拟共形映射极值问题和Schwarz导数
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的主要目的在于研究拟共形映射极值问题及与之相关的Schwarz导数理论。拟共形映射是复变函数论中共形映射(或称保角变换)的拓广。从1928年Gr(?)lzsch提出至今已有七十多年的历史,在这几十年中,伴随着对它的研究的进一步深入,拟共形映射理论已经渗透到数学、物理、科技和工程等各个领域,对其它学科的研究提供了有力的研究工具。
     拟共形映射极值理论主要讨论给定边界对应的拟共形映射族中极值映射的存在性、唯一性、及极值映射的性质与特征刻划等问题。其中唯一极值拟共形映射的特征刻划以及相关的一些问题一直是研究的热点和难点。本文的第二章及第三章对这些问题进行了深入的研究,得到了一系列的结果。
     Schwarz导数在判定共形映射能否拟共形延拓、估计区域的单叶性内径以及探讨一些解析函数族的性质方面有非常重要的作用,对这些热点问题的研究将对拟共形映射理论的发展起着积极的作用。在第四章和第五章中,对解析函数的Schwarz导数和Nehari族以及Schwarz导数的极值集作了深入细致的研究,并且利用所得到的结果研究了矩形、等角六边形的单叶性内径问题。
     第一章,绪论。在这一章中,我们简单介绍了拟共形映射的基本理论,拟共形映射极值问题、Schwarz导数理论(包括有关的Nehari族与Schwarz导数的极值集)的发展历史与研究现状,并对论文的主要结果给以简单介绍。
     第二章,唯一极值拟共形映射的特征刻划。在给定边界值的拟共形扩张中,一定存在极值拟共形映射,但极值映射不一定是唯一的。因此对于给定的边界值,什么时候存在唯一极值拟共形扩张,也就是唯一极值拟共形映射的特征刻划一直是一个热点、难点问题。在这一章中,我们首先简要回顾了对唯一极值拟共形映射研究的已有结果和最新进展,重点介绍了1998年Bozin V.,Lakic N,Markovic V,和Mateljevic:M.[14]关于唯一极值拟共形映射的研究成果,分析他们的这些极富创新意义的结果,在此基础上我们主要研究了唯一极值拟共形映射的特征刻划,得到了一些重要的和文[14]互不包含的刻划唯一极值拟共形映射的结果。
     第三章,四边形的模与本质边界点。在极值拟共形映射理论中,极值映射的最大伸缩商往往是难以计算的,如何解决这个问题也是拟共形映射理论中所要讨论的一个热点。根据拟共形映射下四边形模的拟不变性,利用四边形模之比来逼近它是人们比较容易想到的方法,但关键的问题是四边形模之比的上确界是否等于极值映射的最大伸缩商?在本章中,我们首先利用了文[20]的结果,研究了单位圆周上一
    
    类具有本质边界点的拟对称同胚,证明了它的极值拟共形延拓的最大伸缩商等于四
    边形模之比的上确界,改进了文[148]的有关结果.然后,对于抛物区域与双曲区域
    上仿射拉伸的边界对应,通过计算,证明上述结论也成立。最后利用退化的四边形
    序列,给出了拟对称同胚的极值拟共形延拓的最大伸缩商、四边形模之比的上确界
    及拟对称同胚的边界伸缩商三者相等的一个充要条件.
     第四章,Schwarz导数与Nehari族.Nehari和Ahlfors对拟共形映射的研究揭示
    了Schwarz导数和单叶函数及其拟共形扩张的深刻联系,在本章中,我们首先简单
    地介绍了Schwarz导数的研究历史,然后深入分析了Schwarz导数和Nehari族之间
    的联系,最后利用微分方程的比较定理和Schwarz导数理论讨论了一个Nehaxi族,
    获得了该族的一些重要性质并得到了一系列好的估计.我们不仅发现Nehari族极值
    函数和非极值函数的典型性质差别,而且还对SChwarZ导数满足一定增长条件的单
    叶函数的像域的拟圆常数作了估计.
     第五章,Schwarz导数的极值集.我们知道一个区域的单叶性内径对研究该区
    域上解析函数的单叶性和其他性质具有很重要的意义,而计算区域的单叶性内径时
    我们往往要对Schwarz导数的范数进行估计,这涉及到计算Schwarz导数的极值。
    在本章中,我们全面地刻划了Schwarz导数的极值集的分类情况,并对一些特殊的
    极值集进行了研究.最后利用Schwarz导数极值集的重要性质部分地解决了矩形和
    一类等角六边形的单叶性内径问题.
The present Ph.D. dissertation is concerned with the extremal problems in the theory of quasiconformal mappings and the related topics: quasiconformal extensions and Schwarzian derivatives.
    Quasiconformal mapping, which was posed by Grotzsch in 1928, is the generalization of conformal mapping in the theory of complex analysis. During the several decades, with the development of its theory, it has been widely spread into many research fields such as physics, science and technology, engineering, and other branches in mathematics, and provide a powerful tool for the study and research in these fields.
    The theory of extremal quasiconformal mappings is mainly concerned with the problems of existence and uniqueness of extremal quasiconformal mappings with given boundary correspondence and of the properties and characteristics of extremal quasiconformal mappings. Among which the problem of the characteristics of uniquely extremal quasiconformal mappings is the most difficult one and is most widely concerned. We discuss these problems in the second and third chapters of this paper, and obtain a series of deep results.
    The theory of Schwarzian derivatives has great significance in determining whether a conformal mapping has quasiconformal extensions, in estimating the inner radius of uni-valence of a domain and in discussing the properties of some conformal mapping families. The study of these key problems will be very important to the development of the theory of quasiconformal mappings. In the fourth and fifth chapters of this paper, we discuss the Schwarzian derivatives of analytic functions, the Nehari families and the extremal set of Schwarzian derivatives, and apply the obtained results to determine the inner radius of univalence of rectangles and hexagons with equal angles.
    Chapter I, Preface. This chapter is devoted to the exposition of the basic theory of quasiconformal mappings, of the development and the research situation of the theory of extremal quasiconformal mappings and the theory of Schwarzian derivatives (including Nehari families and the extremal set of Schwarzian derivatives). The main results of this Ph.D. dissertation are briefly introduced in this chapter.
    Chapter II, The characteristics of uniquely extremal quasiconformal mappings. In the family of quasiconformal mappings with given boundary correspondence, the extremal mapping must exist, but may be not unique. When is the extremal mapping unique, or what is the characteristic of uniquely extremal quasiconformal mapping is always the key
    
    
    problem. In this chapter, we first recall the development and the research situation of the theory of uniquely extremal quasiconformal mappings, mainly introduce and analyse the significant results obtained by Bozin V., Lakic N., Markovic V. and Mateljevic M.[14] in 1998. Then we study the characteristics of uniquely extremal quasiconformal mappings, and obtain some criterions of uniquely extremality which are different from the results of [14].
    Chapter III, Moduli of quadrilaterals and substantial points. In the theory of quasiconformal mappings, it is often difficult to evaluate the maximal dilatation of the extremal quasiconformal mapping. How to overcome the obstacle is also a hot point. According to the quasi-invariance of the moduli of quadrilaterals under quasiconformal mappings, it is natural to think of approximating the maximal dilatation of the extremal quasiconformal mapping by the ratios of the moduli of quadrilaterals. A key problem is: is it true that the supremum of the ratios of the moduli of quadrilaterals equals the maximal dilatation of the extremal quasiconformal mapping? In this chapter, firstly, we apply a result of [20] to prove that for a class of quasisymmetric homeomorphisms with substantial boundary points, the maximal dilatation of the extremal quasiconformal extension equals the supremum of the ratios of the moduli of quadrilaterals, which improve the result of [148]. Secondly, we prove that the above conclusion is also true for the boundary correspondence of afBne str
引文
[1] Ahlfors L. V., Quasiconformal reflections, Acta Math. 109(1963) , 29 1-301.
    [2] Ahlfors L.V., Cross-ratios and Schwarzian derivatives in Rn, In complex analysis: Articles dedicated to Albert Pfluger on the occasion of his 80th birthday, 1-15,Boston, 1989.
    [3] Ahlfors L.V., Lectures on quasiconformal mappings, Nostrand company, New York, 1966.
    [4] Ahlfors L.V., Quasiconformal deformations and mappings in Rn, J. D'Analyse Math. 30(1976) , 74-97.
    [5] Ahlfors L.V. and Bers L., Riemann's mapping theorem for variable metrics, Annals of Math. 72(2) , 1960, 385-404.
    [6] Ahlfors L.V. and Weil G., A uniqueness theorem for Beltrami equations, Proc.Amer.Math.Soc.,l3(1962) ,975-978.
    [7] Anderson M. and Hinkkanen A., Quadrilaterals and extremal q.c. extensions, Comm. Math. Helv. 70(1995) , 455-474.
    [8] Anderson M. and Hinkkanen A., Univalence criteria and quasiconformal extensions, Trans.Amer.Math.Soc.,324(1991) ,823-842.
    [9] Astala K., Planar quasiconformal mappings, deformations and interac tions, Quasiconformal mappings and Analysis, 1997.
    [10] Baldassari F. and Dwork B., On second order linear differential equations with algebraic solutions, Amer.Jour.Math.,101(1979) ,42-76.
    [11] Bers L., An approximation theorem, J. D'Analyse Math.14(1965) , 1-4.
    [12] Bers L., An extremal problem for quasiconformal mappings, and a theorem by Thurston, Acta Math. 141(1978) , 73-97.
    [13] Beurling A. and Ahlfors L. V., The boundary correspondence under quasiconformal mappings, Acta Math. 96(1956) , 125-142.
    [14] Bozin V., Lakic N., Markovic V. and Mateljevic M., Unique extremality, J. D'Analyse Math. 75(1998) , 299-338.
    [15] Bshouty D., Hengartner W. and Hossian O., Harmonic typically real mappings, Math. Proc. Camb. Phil. Soc. 119(1996) , 673-680.
    [16] Bshouty D. and Hengartner W., Boundary values versus dilatations of harmonic mappings, J. D'Analyse Math. 72(1997) , 141-164.
    [17] Caykey A., On the Schwarzian derivative and the polyhedral functions, Trans.Camb.Phil. Soc.,13(1880) .
    [18] Chen Jixiu, Extremal problems of functionals of quasiconformal ma pping, Scientia Sinica(Series A) 3(1987) , 233-248.
    
    
    [19] Chen Jixiu, Quasiconformal deformation of plane domains, J. Fudan Univ. 33(1) (1994) , 57-66.
    [20] Chen Jixiu and Chen Zhiguo, A remark on "An approximation condition and extremal quasiconformal extensions", Chin. Sci. Bull. 42(1997) , 1765-1767.
    [21] Chen Jixiu and Wei Hanbai, On some constants of quasiconformal deformation and Zygmund class, Chin. Ann. Math. 3(1995) , 325-330.
    [22] Chen Jixiu, Chen Zhiguo and He Chengqi, The boundary correspondence under μ(z)-homeomorphisms, Mich. Math. J. 43(1996) , 211-220.
    [23] Chen Jixiu, Chen Zhiguo and He Chengqi, Functions with unbounded (?)-derivative and their boundary functions, J. Australia Math. (A)63(1997) , 100-109.
    [24] Chuaqui M., On a theorem of Nehari and quasidiscs, Ann.Acad.Sci. Fenn.,18(1993) ,117-124.
    [25] Chuaqui M., A unified approach to univalence criteria in the disk and simply connected domains, Proc.Amer.Math.Soc.,123(1995) ,441-453.
    [26] Chuaqui M., Osgood B., Sharp distortion theorems associated with the Schwarzian derivative, J. London Math. Soc.(2) 48(1993) ,289-298.
    [27] Chuaqui M., Osgood B., Ahlfors-Weil extensions and critical points of the poincare metric, Comment.Math.Helv.,69(1994) ,659-668.
    [28] Chuaqui M., Osgood B., An extension of a theorem of Gehring and Pommerenke, Isael Jour.Math.,1995,393-407.
    [29] Chuaqui M., Osgood B., General univalence criteria in the disk: extensions and extremal functions, to appear.
    [30] Cima J. A. , Integral smooothness properties of some harmonic mappings, Complex variables 11(1989) , 95-110.
    [31] Cui Guizhen, Conjugacies between rational maps and extremal quasiconformal maps, Proc. Amer. Math. Soc. 129:7(2001) , 1949-1953.
    [32] Douady A. and Earle C. J., Conformally natural extension of homeomorphisms of the circle, Acta Math. 157(1986) , 23-48. [33] Duren P. L., Theory of HP space, Academic Press, New York, 1970.
    [34] Duren P. L., Univalent functions, Springer-Verlag, New York, 1983.
    [35] Earle C. J., Kra I. and Kruskal S. L., holomorphic motions and Teichmuller spaces, Trans. Amer. Math. Soc. 343(1994) , 927-948.
    [36] Earle C. J. and Li Zhong, Extremal quasiconformal mappings in plane domains, Quasiconformal mappings and Analysis, 1997.
    [37] Essen M. and Keogh F., The Schwarzian derivative and estimates of functions analytic in the disk,Math.Proc. Camb.Phil.Soc.,78(1975) ,501-511.
    
    
    [38] Fehlmann R., On a fundamental variational lemma for extremal quasiconformal mappings, Comm. Math. Helv. 61(1986) , 558-580.
    [39] Fehlmann R., Q.C. mappings with free boundary components. Ann. Acad. Sci.Fenn. A I 7(1982) , 337-347.
    [40] Fehlmann R. and Ken-ichi Sakan, On the set of substantial boundary points for extremal quasiconformal mappings, Complex Variable 6(1986) , 323-335.
    [41] Gehring F.W. and Pommerenke C., On the Nehari univalence criterion and quasicircles, Comment.Math.Helv.,59(1984) ,226-242.
    [42] Gardiner F. P. and Sullivan D., Symmetric structures on a closed curve, Amer. J. Math. 114(1992) , 683-736.
    [43] Gardiner F. P. and Lakic N., Quasiconformal Teichmuller theory, AMS Providence R. I., 2000.
    [44] Goodman A. W., Univalent functions, Vol. 1 and 2, Polygonal Publishing Co., Washington/New Jersey, 1983.
    [45] Grotzsch, Ueber einge extrem problems der konformen abbilding, Ber Verh Sach Akad Wiss Leipzig, 80(1928) , 367-376.
    [46] Grigoryan A. and Szapiel W., Two-slit harmonic mappings, Ann. univ. Mariae Curie-Sklodowska Sect. A 49(1995) , 59-84.
    [47] Hall R., On an inequality of E. Heins, J. Anal. Math. 42(1982) , 185-198.
    [48] Hallenbeck D. J. and Macgregor T. H., Support points of families of analytic functions described by subordination, Tran. of Amer. Math. Soc. 278:2(1983) , 523-546.
    [49] Hamilton R. S., Extremal quasiconformal mappings with prescribed boundary values, Trans. Amer. Soc. 138(1969) , 399-406.
    [50] Harrington A. and Otel M., The dilatation of an extremal quasiconformal mapping, Duke Math. J. 43(1976) , 533-544.
    [51] He Cheng-Qi and Li Zhong, Quasiconformal mappings, Contemp. Math. 48(1985) , 129-150.
    [52] Heinonen J. and Koskela P., Definitions of quasiconformality, Invent. math. 120(1995) . 61-79.
    [53] Heinonen J. and Koskela P., Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181(1998) , 1-61.
    [54] Hengartner W. and Schober G., Harmonic mappings with given dilatation, J. London Math. Soc. (2) 33(1986) , 473-483.
    [55] Hille E., Remarks on a paper by Zeev Nehari, Bull.Amer.Math.Soc., 55(1949) ,552-553.
    [56] Kneser I., Losung der Aufgabe 41, Jahresber Deutzsch Math..
    [57] Kruskal S. L., Quasireflections and holomorphic functions, Analysis and Topology.
    [58] Kumar S., A survey of some recent results in the theory harmonic univalent functions, 1990.
    
    
    [59] Kummer E.,Uber die hypergeometrisache, Reihe,15(1836) ,39-83.
    [60] Lakic N., Strebel points, Contemporary Math. 211(1997) , 417-431.
    [61] Laugesen R. S., Planar harmonic maps with inner and blaschke dilations, J. London Math. Soc. (2) 56(1997) , 37-48
    [62] Lehto O., Homeomorphism with a given dilatation, Proc. Of the 15tyh Scand. Congree, Oslo, 1968.
    [63] Lehto O., Univalent functions and Teichmuller spaces, Springer-Verlag World Publishing Corp., 1990.
    [64] Lehtinen M., The dilatation of Beurling-Ahlfors of quasisymmetric functions, Ann. Acad. Sci. Fenn. A I 8(1983) , 187-191.
    [65] Li Zhong, On the existence of extremal Teichmuller mappings, Comm. Math. Helv. 57(1982) , 511-517.
    [66] Li Zhong, Closed geodesics non-differentiability of the metric in infinite-dimensional Teichmuller space, Proc. Amer. Math. Soc. 124(1996) , 145 9-1465.
    [67] Li Zhong, Closed geodesics non-differentiability of the metric in infinite-dimensional Teichmuller space, Proc. Amer. Math. Soc. 124(1996) , 1459-1465.
    [68] Li Zhong and Qi Yi, A note on point shift differentials, Preprint.
    [69] Li Zhong and Yao Guowu, A note on harmonic map and the main inequa lity of Reich-Strebel, Preprint.
    [70] Livingston A. E., Univalent harmonic mappings Ⅱ, Ann. Polon. Math. 67. No. 2(1997) , 131-145.
    [71] Liang Xiang-Qian and Zhu Hua-Cheng, An extremal problem of quasiconformal mappings in hyperbolic regions, J. Fudan Univ. 40:6(2001) , 645-648.
    [72] Majchrzak W., Harmonic univalent mappings of the unit disc onto a vertical strip, in "Proceedings of the Third CMFT '97 Conference" (N. Papamichael, S. Ruscheweyh, E. B. Saff, Eds.), p. 387-396, World Scientific, Singapore, 1999.
    [73] Majchrzak W., Harmonic Univalent Mappings into Half-Plane with Nonreal Vertical Slits, J. Math. Anal. and Appl. 255(2001) , 519-534.
    [74] Melkana A. Brakalova and James A. Jenkins, On solutions of the Beltrami equation, J. D'Analyse Math. 76(1998) , 67-92.
    [75] Nehari Z., The Schwarzian derivative and schlicht functions, Bull.Amer.Math.Soc.55(1949) ,545-551.
    [76] Nehari Z.,A property of convex conformal maps,Jour.d'Analyse Math.,30(1976) ,390-393.
    [77] Nehari Z.,Univalence criteria depending on the Schwarzain derivative,Illinois J.of Math.,23(1979) ,345-351.
    
    
    [78] Osgood B. Old and new on the Schwarzain derivative, 275-308.
    [79] Osgood B. and Stowe D., The Schwarzain distance between domains:a question of Lehto, Ann.Acad.Sci,Fenn.,12(1987) ,313-318.
    [80] Osgood B, and Stowe D., A generalization of Nehari's univalence criterion, Comment.Math.Helv.,65(1990) ,234-242.
    [81] Osserman R., A survey of minimal surface, Second edition, Dover Publications, 1986.
    [82] Otel M., Extremal q.c. mappings with angular complex dilatation, India. Univ. Math. J. 31(1982) , 435-447.
    [83] Otel M. and Smith W., The argument of an extremal dilatation, Proc. Amer. Soc. 104(1988) ,498-502.
    [84] Pommerenke Ch., Univalent Functions, Vendenhoeck and Ruprecht, 1975.
    [85] Qi Yi, Extremal quasiconformal mappings between Riemann surfaces, 数学进展, 28(4) , 1999, 338-346.
    [86] Reich E., An extremum problem for analytic functions with area norm, Ann. Acad. Sci. Fenn. A I Math. 2(1976) , 429-446.
    [87] Reich E., Quasiconformal mappings of the disk with given boundary values, Lecture notes in Math. 505, Springer, Berlin, 1976, 101-137.
    [88] Reich E., Uniqueness of Hann-Banach extensions from certain spaces of analytic function, Math. 167(1979) , 81-89.
    [89] Reich E., A criterion for unique extremal of Teichmuller mappings, India. Univ. Math. 3(1981) , 441-447.
    [90] Reich E., On criteria for unique extremality of Teichmiiller mappings, Ann. Acad. Sci. Fenn. A I 6(1981) , 289-391.
    [91] Reich E., On the uniqueness question for Hann-Bannach extensions from the the space of L1-analytic function, Proc. Amer. Math. Soc. 88(1983) , 305-310.
    [92] Reich E., On the variational principle of Gerstenhaber and Rauch, Ann. Acad. Sci. Fenn. A I Math. 10(1985) , 469-475.
    [93] Reich E., Quasiconformal extension using the parametric representation, J. D'Analyse Math. 54(1990) , 246-258.
    [94] Reich E., An approximation condition and extremal quasiconformal extensions, Proc. Amer. Math. Soc. 125(1997) , 1479-1481.
    [95] Reich E. and Chen Jixiu, Extensions with bounded (?)-derivative, Ann. Acad. Sci. Fenn. Ser. A I 16(1991) , 377-389.
    [96] Reich E. and Strebel K., On quasiconformal mappings which keep the boundary points fixed, Trans. Amer. Math. Soc. 138(1969) , 211-222.
    
    
    [97] Reich E. and Strebel K., Extremal q.c. mappings with given boundary values, Contribution to Analysis Academic Press, New York, 1974, 375-391.
    [98] Reich E. and Strebel K., On the Gerstenhaber-Rauch Principle, Israel J. Math. 57(1987) , 89-100.
    [99] Reich E. and Walczak H. R., On the behavior of q.c. mappings at a point, Trans. Amer. Math. Soc. 117(1965) , 338-351.
    [100] Riemann H., Ordinary differntial equations and quasiconformal mappings, Inven. Math. 33(1976) , 247-270.
    [101] Royster W. C. and Ziegler M., Univalent functions convex in one direction, Pub. Math. Debrecen 23(1976) , 339-345.
    [102] Ruscheweyh S. and Wirth K. J., On extreme Bloch functions with prescribed critical points, Math. Z.180(1982) ,91-105.
    [103] Ruscheweyh S. and Wirth K. J., Extreme Bloch functions with many critical points, Analysis 4(1984) ,237-247.
    [104] Sheil-Small T.. Constants for planar harmonic mappings, J. London Math. Soc, 42(1990) , 237-248.
    [105] Shen Yuliang, On the weak uniform convexity of Q(R), Proc. Amer. Math. Soc. 124(1996) , 1879-1882.
    [106] Shen Yuliang, A counterexample theorem in quasiconformal mappings, Sci. in China A.43:9(1999) , 929-936.
    [107] Shen Yuliang, A note on Hamilton sequence for extremal Beltrami coefficients, Preprint.
    [108] Shen Yuliang, On the extremality of quasiconformal mappings and quasiconformal deformations, Preprint.
    [109] Shen Yuliang, On unique extremality, Complex Variables, to appear.
    [110] Shen Yuliang and Chen Jixiu, Quasiconformal mappings with non-decreasable dilatation, Chinese Ann. Math. , to appear.
    [111] Shinji Yamashita. The Schwarzian derivative and local maxima of the bloch derivative, Math. Japonica 37,No.6(1992) , 1117-1128.
    [112] Strebel K., On the existence of extremal Teichmuller mappings, J. D'Analyse Math. 30(1976) , 464-480.
    [113] Strebel K., On quasiconformal mappings of open Riemann surfaces, Comm. Math. Helv. 53(1978) , 301-321.
    [114] Strebel K., Is there always a unique extremal Teichmuller mappings, Proc. Amer. Math. Soc. 1984, 240-242.
    [115] Strebel K., Extremal quasiconformal mappings, Result in Math. 10(1986) , 168-210. .
    
    
    [116] Strebel K., On the extrernality and unique extremality of quasiconformal mappings of a parallel strip. Rev. Roumaine Math. Pures. 32(1987) , 923-928.
    [117] Strebel K., On the extremality and uniqueness of certain Teichmuller mappings, Complex Analysis 1988. 225-238.
    [118] Strebel K., On the dilatation of extremal q.c. mappings of polygons, Comm. Math. Helv. 74(1999) , 143-149.
    [119] Tsuji M., Potential theory in modern function theory, Manruzen Co. Ltd. Tokyo. 1959. Verein 35(1926) , 123-124.
    [120] Weitsman A.. A counterexample to uniqueness in the Riemann mapping theorem for univa-lent harmonic mappings, Bull. London Math. Soc. 31(1999) , 87-89.
    [121] Weitsman A., On univalent harmonic mappings and minimal surfaces, Pacific J. Math.. 192:1(2000) . 191-200.
    [122] Wang Xiao-Tian, Liang Xiang-Qian and Zhang Yu-Lin, Precise coefficient estimates for close-to-convex harmonic univalent mappings, J. math. Anal. and Appl., 263:2(2001) , 501-509.
    [123] Wang Xiao-Tian, Liang Xiang-Qian and Zhang Yu-Lin, On harmonic typically real mappings, Preprint.
    [124] Wei Hanbai, On the uniqueness problem of harmonic quasiconformal mappings, Proc. Amer. Math. Soc. 124(1996) , 2337-2341.
    [125] Wu Shengjian. Moduli of quadrilaterals and extremal quasiconformal extensions of qua-sisymmetric functions, Comm. Math. Helv. 72(1997) , 593-604.
    [126] Wu Shengjian. On Hamilton sequences for extremal quasiconformal mappings in the unit disk, Preprint.
    [127] Wu Shengjian and Yang Shanshuang, On symmetric quasicicles, Preprint.
    [128] Wu Zemin, On a constant of quasiconformal deformation, J. Shanghai Jiaotong Univ. E-4 2(1999) , 26-31.
    [129] Yang Lo and Sun Daochun, Value distribution of quasiconformal mapp ings. Complex Variables 34(1997) . 219-229.
    [130] Yang Shanshuang, A modulus inequality for condensers and conformal invariants of smooth Jordan domains. J. D'Analyse Math. 75(1998) , 73-183.
    [131] Yang Shanshuang, On dilatations and substantial boundary points of homeomorphisms of Jordan curves. Results in Math. 31(1997) , 180-188.
    [132] Yamashita S.,The Schwazian derivative and local maxima of the Bloch derivative,Math.Japom'ca,37(1992) , 1117-1128.
    [133] Zhang Zhaogong and Liu Liquan, On a problem of Clunie and Sheil-Small concerning har-
    
    monic mappings, Complex Variables 28(1995), 169-174.
    [134]Zygmund A., Trigonometric series, 2nd edition(Cambridge Univ. Press, Cambridge, 1959).
    [135]陈怀惠,冬耐利意义下的绝对连续函数及K-拟共形的一个充分条件,数学进展7(1964),84-93.
    [136]陈纪修,具有指定边界和复特征的奇性拟共形同胚,数学年刊4(1986),465-473.
    [137]陈纪修,拟共形同胚的极值问题,数学年刊4(1991),422-429.
    [138]陈纪修,朱华成,梁向前,四边形的模与本质边界点,数学年刊,待发表.
    [139]陈志国,陈纪修,何成奇,双曲区域上的Teichmüller极值映射,数学年刊19A:3(1998),333-338.
    [140]方爱农,褚玉明,关于拟圆的若干条件,数学年刊16A:6(1995),702-708.
    [141]方爱农,广义Beurling-Ahlfors扩张,中国科学(A辑)25(6),1995,565-572.
    [142]戈鲁辛,复变函数的几何理论,陈建功译,科学出版社,北京,1956.
    [143]何成奇,拟共形映射的模偏差定理,数学学报Vol.15,No.4(1965),487-494.
    [144]李忠,关于极值Teichmüller映射的存在性,北大学报,6(1982),1-9.
    [145]李忠,关于Beurling-Ahlfors扩张,数学学报3(26),1983,279-290.
    [146]李忠,拟共形映射的极值问题与Teichmüller理论,数学进展14(1),1985,23-38.
    [147]李忠,拟共形映射及其在黎曼曲面论中的应用,科学出版社,1988.
    [148]李忠,伍胜健,漆毅,具有本质边界点的一类拟对称映射,科学通报44(1999),926-930.
    [149]梁向前,朱华成,具有无界ü-导数的函数及其边界函数,Preprint.
    [150]梁向前,周泽民,近于凸单叶调和映射,Preprint.
    [151]漆毅,极值拟共形扩张的一个问题,中国科学(A辑)28:7(1998),587-593.
    [152]任福尧,复解析动力系统,复旦大学出版社,1997.
    [153]王传芳,关于Q.C.映射的Mori定理的精确形式,科学记录4(1960),323-329.
    [154]夏道行,拟共形映射的参数表示,科学记录3(9),1959,323-329
    [155]张玉林,单叶调和函数,数学进展22:5(1993),402-410.
    [156]朱华成,周泽民,陈纪修,拟共形映射的伸缩商估计,自然科学进展10(9)(2000),792-797.