automatically sensing and real-time seam tracking control detection and control accuracy, should not be less than 0.2 mm.
     Using constant current welding often has some defects such as faulty fusion, burning through or melting loss. With the increase of welding current, the width of the welding pool will increase. But welding current changes in excess of±10 A, will have a non-fusion welding wear or defects; thickness of 0.38 mm, welding speed of 10 m / min, welding current of 180 A-200 A change, welding pool width range of changes 0.860 mm to 1.219 mm, which have received the penetration. Thickness unchanged, in the welding current of 190 A±10 A of changes , the grain size of welded joints changed, the current larger the grain size larger. The thickness of the heat-affected zone is thin and the microstructure is equiaxed grain, and the grain is larger than the bases. With the improvement of welding current, the diameter of the weld district columnar crystal and the thickness of the heat-affected zone, grain size, with an increasing trend, melting wide detection accuracy of±0.15 mm, the availability of a suitable weld metal properties.
     Arc light as the active light source, during the production of Copper-clad aluminum strip in the high-speed TIG welding, video camera sensors used in tungsten-ahead 20 mm can detect Copper strip counterparts slit and can get clear image, circuit simulation using the video signal amplification, shaping, horizontal hold supply and moving average processing greatly reducing the image processing time, and get the accurate Copper strip counterparts slit pulse signal. Carrying out the judgement of the Copper strip counterparts slit deviation and the calculation of the size of deviation. Using the stepper motor and the delicate slipper driving the blowtorch for the rapid real-time tracking, automatic seam tracking system response speed and accuracy of the tests show that: in weld deviation of 0.1 mm, two frames data acquisition the system response cycle is 115 ms, the six frames data acquisition system response cycle is 195 ms; the error of the systems for seam tracking is±0.13 mm.
     During the production of Copper-clad aluminum cable billet in the high-speed TIG welding, the arc light as the active light source, after the arc light is neutral weakened and using the center wavelength of 677 nm of the narrow-band filter deal with, using the video camera sensors get a clear image of the welding pool. In order to achieve rapid response to meet the requirements of high-speed welding production, circuit simulation using the video signal amplification, shaping, horizontal hold supply and moving average processing, allowing the video signal processing for the nanosecond time-consuming, and get the accurate square wave signals of the pool width. And realize the real-time detection of the welding pool width. According to the trend of welding pool width changed and the size changed, using the fuzzy controller change the welding current rapidly to achieve the control of the welding pool width. The test of the control system response speed of the welding pool width and the accuracy of the control system showed that: the welding pool width deviation is±0.1 mm, four data acquisition system response time is 80 ms cycle and the welding pool width control system error is±0.14 mm.
     This paper test shows that using visual sensor for high-speed Copper-clad aluminum cable billet TIG welding seam tracking and automatic real-time sensor control, welding pool width automatic real-time sensing and control, in the high-speed Copper-clad aluminum strip TIG welding quality control has certain theoretical guidance and good prospects.
引文
[1] 戴雅康,杨景山,王朔,等.包覆焊接法生产的铜包铝线的质量和性能.电线电缆,1997,(5):25-26.
    [2] 孙德勤,吴春京,谢建新.铜包铝复合线材制造技术的发展现状与前景.电线电缆,2003,(3):3-4.
    [3] 孙慎林.浅谈电镀法铜包铝线和铜包钢线.广播与电视技术.1997,(5):102-104.
    [4] 吴云忠,马永庆,刘世永,等.包复焊接铜包铝线加工工艺与固相结合机理研究.焊接2006,(4):40-42.
    [5] 戴雅康. 以铜包铝线为内导体的 CATV 同轴电缆的特性.广播与电视技术,2000,(3):140-142.
    [6] Kang C G. Jung Y J, Kwon H C. Finite element simulation of die design for hot extrusion process of Al/Cu clad composite and its experimental investigation [J]. Journal of Materials Processing Technology, 2002 , 124(1-2):49-56.
    [7] 胡捷. 铜包铝复合线材静液挤压加工工艺研究.新工艺新技术,2001,(9):27-28.
    [8] Hung Jung-Chung, Hung Chinghua. The design and development of a hydrostatic extrusion apparatus [J]. Journal of Materials Processing Technology, 2000 , 104(3):226-235.
    [9] 谢建新,刘静安. 金属挤压理论与技术.北京:冶金出版社,2001:316-321.
    [10] 谢建新,孙德勒,吴春京. 双金属复合材料双结晶器连铸工艺研究.材料工程,2000,(4):38-40.
    [11] 虞一世. 铜包铝的研发与市场前景.电器工业,2006,(8):48-51.
    [12] 高文浩. 铜包铝线标准化.光纤与电缆及其应用技术,1999,(3): 23-27.
    [13] 寿伟春,李向里. 铜包铝线.电线电缆,2000,(2):40-45.
    [14] 汤宝锯,陆春校,黄欣. 铜包铝线在市内通信电缆中的应用.电线电缆,2007,(1):17-20.
    [15] 徐乃英. 汽车用线缆的新发展.电线电缆,2003,(6):7-14.
    [16] 石下力、、等. 铜包铝线用于室内配线.电线电缆,1998,(3):8-12.
    [17] 戴雅康. 铜包铝导线的特性及其在变压器绕组中的应用.变压器,2006,(6):12-15.
    [18] 黄石生. 焊机过程的神经网络建模及控制技术.机械工程学报,1994,30(3): 24-30.
    [19] 吕学勤,张轲,吴毅雄. 焊缝自动跟踪的发展现状与展望.机械工程学报,2003,39(12): 80-84.
    [20] 刘蒿,高波,张大成,等. 焊缝自动跟踪系统的发展综述.黑龙江自动化技术与应用,1995,14(4): 1-4.
    [21] Araya T. Sensing technology for in process control(1)-basis and practice of arc sensor. 熔焊学会杂志。1991,60(2):127-132.
    [22] 郭爱民,董毅. 电弧电流可控传感系统的研究.电气自动化,1995,(1):72-74.
    [23] By J, Kim W, Na S J, et al. Self-organizing fuzzy control approach to arc sensor for weld joint tracking in gas metal arc welding of butt joints. Welding Research Supplement, 1993(2):60-66.
    [24] Takeuchi N. Some kinds of wire ground sensors and control systems in arc welding(partⅡ).Technical Commission on Welding Process, Japan Welding Society, 1991:125-128.
    [25] Kang-Yul Bae*, Jin-Hyun Park. A study on development of inductive sensor for automatic weld seam tracking. Journal of Materials Processing Technology 176(2006)111-116.
    [26] 胡绳荪,张绍彬,侯文考. 焊缝跟踪中的非接触式超声波传感器的研究.传感器技术,1999,(2):5-7.
    [27] 胡绳荪,涂万红,孙栋,等. CO2焊接超声传感焊缝自动跟踪技术.焊接学报,2002,23(5):19-22.
    [28] 鲍加铭,胡绳荪,王玉龙. 超声传感焊缝自动跟踪的研究. 焊接技术,2000,29(增刊):18-19.
    [29] 赵家瑞,张绍彬. 用空气超声传感实现弧焊焊缝跟踪.石油工程建设,1994(6):1-3.
    [30] 何方殿、王克争,苏勇. 视觉传感器焊接跟踪系统的研究和发展.电焊机,1993,23(4): 8-13。
    [31] 何方殿,王克争. 用于电弧焊接的焊缝跟踪传感器(上).电焊机,1990(3):4-20.
    [32] Jones R. Development of a top face penetration controller based on an infrared camera. In: Proceedings of International Conference, Exploiting Advances in Arc Welding Technology, Cambridge, UK,1998:30-31.
    [33] 何方殿,王克争. 用于电弧焊接的焊缝跟踪传感器(下).电焊机,1990(4):4-8.
    [34] 闫志鸿. 基于熔池视觉传感的薄板 P-GMAW 焊缝成形过程控制.哈尔滨工业大学博士论文,2006.
    [35] D.E. Hardt. Ultrasonic Measurement of Weld Penetration. Welding Journal. 1984.63(9):273s-285s.
    [36] R. Fenn. Ultrasonic Monitoring and Control During Arc Welding. Welding Journal. 1985.64(9):18-24.
    [37] N.M. Carlson and J.A.Johnson. Ultrasonic Sensing of Weld Pool Penetration. Welding Journal. 1988.67(11):239s-246s.
    [38] G.M. Graham and I.C.Ume. Automated System for laser Ultrasonic Sensing lf Weld Penetration. Mechatronics. 1997,7(8):711-721.
    [39] H.Wang and R.Kovacevic. Feasibility Study of Acoustic Sensing for the Welding Pool Mode in Variable-Polarity Plasma Arc Welding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2002,216(10):135-1366.
    [40] Y.W. Wang and Q.Chen. On-line Quality Monitoring in Plasma-arc Welding. Journal of Materials Processing Technology. 2002,120(1):270-274.
    [41] 吴林,董德祥,陈定华. 固定点状态下 TIG 焊接熔深信号的检测及分析.焊接学报. 1986,7(2):64-71.
    [42] 王其隆,张九海,杨春利. 快速行走 TIG 焊接时熔透信号的提取及分析.焊接学报, 1992,11(3):175-179.
    [43] C.Connelly, G.j.Fetzer,R.G. Gann and T.E. Auarand. Reliable Welding of HSLA Steels by Square Wave Pulsing Using and Advanced Sensing Technique. Processing of an International Conference on Trends in Welding Research, Gatlinburg, Tennessee, USA, 18-22, May, 1986:421-423.
    [44] A.C. Guu and S.I. Rokhlin. Technique for Simultaneous Real-time Measurements of Weld Pool Surface Geometry and Arc Force. Welding Journal. 1992,71(12):473s-482s.
    [45] K. Andersen, G.E. Cook, R.J. Barnett, and A.M. Strauss. Synchronous Weld Pool Oscillation for Monitoring and Control. IEEE Transactions on Industry Application. 1997, 33(2):464-471.
    [46] A.C. Guu, S.I. Rokhlin. Computerized Radiographic Weld Penetration Control with Feedback on Weld Pool Depression. Materials Evaluation. 1989,(10):1204-1210.
    [47] S.I. Rokhlin, A.C. Guu Computerized Radiographic Sensing and Control of an Arc Welding Process, Welding Journal. 1990,69(3):83-95.
    [48] S.I. Rokhlin, K. Cho, A.C. Guu. Closed-loop Process Control of Weld Penetration Using Real-time Radiography. NDT E International,1996, 29(3):188.
    [49] 刘习文,王国荣,石永华,等. 焊接熔池传感与控制系统的研究现状.焊接,2005(11):5-10.
    [50] Hard D E.Ultrasonic measurement of weld penetration. Welding journal,1984,63(9):273s-281s.
    [51] 胡百僖,黄从达,陶爱龙,等.利音用声信号进行脉冲等离子弧全位置焊接质量控制系统的研究. 焊接,1980(5):17-20.
    [52] Kotecki, D.J., Cheever, D.L., and Howden,D.G.. Mechanism of ripple formation during weld solidification. Welding Journal,1972,51(8):386s to 391s.
    [53] Renwick,R.J., and Richardson, R.W.. Experimental investigation of GTA weld pool oscillation. Welding Journal, 1983, 62(2):29s to 35s.
    [54] Zacksenhouse, M., and Hardt, D.E.. Weld pool impedance identification for size measurement and control, Journal of Dynamic System, Measurement and Control,1983,105: 179-184.
    [55] Madigan, R. B., and Renwick, R. J.. Computer based control of full penetration GTA welds using pool oscillation sensing. Proc. 1st Intern. Conf. on Computer Technology in welding. London, U.K., pp. 1986, 165-174.
    [56] C.D Sorenson, et al., Modeling of Oscillations in Partially Penetrated weld pools, Journal of Dynamic Systems, Measurement, and Control, 1990,112(Sep.):469-474.
    [57] Sorensen, C.D., and Eagar, T.W.. Digital signal processing as a diagnostic tool for gas tungsten arc welding. Proc.1st Intern. Conf. on Trends in welding research, Gatlinburg Tenn,pp. 1986, 467-472.
    [58] Salter,R.J., and Deam,R.T.. A practical front face penetration control system for TIG welding. Proc. 2nd Intern. Conf. on Developments in Automated and Robotic Welding, Tenn., pp. 1988,145-156.
    [59] Yoo, C.D., and Richardson, R.W.. An experimental study on sensittity and signal characteristics of weld pool oscillation. Transactions of JWS,1993, 24:54-62.
    [60] Hardt,D.E.. Measuring weld pool geometry form pool dynamics. Proc. 3rd Conf. on Modeling of Casting and welding process, 1988, 3-17.
    [61] Tam,A.S., and Hardt,D.E.. Weld pool impedance for pool geometry measurement: stationary and nonstationary pools. Journal of Dynamic Systems, Measurement, and Control ,1989,111:545-553.
    [62] Wang,Q.L., Yang,C.L., and Geng,Z..Separately excited resonance. Phenomenon of the weld pool and its application. Welding Journal ,1993,72(9):445s to 462s.
    [63] Yoo,C.D..Effects of weld pool condition on pool oscillation. Ph.D. thesis, The Ohio State University, Columbus, Ohio. 1990
    [64] Sorensen, C.D., and Eagar, T.W.. Modeling of oscillation in partial penetration weld pools. Journal of Dynamic Systems, Measurement and Control, 1990,112:469-1474.
    [65] Xiao, Y.H., and den Ouden, G.. A study of GTA weld pool oscillation. Welding Journal 1990,69(8):289s to 293s.
    [66] Xiao, Y.H., and den Ouden, G.. weld pool oscillation during GTA welding of mild steel. Welding Journal ,1993,72(8):428s to 434s.
    [67] K. Andersen, Synchronous Weld Pool Oscillation for Monitoring and control, Ph.D. Dissertarion, Vanderbilt Univ.,Spring,1993.
    [68] C.D.Yoo, Effects of Weld Pool conditions on Pool Oscillation, PH.D. Dissertation, Ohio state Univ., 1990.
    [69] 何德孚,李克海. 焊接熔池的振荡和焊缝成形的自适应控制.焊管,2000,23(4):22-27.
    [70] 杨春利,何景山,王其隆,等. TIG 焊变频电流下熔池谐振检测与研究.焊接学报,2000,21(2):6-9.
    [71] 廖平,杨文杰,杨春利,等. TIG 焊弧光传感熔透控制的研究.佳木斯大学学报(自然科学版),1998,16(1):94~97.
    [72] Chin B A, Madsen N H, Goodling J S. Infrared thermography for sensing the arc welding process. Welding Journal, 1983,62(9)227-234.
    [73] Groom K N, Nagarajan S, Chin B A. Automatic single V-groove welding utilizing infrared images for error detection and correction. Welding Journal, 1988,69(12):441-445.
    [74] 项安,潘俊民,潘际銮. 基于焊接温度场的焊缝跟踪与熔透控制.上海交通大学学报,2003,37(12):1858-1861.
    [75] C.J. Smith. Self-Adaptive Control of Penetration in a Tungsten Inert Gas Weld. Advances in Welding Process.1974,12(3):272-277.
    [76] A.P.Bennett. Improving the Consistency of Weld Penetration by Feedback Control. Fabrication and Reliability of Welded Process Plant. 1977,23(7):13-18.
    [77] C.J.Smith. On-Site Automatic TIG Welding Improves Quality for Nuclear Power Stations. Developments and Innovation for Improved Welding Meduction. 1983,5(9):15-21
    [78] A.E.Bentley and S.J.Marberger. Arc Welding Penetration Control Using Quantitative Feedback Theory. Welding Journal. 1992,71(11):397s-405s.
    [79] 李亮玉,陈树君,殷树言. 基于弧焊温度场正面信息的熔透控制─三维温度场熔透解析模型及验证.机械工程学报,2000,36(9):37-40.
    [80] W.Chen and B.A.Chin. Monitoring Joint Penetration Control of Pulsed Techniques. Welding Journal. 1990,69(4):181s-185s.
    [81] S.Nagarajan,B.A.Chin and W.Chen. Control of the Welding Process Using Infrared Sensors.IEEE Transactions on Robotics and Automation. 19928(1):86-93.
    [82] S.Nagarajan and B.A.Chin. On-line Identification and Control of Part-preparation and Fixturing Errors in Arc Welding. Journal of Engineering for Industry. 1993,115(11):85-389.
    [83] Nagarajan S, Banerjee P, Chen W ,et al. Control of the welding process using infrared sensors. IEEE Transactions on Robotics and Automation,1992,8(1):86s-93s.
    [84] A.E. Bentley and S.J. Marberger. Arc Welding Penetration Control Using Quantitative Feedback Theory. Welding Journal. 1992.71(11):397s-405s.
    [85] 陈强,孙振国. 计算机视觉传感技术在焊接中的应用.焊接学报,2001,22(2):83-90.
    [86] 王伟,邹奇仕,朱六妹,等. 视觉传感焊缝跟踪技术的发展状况及实施方案探讨.电焊机,2002,32(5):1-8.
    [87] 孙立新,韩炜,刘冰清,等. 结构光焊缝检测传感器设计理论研究.光学学报,2003,23(2):225-230.
    [88] 谢志孟,高向东. 基于视觉传感的焊缝跟踪技术研究和展望.焊接,2005(4):5-9.
    [89] Wu J.Smith J S,Lucas J. Weld bead placement system for multiphase welding. IEEE Proceeding online,1996,143(2):85-89.
    [90] 岳宏,孙立新,蔡鹤高. 基于结构光的机器人焊接实时图像处理方法的研究.机器人,1999,21(3):144-147.
    [91] Agapakis J E, Joel M. Katz, Joshua M. Friedman, et al. Vision-Aided robotic welding: an Approach and a Flexible Implementation. The International Journal of Robotics Reseatch,1990,9(5):17-34.
    [92] Jae Seon Kim,* Young Tak Son,* Hyung Suck Cho* ,et al. A Robust Visual Seam Tracking System for Robotic Arc Welding. Mechatronics,1996,6(2):141-163.
    [93] Agapiou G, Kasiou ras C, Serafetinides A A. A detailed analysis of the MIG spectrum for the development of laser-based seam tracking sensors. Optics Laser Technology, 1999,(31):157-161.
    [94] J.E. Agapakis, J. Bolstad. Vision Sensing and Processing System for Monitoring and Control of Welding and Other High Luminosity Processes. International Robots Vision Automation Conference, 1991:23-29.
    [95] S. Nakata, J.Huang. Y. Tsuruha. Visual Sensing System for In-Process Control of Arc Welding Process. Welding International. 1988,(12):1086-1090.
    [96] 王其隆.弧焊过程质量实时传感与控制.北京:机械工业出版社,2000.
    [97] 徐越兰,熊亮同,王克鸿,等.无熔深堆焊铜熔池图像视觉检测方法研究.南京理工大学学报,2005,29(5):521-528.
    [98] 王建军,林涛,陈善本,等. 铝合金焊接熔池图象传感器.传感器技术,2001,20(10):14~16.
    [99] J.J.Wang. T.Lin. S.B.Chen. Obtaining weld pool vision information during aluminum alloy TIG welding. Int.J Adv manuf.technology,2005,(26):219-227.
    [100] K. Y. Bae, T.H. Lee and K.C. Ahn. An Optical Sensing System for seam Tracking and Weld Pool Control in Gas Metal Arc Welding of Steel Pipe. Journal of Materials Processing Technology. 2002,120(1-3):458-465.
    [101] Y.M. Zhang, L.Li, R.Kovacevic. Monitoring of Weld Pool Appearance for Penetration Control. 4th International Conference on Trends in Welding Research, Gatlinburg, Tennessee, USA, 5-8,June, 1995.
    [102] R.Kovacevic, Y.M.Zhang. Real-Time Image Processing for Monitoring of Free Weld Pool Surface. Journal of Manufacturing Science and Engineering. 1997,119(5):161-169.
    [103] R.Kovacevic, Y.M.Zhang. Vision Sensing of 3D Weld Pool Surface. 4th International Conference on Trends in Welding Research, Gatlinburg, Tennessee, USA,5-8,June,1995.
    [104] R.Kovacebic, Y.M.Zhang. Three-dimension Measurement of Weld Pool Surface. Proceedings of the International Conference on Modeling and Control of Joining Processes, Oriando, Florida, USA, 1993:600-607.
    [105] Y.M.Zhang, H.Beardsley and R.Kobacebic. Real-time Image Processing for 3D Measurement of Weld Pool Surface. Manufacturing Science and Engineering, 1994,68(1):255-262.
    [106] 马宏泽、张甲英,赵慧东,等. 焊缝自动跟踪微机系统的数字控制器.焊接学报, 1999,20(6):107-112.
    [107] 陈念,孙振国,陈强. 基于视觉图像传感的精密脉冲焊焊缝跟踪.焊接学报,2001, 22(4):17-20.
    [108] 黄石生,覃敬腾,宋永伦. TIG 焊熔宽的自整定 PID 闭环控制系统的研究.电焊机,1993,5:6-11.
    [109] 张华,潘际銮,廖宝剑. 焊接温度场的实时检测及熔透闭环控制.焊接学报,1998,19(3):176-183.
    [110] 胡胜钢,李俊岳,裴雪梅. 光学弧焊传感器的发展状况及其控制技术.焊管,1998,21(1):10-18.
    [111] Kim J W and Na S J. A self-organizing fuzzy control approach to arc sensor for welding joint tracking in gas metal arc welding of butt joint, Welding Research Supplement,1993,(2):60-66.
    [112] 梁明,王国荣,石永华,等. 焊缝跟踪系统中的智能控制.电焊机,2000,30(80):17-20.
    [113] 胡绳荪,李顺华,孙栋. 焊缝跟踪模糊控制器的研究.电焊机,2000,30(9): 32-34.
    [114] 胡绳荪,侯文考,秦宝忠. 焊缝跟踪系统中的自调整比例因子 Fuzzy-P 控制器的研究. 天津大学学报,1992,32(3):181-185.
    [115] Yoshito S. Fuzzy Seam-tracking Controller,Industrial Electronics, Control, Instrumentation and Automation, 1992, 2(11): 966-969.
    [116] Murakami S. Weld-line tracking control of arc welding robot using fuzzy logic controller. Fuzzy Sets and Systems, 1989,32(2):31-36.
    [117] Beattie R J, Cheng S K and Logue P S. The use of vision sensors in multitasks welding applications. Welding Journal, 1988,67(11):28-33.
    [118] 胡绳荪,李顺华,孙栋,等. CO2焊接超声传感焊缝跟踪控制规则与参数.焊接学报,2003,24(2):22-26.
    [119] 梁明,王国荣,廖霄,等. 规则自调整模糊控制器在焊缝跟踪中的应用.华南理工大学学报,2003,31(2):44-47.
    [120] 黄石生,高向东,俞时伟. 一种智能型焊缝跟踪系统的研制.机械工程学报,1999,36(6):34-37.
    [121] 赵冬斌,陈善本,吴林,等. 填丝脉冲 GTAW 熔池形状定义和图像处理.焊接学报,2001,22(2):5-8.
    [122] 邵奇可,陈国定,方勇. 形态学在熔池图像处理中的应用.机械科学与技术,2003,22(1):42-47.
    [123] 林尚扬,陈善本,李成桐. 焊接机器人及其应用.北京:机械工业出版社,2000.61-62..
    [124] 高进强,武传松,刘新丰. 焊背面熔宽的神经网络模糊控制.焊接学报,2001,22(5):5-8..
    [125] 陈善本,赵冬斌,娄亚军,等. 脉冲 GTAW 焊缝成形智能控制方法. 自动化学报,2003,29(1):130-137.
    [126] 孙华,王炎,周卫东,等. 人工神经网络在焊缝跟踪中的应用.黑龙江自动化技术与应用,1997,(3):5-7.
    [127] 高向东,黄石生,余英林. 机器人焊缝跟踪神经网络控制的研究.机械工程学报,2000,26(5):7-10.
    [128] 黄石生,贺剑峰. TIG 焊熔宽的参数自调整模糊与积分的混合控制.控制理论与应用,1995,12(4):465~470
    [129] 黄石生等. 焊接过程的神经网络建模及控制研究.机械工程学,1994,Vo1.30(3):24~302.
    [130] 武传松,刘玉池.基于视觉的脉冲 TIG 焊接熔宽模糊控制系统.机械工程学报,Vol.34(6),1998
    [131] Y. H. Xiao, et al. Sensing of Weld Pool Penetration During GTAW Welding. Welding in the World, 1994, Vol.34, P155-164.
    [132] R.Kovacevic and Y. M. Zhang. Real-time Image Processing for Monitoring of Free Weld Pool Surface. Journal of Manufacturing Science and Engineering, May1997, 161-169. Vol.119.
    [133] 高进强,武传松.TIG 焊接熔池形状参数的视觉检测.金属学报,2000,36(12):1 284-1 288.
    [134] 杜全营,王伟,王建军,等.铝合金钨极氩弧焊熔池图像处理.上海交通大学学报, 2005,39(7):1055-1057.
    [135] 王建军,林涛,陈善本,等. 铝合金交流钨极氩弧焊熔池图像传感方法.上海交通大学学报,2002,36(1):5-8.
    [136] WANG J J ,LIN T,CHEN S B, Obtianing weld pool vision information during aluminum alloy TIG welding[J]. Int J Adv Manuf Technol., 2005,26: 219-227.