极值拟共形映射与Teichmüller空间的若干问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要讨论了极值拟共形映射与Teichmiiller空间中的若干个问题,主要包括了:
     1.极值Beltrami系数的Hamilton序列的构造问题.
     2.具有弱不可缩伸缩商的极值拟共形映射在每个Teichmuller等价类中的存在性问题.
     3.万有Teichmuller空间对数导数嵌入模型及Schwarz导数嵌入模型的几何性质;平面区域的Schwarz导数单叶性内径问题.
     4.渐近Teichmuller空间的几何性质,主要包括闭测地线存在性问题及关于球的非凸性问题.
     全文共分为五章.
     第一章,引言.我们简要介绍了拟共形映射与Teichmuller空间理论的历史背景,研究意义及现状,并阐述本文所研究的问题以及主要结果.
     第二章,极值Beltrami系数的Hamilton序列.本章考虑了Strebel点与Hamil-ton序列之间的关系F. P. Gardiner最早研究了这个问题(见[42]),我们讨论了在无限小Teichmiiller空间中的对应情况,证明了范金华在[35]中得到的使{φn}成为Hamilton序列的充分条件不是必要的.
     第三章,具有弱不可缩伸缩商的极值拟共形映射.具有不可缩伸缩商的拟共形映射的概念是由Edgar Reich引进的,在极值拟共形映射理论中起到了重要的作用.这其中有一个至今未解决的问题,即在每个Teichmuller等价类中,是否一定存在一个极值的具有不可缩伸缩商的拟共形映射?在本章中,我们部分地解决了这个问题.证明了在每个Teichmuller等价类中,一定存在一个极值的具有弱不可缩伸缩商的拟共形映射.
     第四章,万有Teichmuller空间的嵌入模型及区域的单叶性内径.在本章中,我们证明了在万有Teichmuller空间的对数导数嵌入模型T1(△)中,存在无穷多个点[h]∈L(?)T1(△),h(△)相互不Mobius等价,它们到边界的距离均为1,而在万有Teichmuller空间的Schwarz导数嵌入模型T(△)中,只有一个点Sid具有类似性质.另外还获得了万有Teichmuller空间两类嵌入模型的测地线的一些新的性质以及一类正规三角形外部区域的Schwarz导数单叶性内径.
     第五章,渐近Teichmuller空间的闭测地线及球的非凸性.在本章中,我们研究渐近Teichmuller空间的几何性质.在无限维渐近Teichmuller空间上构造了闭的测地线,并证明了渐近Teichmuller空间关于球的非凸性.
In this thesis, some problems of extremal quasiconformal mappings and Te-ichmiiller spaces are discussed, especially including:
     1. The construction problem of the Hamilton sequences for extremal Beltrami coefficients.
     2. The existence problem of extremal quasiconformal mappings with weakly non-decreasable dilatations in every Teichmuller equivalence class.
     3. The geometric property of the Schwarzian derivative embedding model of Universal Teichmuller Space and pre-Schwarzian derivative embedding model of Uni-versal Teichmuller Space; the problem of the inner radius of univalency by the Schwarzian derivative.
     4. The geometric property of asymptotic Teichmuller space, especially the existence problem of closed geodesies and the non-convexity problem of spheres.
     There are five chapters in this thesis.
     Chapter Ⅰ, Introduction. In this chapter, the background, significance and status of the research of quasiconformal mappings and Teichmuller spaces are intro-duced, and the problems and main results of this thesis are presented.
     Chapter Ⅱ, Hamilton sequences for extremal Beltrami coefficients. In this chap-ter, the relationship between Hamilton sequence and Strebel points is discussed, which was first studied by F. P. Gardiner in [42]. We prove that in the case of infinitesimal Teichmuller space, the sufficient condition for(φn} to be a Hamilton sequence obtained by Fan in [35] is not necessary.
     Chapter Ⅲ, Extremal quasiconformal mappings with weakly non-decreasable dilatations. The notion of non-decreasable dilatation for quasiconformal mappings, which was introduced by Edgar Reich, plays an important role in the theory of extremal quasiconformal mappings. It is an interesting open problem so far whether an extremal quasiconformal mapping with non-decreasable dilatation exists in every Teichmuller equivalence class. In this chapter, we have partially solved this problem. It is proved that for every Teichmuller equivalence class, there exists an extremal quasiconformal mapping with weakly non-decreasable dilatation.
     Chapter Ⅳ, The embedding models of Universal Teichmuller Space and the inner radius of univalency of plane domains. In this chapter, we find that in pre-Schwarzian derivative embedding model of Universal Teichmuller Space T1(△), there exist infinitely many [h]∈L(?)T1(△) such that h(△) are not Mobius equivalent to each other, and the distance from each point [h] to the boundary of T1(△) equals to1, while in Schwarzian derivative embedding model of Universal Teichmuller Space, only Sid has the analogous property. Some other properties of the Schwarzian deriva-tive embedding model of Universal Teichmuller Space and pre-Schwarzian derivative embedding model of Universal Teichmuller Space are concerned, and the inner ra-dius of univalency for the outer domain of a class of normal circular triangles by the Schwarzian derivative is also obtained.
     Chapter V, Closed geodesies and non-convexity of spheres in asymptotic Te-ichmuller spaces. In this chapter, the geometric property of asymptotic Teichmuller space is studied. Closed geodesies in any infinitely dimensional asymptotic Te-ichmuller space are constructed, and the non-convexity of spheres in asymptotic Teichmuller space is proved.
引文
[1]L. V. Ahlfors, On quasiconformal mappings, J. Anal. Math.3 (1954),1-58 and 207-208.
    [2]L. V. Ahlfors, Lecture on quasiconformal mappings [M], Nostrand company, New York, 1966.
    [3]L. V. Ahlfors, Quasiconformal reflections, Acta. Math.109 (1963),291-301.
    [4]K. Astala and F. W. Gehring, Injectivity, the BMO norm and the universal Te-ichmuller space, J. Anal. Math.46 (1986),16-57.
    [5]A. F. Beardon, The geometry of discrete groups[M], Spring-Verlag, New York Heidel-berg Berlin,1982.
    [6]J. Becker and C. Pommerenke, Schlichtheitskriterien und Jordangebiete. J. Reine Angew. Math.354(1984),74-94.
    [7]A. Beurling and L. V. Ahlfors, The boundary correspondence under quasiconformal mappings. Acta. Math.96 (1956),125-142.
    [8]V. Bozin, N. Lakic, V. Markovic and M. Mateljevic, Unique extremality, J. Anal. Math.75 (1998),299-338.
    [9]D. Calvis, The inner radius of univalence of normal circular triangles and regular polygons, Complex Variables Theory Appl.4 (1985),295-304.
    [10]J. Chen and Z. Chen, A remark on:"An approximation condition and extremal qua-siconformal extension", Chinese Sci. Bull.42(1997), no.21,1765-1767.
    [11]J. Chen, Z. Chen and C. He, Boundary correspondence under μ(z)-homeomorphisms, Michigan Math. J.43 (1996), no.2,211-220.
    [12]J. Chen and H. Wei. On some constants of quasiconformal deformation and Zygmund class, Chinese Ann. Math. Ser. B 16 (1995), no.3,325-330.
    [13]J. Chen and H. Wei, Some geometric properties on a model of universal Teichmuller spaces, Chinese Ann. Math. Ser. B 18 (1997), no.3,309-314.
    [14]J. Chen, H. Zhu and X. Liang, Moduli of quadrilaterals and substantial boundary points, Chinese Ann. Math. Ser. A 23 (2002), no.2,197-204.
    [15]Z. Chen, J. Chen and C. He, Functions with unbounded (?)-derivative and their bound-ary functions, J. Austral. Math. Soc. Ser. A 63 (1997), no.1,100-109.
    [16]Z. Chen, J. Chen and C. He, Teichmuller extremal mappings on hyperbolic domains, Chinese Ann. Math. Ser. A 19 (1998), no.3,333-338.
    [17]Z. Chen, Geometric characterization for affine mappings and Teichmuller mappings, StudiaMath.157 (2003), no.1,71-82.
    [18]T. Cheng and J. Chen, On the inner radius of univalency by pre-Schwarzian deriva-tive, Sci. China Ser. A 50 (2007), no.7,987-996.
    [19]T. Cheng and J. Chen, Some geometric properties of the universal Teichmuller space by the derivative of logarithm, (Chinese) Chinese Ann. Math. Ser. A 28 (2007), no. 3,395-402.
    [20]T. Cheng, Y. Kang and J. Chen, Inequalities on the inner radius of univalency and the norm of pre-Schwarzian derivative, Acta Math. Sin. (Engl. Ser.) 25 (2009), no. 1,59-64.
    [21]G. Cui and Y. Qi, Local boundary dilatation of quasiconformal maps in the disk, Proc. Amer. Math. Soc.130 (2002), no.5,1383-1389.
    [22]G. Cui and M. Zinsmeister, BMO-Teichmuller spaces, Illinois J. Math.48 (2004), no. 4,1223-1233.
    [23]A. Douady and C. J. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math.157 (1986), no.1-2,23-48.
    [24]C. J. Earle, The Teichmuller distance is differentiate, Duke Math. J.44 (1977), no. 2,389-397.
    [25]C. J. Earle, F. P. Gardiner and N. Lakic, Asymptotic Teichmuller space. Ⅰ. The complex structure, In:Contemp. Math.256,2000,17-38.
    [26]C. J. Earle, F. P. Gardiner and N. Lakic, Asymptotic Teichmuller. Ⅱ. The metric structure, In:Contemp. Math.355,2004,187-219.
    [27]C. J. Earle, I. Kra and S. L. Krushkall, Holomorphic motions and Teichmiiller spaces, Trans. Amer. Math. Soc.343 (1994), no.2,927-948.
    [28]C. J. Earle and N. Lakic, Variability sets on Riemann surfaces and forgetful maps between Teichmuller spaces, Ann. Acad. Sci. Fenn. Math.27(2002), no.2,307-324.
    [29]C J. Earle and Z. Li, Extremal quasiconformal mappings in plane domains, In:Qua-siconformal mappings and analysis, New York:Springer,1998,141-157.
    [30]C. J. Earle and Z. Li, Isometrically embedded polydisks in infinite dimensional Te-ichmuller spaces, J. Geom. Anal.9 (1999), no.1,51-71.
    [31]J. Fan, On geodesies in asymptotic Teichmuller spaces, Math. Z.267 (2011), no.3-4, 767-779.
    [32]J. Fan, Extremality of quasiconformal mappings of a parabolic domain, (Chinese) Chinese Ann. Math. Ser. A 29 (2008), no.3,363-368.
    [33]J. Fan, On geometric properties of a model of universal Teichmuller space, J. Fudan Univ. Nat. Sci.47 (2008), no.2,153-156.
    [34]J. Fan and J. Chen, On the equivalence of extremal Teichmuller mapping, Sci. China Ser. A 52 (2009), no.1,77-86.
    [35]J. Fan and J. Chen, On infinitesimal Teichmuller space, Bull. Aust. Math. Soc.78 (2008), no.2,293-300.
    [36]R. Fehlmann, Quasiconformal mappings with free boundary components, Ann. Acad. Sci. Fenn. Ser. A I Math.7 (1982), no.2,337-347.
    [37]R. Fehlmann, Extremal quasiconformal mappings with free boundary components in domains of arbitrary connectivity, Math. Z.184 (1983), no.1,109-126.
    [38]R. Fehlmann, Extremal problems for quasiconformal mappings in space, J. Analyse Math.48 (1987),179-215.
    [39]R. Fehlmann and K. Sakan, On the set of substantial boundary points for extremal quasiconformal mappings, Complex Variables Theory Appl.6 (1986), no.2-4,323-335.
    [40]R. Fehlmann and K. Sakan, On extremal quasiconformal mappings with varying di-latation bounds, Osaka J. Math.23 (1986), no.4,751-764.
    [41]F. P. Gardiner, On the variation of Teichmuller's metric, Proc. Roy. Soc. Edinburgh Sect. A 85 (1980), no.1-2,143-152.
    [42]F. P. Gardiner, Approximation of infinite-dimensional Teichmuller spaces, Trans. Amer. Math. Soc.282 (1984), no.1,367-383.
    [43]F. P. Gardiner, Teichmuller theory and quadratic differentials[M], Pure and Applied Mathematics (New York), A Wiley-Interscience Publication,1987.
    [44]F. P. Gardiner, On completing triangles in infinite-dimensional Teichmuller spaces, Complex Variables Theory Appl.10 (1988), no.2-3,237-247.
    [45]F. P. Gardiner and N. Lakic, Local boundary dilatation, In:Contemp. Math.256, 2000,131-141.
    [46]F. P. Gardiner and N. Lakic, Quasiconformal Teichmuller theory [M], Mathematical Surveys and Monographs,76. American Mathematical Society,2000.
    [47]F. P. Gardiner and D. P. Sullivan, Symmetric structures on a closed curve, Am. J. Math.114 (1992),683-736.
    [48]L. R. Goldberg, On the shape of the unit sphere in Q(A), Proc. Amer. Math. Soc. 118 (1993), no.4,1179-1185.
    [49]R. S. Hamilton, Extremal quasiconformal mappings with prescribed boundary values, Trans. Amer. Math. Soc.138 (1969),399-406.
    [50]J. Heinonen and P. Koskela, Definition of quasiconformality, Invent. Math.120 (1995),61-79.
    [51]E. Hille, Remarks on a paper of Zeev Nehari, Bull. Amer. Math. Soc.55(1949),552-553.
    [52]Y. Hu and Y. Shen, On Strebel points, Sci. China Ser. A 52 (2009), no.9,2019-2026.
    [53]H. Huang and S. Wu, Extremal polygonal quasiconformal mappings and biLipschitz mappings, Sci. China Math.53 (2010), no.5,1275-1282.
    [54]X. Huang, On the extremality for Teichmuller mappings, J. Math. Kyoto Univ.35 (1995), no.1,115-132.
    [55]S. Kanas and T. Sugawa, Sharp norm estimate of Schwarzian derivative for a class of convex functions, Ann. Polon. Math.101 (2011), no.1,75-86.
    [56]S. Kanas and T. Sugawa, Strong starlikeness for a class of convex functions, J. Math. Anal. Appl.336 (2007), no.2,1005-1017.
    [57]Y. Kang, T. Cheng and J. Chen, Quasiconformal extension and the universal Teich-muller space using pre-Schwarzian derivatives, (Chinese) Chinese Ann. Math. Ser. A 29 (2008), no.6,851-858.
    [58]Y. Kang, T. Cheng and J. Chen, A model of universal Teichmuller space and its application, Bull. Aust. Math. Soc.77 (2008), no.1,21-30.
    [59]Y. Kim and T. Sugawa, A note on a theorem of Chuaqui and Gevirtz, Ann. Acad. Sci. Fenn. Math.33 (2008), no.1,273-279.
    [60]Y. Kim and T. Sugawa, The Alexander transform of a spirallike function, J. Math. Anal. Appl.325 (2007), no.1,608-611.
    [61]Y. Kim and T. Sugawa, Norm estimates of the pre-Schwarzian derivatives for certain classes of univalent functions, Proc. Edinb. Math. Soc. (2) 49 (2006), no.1,131-143.
    [62]S. Kravetz, On the geometry of Teichmuller spaces and the structure of their modular groups, Ann. Acad. Sci. Fenn. Ser. A. I.278 (1959),1-35.
    [63]S. Krushkal, Extremal quasiconformal mappings, Siberian Math. J.10 (1969),411-418.
    [64]W. Lai and Z. Wu, On extremality and unique extremality of Teichmuller mappings, Chinese Ann. Math. Ser. B 16 (1995), no.3,399-406.
    [65]N. Lakic, Strebel points, In:Contemp. Math.211,1997,417-431.
    [66]N. Lakic, Substantial boundary points for plane domains and Gardiner's conjecture, Ann. Acad. Sci. Fenn. Math.25 (2000), no.2,285-306.
    [67]M. Lehtinen, The dilatation of Beurling-Ahlfors of quasisymmetric functions, Ann. Acad. Sci. Fenn. Ser. A.I. Math.8(1983),187-191.
    [68]M. Lehtinen, Estimates of the inner radius of univalency of domains bounded by conic sections, Ann. Acad. Sci. Fenn. Ser. A.I. Math.10(1985),349-353.
    [69]M. Lehtinen, On the inner radius of univalency for non-circular domains, Ann. Acad. Sci. Fenn. Ser. A.I. Math.5(1980),45-47.
    [70]M. Lehtinen, Angles and the inner radius of univalency, Ann. Acad. Sci. Fenn. Ser. A.I. Math.11(1986),161-165.
    [71]O. Lehto, Univalent Functions and Teichmuller Space[M], New York:Springer-Verlag,1986.
    [72]Z. Li, On the Existence of Extremal Teichmuller Mappings, Comment. Math. Helv 57 (1982),511-517.
    [73]李忠,拟共形映射及其在黎曼曲面论忠的应用[M],北京:科学出版社,1988.
    [74]Z. Li, Nonuniqueness of geodesies in infinite-dimensional Teichmiiller spaces, Com-plex Variables Theory Appl.16 (1991), no.4,261-272.
    [75]Z. Li, A problem on the convexity of the Teichmuller metric, Sci. China Ser. A 36 (1993), no.10,1178-1185.
    [76]Z. Li, Non-convexity of spheres in infinite-dimensional Teichmuller spaces, Sci. China Ser. A 37 (1994), no.8,924-932.
    [77]Z. Li, A note on geodesies in infinite-dimensional Teichmiiller spaces, Ann. Acad. Sci. Fenn. Ser. A I Math.20 (1995), no.2,301-313.
    [78]Z. Li, Closed geodesies and non-differentiability of the metric in infinite-dimensional Teichmiiller spaces, Proc. Amer. Math. Soc.124 (1996), no.5,1459-1465.
    [79]Z. Li, Strebel differentials and Hamilton sequences, Sci. China Ser. A 44 (2001), no. 8,969-979.
    [80]Z. Li, Geodesic discs in Teichmiiller space, Sci. China Ser. A 48 (2005), no.8,1075-1082.
    [81]Z. Li, A note on extremal quasi-conformal mappings, Sci. China Math.53 (2010), no. 1,63-70.
    [82]Z. Li and Y. Qi, A note on point shift differentials, Sci. China Ser. A 42 (1999), no. 5,449-455.
    [83]Z. Li, S. Wu and Y. Qi, A class of quasisymmetric mappings with substantial points, Chinese Sci. Bull.45 (2000), no.4,313-316.
    [84]Z. Li, S. Wu and Y. Qi, An extremal problem of quasiconformal mappings, Proc. Amer. Math. Soc.132 (2004), no.11,3283-3288.
    [85]X. Liu The inner radius of univalency of two exterior domains, Journal of Changshu Institute Technology (Natural Science),23(2009), no. (4),19-21.
    [86]A. Marden and K. Strebel, A characterization of Teichmuller differentials, J. Differ-ential Geom.37 (1993), no.1,1-29.
    [87]V. Markovic and M. Mateljevic, The unique extremal QC mapping and uniqueness of Hahn-Banach extensions, Mat. Vesnik 48 (1996), no.3-4,107-112.
    [88]H. Miyachi, On invariant distances on asymptotic Teichmuller spaces, Proc. Amer. Math. Soc.134 (2006),1917-1925.
    [89]H. Miyachi, The inner and outer radii of asymptotic Teichmuller spaces, Complex Var. Elliptic Equ.53 (2008),139-158.
    [90]H. Miyachi, Image of asymptotic Bers map, J. Math. Soc. Japan 60 (2008),1255 1276.
    [91]Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55(1949),545-551.
    [92]C. Pommerenke, Univalent functions[M], Vendenhoeck and Ruprecht,1975.
    [93]Y. Qi and S. Wu, Non-Strebel points and variability sets, Sci. China Ser. A 46 (2003), no.4,525-529.
    [94]Y. Qi and S. Wu, Hamilton sequences and point shift differentials, Proceedings of the Second ISAAC Congress, Vol.2 (Fukuoka,1999),909-918, Int. Soc. Anal. Appl. Comput.,8, Kluwer Acad. Publ., Dordrecht,2000.
    [95]E. Reich, On the relation between local and global properties of boundary values for extremal quasi-conformal mappings, In:Discontinuous groups and Riemann surfaces, Ann. of Math. Studies 79, New York:Princeton Univ. Press,1974,391-407.
    [96]E. Reich, On extremality and unique extremality of affine mappings, In:Topics in analysis, Lecture Notes in Math.419, Berlin:Springer,1974,294-304
    [97]E. Reich, On the uniqueness problem for extremal quasiconformal mappings with prescribed boundary values, In:Complex analysis Joensuu, Lecture Notes in Math. 747, Berlin:Springer,1979,314-320.
    [98]E. Reich, On criteria for unique extremality of Teichmuller mappings, Ann. Acad. Sci. Fenn. Ser. A I Math.6 (1981), no.2,289-301 (1982).
    [99]E. Reich, A criterion for unique extremality of Teichmuller mappings, Indiana Univ. Math. J.30 (1981), no.3,441-447.
    [100]E. Reich, Nonuniqueness of Teichmuller extremal mappings, Proc. Amer. Math. Soc. 88 (1983), no.3,513-516.
    [101]E. Reich, On the structure of the family of extremal quasiconformal mappings of parabolic regions, Complex Variables Theory Appl.5 (1986), no.2-4,289-300.
    [102]E. Reich, Construction of Hamilton sequences for certain Teichmuller mappings, Proc. Amer. Math. Soc.103 (1988), no.3,789-796.
    [103]E. Reich, Extremal extensions from the circle to the disk, In:Quasiconformal map-pings and analysis, New York:Springer,1997,321-335.
    [104]E. Reich, The unique extremality counterexample, J. Anal. Math.75 (1998),339-347.
    [105]E. Reich, Extremal quasiconformal mappings of the disk, Handbook of complex anal-ysis:geometric function theory, Vol.1,75-136, North-Holland, Amsterdam,2002.
    [106]E. Reich and K. Strebel, On quasiconformal mappings which keep the boundary points fixed, Trans. Amer. Math. Soc.138(1969),211-222.
    [107]E. Reich and K. Strebel, On the extremality of certain Teichmuller mappings, Com-ment. Math. Helv.45(1970),353-362.
    [108]E. Reich and K. Strebel, Extremal quasiconformal mappings with given boundary values, In:Contributions to analysis, New York:Academic Press,1974,375-391.
    [109]H. L. Royden, Automorphisms and isometries of Teichmuller space, In:Advances in the Theory of Riemann Surfaces, Ann. of Math. Studies 66. New York:Princeton Univ. Press,1971,369-383,
    [110]W. Rudin, Real and complex analysis[M], New York:McGraw-Hill,1987.
    [111]V. G. Seretov, Locally extremal quasiconformal mappings, Soviet Math. Dokl,21 (1980),343-345.
    [112]Y. Shen, Generalized Fourier coefficients of a quasisymmetric homeomorphisms and the Fredholm eigenvalue, J. Anal. Math.112 (2010),33-48.
    [113]Y. Shen, Fredholm eigenvalue for a quasi-circle and Grunsky functionals, Ann. Acad. Sci. Fenn. Math.35 (2010), no.2,581-593.
    [114]Y. Shen, The asymptotic Teichmuller space and the asymptotic Grunsky map, Proc. Roy. Soc. Edinburgh Sect. A 140 (2010), no.3,651-672.
    [115]Y. Shen, Faber polynomials with applications to univalent functions with quasicon-formal extensions, Sci. China Ser. A 52 (2009), no.10,2121-2131.
    [116]Y. Shen, On Grunsky operator, Sci. China Ser. A 50 (2007), no.12,1805-1817.
    [117]Y. Shen, Counterexamples concerning quasiconformal extensions of strongly starlike functions, Acta Math. Sin. (Engl. Ser.) 23 (2007), no.10,1859-1868.
    [118]Y. Shen, On the unique extremality of quasiconformal mappings with dilatation bounds, Tohoku Math. J. (2) 56 (2004), no.1,105-123.
    [119]Y. Shen, On Teichmuller geometry, Complex Variables Theory Appl.44 (2001), no. 1,73-83.
    [120]Y. Shen, A note on Hamilton sequences for extremal Beltrami coefficients, Proc. Amer. Math. Soc.129 (2001), no.1,105-109.
    [121]Y. Shen, A counterexample theorem in quasiconformal mapping theory, Sci. China Ser. A 43 (2000), no.9,929-936.
    [122]Y. Shen, On the extremality of quasiconformal mappings and quasiconformal defor-mations, Proc. Amer. Math. Soc.128 (2000), no.1,135-139.
    [123]Y. Shen, On unique extremality, Complex Variables Theory Appl.40 (1999), no.2, 149-162.
    [124]Y. Shen, On the geometry of infinite-dimensional Teichmuller spaces, Acta Math. Sinica (N.S.) 13 (1997), no.3,413-420.
    [125]Y. Shen, Some remarks on the geodesies in infinite-dimensional Teichmuller spaces, Acta Math. Sinica (N.S.) 13 (1997), no.4,497-502.
    [126]Y. Shen, Extremal quasiconformal mappings compatible with Fuchsian groups, Acta Math. Sinica (N.S.) 12 (1996), no.3,285-291.
    [127]Y. Shen, On the weak uniform convexity of Q(R), Proc. Amer. Math. Soc.124 (1996), no.6,1879-1882.
    [128]Y. Shen, Nonuniqueness of geodesies in the universal Teichmiiller space, Adv. in Math(China).24 (1995), no.3,237-243.
    [129]Y. Shen and J. Chen, Quasiconformal mappings with non-decreasable dilatations, Chinese Ann. Math. Ser. A 23 (2002), no.4,459-466.
    [130]K. Strebel, On the dilatation of extremal quasiconformal mappings of polygons, Com-ment. Math. Helv.74 (1999), no.1,143-149.
    [131]K. Strebel, Point shift differentials and extremal quasiconformal mappings, Ann. Acad. Sci. Fenn. Math.23 (1998), no.2,475-494.
    [132]K. Strebel, On certain extremal quasiconformal mappings of parabolic regions, Mitt. Math. Sem. Giessen 228 (1996),39-50.
    [133]K. Strebel, On the extremality and unique extremality of certain Teichmuller map-pings, In:Complex analysis, Basel:Birkhauser,1988,225-238.
    [134]K. Strebel, On the extremality and unique extremality of quasiconformal mappings of a parallel strip, Rev. Roumaine Math. Pures Appl.32 (1987), no.10,923-928.
    [135]K. Strebel, Is there always a unique extremal Teichmiiller mapping?, Proc. Amer. Math. Soc.90 (1984), no.2,240-242.
    [136]K. Strebel, On lifts of extremal quasiconformal mappings, J. Analyse Math.31 (1977),191-203.
    [137]K. Strebel, On the existence of extremal Teichmuller mappings, J. Analyse Math.30 (1976),464-480.
    [138]K. Strebel, Zur Frage der Eindeutigkeit extremaler quasikonformer Abbildungen des Einheitskreises, Comment. Math. Helv.36(1961/1962),306-323.
    [139]K. Strebel, An approximations of quasiconformal mappings, Complex Var.3(1984) 223-240.
    [140]T. Sugawa, Inner radius of univalence for a strongly starlike domain, Monatsh Math, 2003,61-65.
    [141]T. Sugawa, A remark on the Ahlfors-Lehto univalence criterion, Ann. Acad. Sci. Fenn. Math.,27(2002),151-161.
    [142]H. Tanigawa, Holomorphic families of geodesic discs in infinite-dimensional Te-ichmuller spaces, Nagoya Math. J.127 (1992),117-128.
    [143]J. Vaisala, Lectures on n-dimensional quasiconformal mappings[M], Lecture Notes in Mathematics 229. Berlin-New York:Springer-Verlag,1971.
    [144]Z. Wang, The distance between different components of the universal Teichmuller space, Chin. Ann. Math.26(2005),537-542.
    [145]H. Wei,关于万有Teichmuller空间T1的分支,数学年刊25(2004),425-428.
    [146]S. Wu, On the Teichmuller theorem and the heights theorem for quadratic differen-tials, Proc. Amer. Math. Soc.129 (2001), no.3,765-770.
    [147]S. Wu, Hamilton sequences for extremal quasiconformal mappings in the unit disk, Sci. China Ser. A 42 (1999), no.10,1032-1038.
    [148]S. Wu, Moduli of quadrilaterals and extremal quasiconformal extensions of quasisym-metric functions, Comment. Math. Helv.72 (1997), no.4,593-604.
    [149]G. Yao, Existence of extremal Beltrami coefficents with non-constant modulus, Nagoya Math. J.199 (2010),1-14.
    [150]G. Yao, Some characterizations of unique extremality, J. Math. Anal. Appl.343 (2008), no.1,31-39.
    [151]G. Yao, Unique extremality, local extremality and extremal non-decreasable dilata-tion, Bull. Aust. Math. Soc.75(2007),321-329.
    [152]G. Yao, Harmonic maps and asymptotic Teichmuller space. Manuscripta Math,122 (2007), no.4,375-389.
    [153]G. Yao, On Hamilton sequences of extremal Teichmuller mappings, Beijing Daxue Xuebao Ziran Kexue Ban 41 (2005), no.5,663-666.
    [154]G. Yao, Is there always an extremal Teichmuller mapping, J. Anal. Math.94 (2004), 363-375
    [155]G. Yao, A proof of Sethares' conjecture, Sci. China Ser. A 47 (2004), no.2,236-244.
    [156]G. Yao, On criteria for extremality of Teichmuller mappings, Proc. Amer. Math. Soc.132 (2004), no.9,2647-2654.
    [157]G. Yao, Hamilton sequences and extremality for certain Teichmuller mappings, Ann. Acad. Sci. Fenn. Math.29 (2004), no.1,185-194.
    [158]G. Yao and Y. Qi, On the modulus of extremal Beltrami coefficients, J. Math. Kyoto Univ.46 (2006),235-247.
    [159]Z. Zhou, On extremal quasiconformal mappings of landslide type, Chinese J. Con-temp. Math.,32 (2011), no.3,279-284.
    [160]Z. Zhou, J. Chen and Z. Yang, On the extremal sets of extremal quasiconformal mappings, Sci. China Ser. A 46 (2003), no.4,552-561.
    [161]Z. Zhou and J. Chen, Quasiconformal mappings with non-decreasable Beltrami co-efficients, Acta Math. Sinica (Chin. Ser.) 46 (2003), no.2,379-384.
    [162]H. Zhu and J. Chen, On characterizations of unique extremality, J. Math. Anal. Appl.273 (2002), no.2,283-293.
    [163]I. V. Zhuravelv, Model of the universal Teichmuller space, Siberian Mathematical Journal 27(1986),691-697.