拉深孔成形技术的理论与实验初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
板料的拉深成形是生产汽车车身覆盖件最基本、最常用的冲压成形工序。当前,为了应对日益严重的能源危机和环境污染,汽车车身的轻量化势在必行。铝合金、铝镁合金薄板及双相薄钢板等新型材料的比重比普通钢板低很多,能满足汽车车身轻量化的要求,是普通钢板的理想替代品,但是这些新型材料在室温下的成形性能不及普通钢板,不适用于现有的成熟、高效的薄板成形技术。因此,研发出能在室温条件下大幅提高板料拉深成形性能的新技术是非常必要的。
     本文的目的就在于研发出一种实用、高效的薄板成形新技术,该技术不仅要能在室温条件下显著地提高板料的拉深成形性能,而且要能方便地应用于实际生产之中。
     为了理清研发思路,本文归纳与整合了现有的冲压成形研发方法,并以此为基础,有针对性地提出了适用于本次研发的新方法,该方法明确了新技术的研发流程,全文的结构和内容都是据此编排和组织的。
     本文首先用上限法对覆盖件拉深过程的力学特征做了分析,发现在形状为非回转面的覆盖件拉深过程中,板料法兰面上的流动阻力分布极为不均匀,尤其是在圆角区域与直边区域之间的过渡区域上流动阻力的值为极大,即流动阻力最大或明显大于相邻区域。因此,提高板料拉深成形性能的关键就是要降低过渡区域上的流动阻力。为此目标,本文提出了一项能显著地降低过渡区域上流动阻力的新技术-拉深孔成形技术。
     为了验证基于拉深孔成形技术的新工艺是否合理,本文总结了前人采用有限元的方法对三个典型制件(圆筒件、长方盒形件和复杂油底壳)的成形过程进行模拟的结果,发现新工艺相比于常规工艺能大幅提高板料的成形性能。
     虽然有限元数值模拟是当前最为精确的理论分析方法,其结果有很强的参考价值,但由于它受到理论假设和软件功能的限制,其分析结果与实际情况必然存在差异,所以工艺实验仍然是最基本、最可靠的研究方法。本着先易后难的原则,本文首先对相同实验条件下分别采用新工艺和常规工艺拉深成形的圆筒件进行了对比,结果表明:新工艺的拉深效能比常规工艺高50%左右,并且在实验中拉深孔成形技术也表现出了能方便地应用于实际生产的能力。实验研究的结果初步验证了拉深孔成形技术是可行和有效的。
Drawing of sheet metal is one of the most popular stamping processes. It is widely used to manufacture panel parts of car body. Nowadays, we must try hard to cut down the weight of automobile in order to decrease emission of contamination and relieve consume of energy. Sheet metals of some new type of materials, such as Al-alloy, Al-Mg-alloy and two-phase steel etc., meet the requirement of decreasing the weight of car body because they are much lighter than ordinary steel sheets. So these sheet metals are ideal substitutes for ordinary steel sheets. However, under room temperature, these sheet metals cannot be formed easily comparing with ordinary steel sheets. So that it is necessary to research and develop new process methods to improve the formability of sheet metal in drawing process remarkably.
     In this thesis, a new process method for drawing sheet metal is put forward, which could not only effectively improve the formability of sheet metal in drawing process but also be applied in practicality.
     Firstly, current investigative methods for stamping process are summed up in this thesis. Then a new investigative method, which is applicable to study deep drawing process of sheet metal, is put forward to instruct us how to research and develop a new process method to improve the formability of sheet metal in drawing process effectively.
     Secondly, according to the new investigative method, mechanics characteristic of deep drawing process for panel parts is analyzed with upper-bound method. It is concluded that the formability of sheet metal in deep drawing can be remarkably improved by decreasing the flow resistance in the transition region between the circular angle area and the straight side area. Consequently the Drawing-Hole Forming Technology is put forward and used to decrease the flow resistance in the transition region.
     In order to verify the feasibility and efficiency of the new process method, FEM (finite element method) simulation and experiment are employed to analyze the drawing process with drawing holes for three of representative work pieces. By contrasting the forming results between new and conventional process, a primary conclusion is drawn that Drawing-Hole Forming Technology is an applicable and effective method to greatly improve the formability of sheet metal in deep drawing.
引文
[1] 卢险峰. 冲压工艺模具学. 第一版. 北京: 机械工业出版社, 1998. 1-10
    [2] 邬移华. 圆筒件拉深的力学分析及极限拉深系数的优化: [硕士学位论文]。湖南: 湘潭大学, 2001
    [3] 肖祥芷, 王孝培. 中国模具设计大典第三卷, 冲压模具设计. 第一版. 南昌: 江西科学技术出版社, 2003. 223~224, 289~292
    [4] 徐劲琳. 板料一次拉深极限高度预测方法的研究: [硕士学位论文]。杭州: 浙江大学, 2004
    [5] 《冲压工艺及冲模设计》编委会. 冲压工艺及冲模设计. 第一版. 北京: 国防工业出版社, 1993. 83~102
    [6] 吴伯杰. 冲压工艺与模具. 第一版. 北京: 电子工业出版社, 2004. 150~156
    [7] 李硕本. 冲压工艺理论与新技术. 第一版. 北京: 机械工业出版社, 2002. 81~82
    [8] 姜奎华. 冲压工艺与模具设计. 第一版. 北京: 机械工业出版社, 1997. 120~128
    [9] 肖景容, 周士能, 肖祥芷. 板料冲压. 第一版. 武汉: 华中工学院出版社, 1986. 90~100
    [10] Paul Grigho. 对汽车冲压技术发展趋势的考察报告. 锻压机械, 1991(4): 43~47
    [11] Ken-ichi Matsuno. Recent research development in metal forming in Japan. Materials Processing Technology, 1997(66): 1~3
    [12] 徐景昌, 杨光, 刘玉文. 汽车车身冲压技术的现状及发展趋势. 汽车工程, 1994, (16)1: 58~63
    [13] 常素萍, 李赞. 带凸缘高圆筒件一次拉深成形新工艺的数值分析. 机械科学与技术, 2005, 1: 19~21
    [14] 金淼. 板料成形中拉深筋的力学性能及影响因素研究: [博士学位论文]。北京: 燕山大学, 2000
    [15] 李 赞, 董湘怀, 李志刚. 优化板料成形状态的新技术. 中国机械工程, 2002(23): 2007~2010
    [16] 邢忠文. 薄板冲压成形中拉深筋载荷特性的研究: [博士学位论文]。哈尔滨: 哈尔滨工业大学, 1995
    [17] S. G. Xu, M. L. Bohn, K. J. Weinmann. Drawbeads in Sheet Metal Stamping-A Review. SAE TECHNICAL PAPER SERIES 970986, 1997
    [18] H. D. Nine. Mechanics of Sheet Metal Forming. Plenum Press. New York, 1978: 179~211
    [19] Harmon D. Nine. The Applicability of Coulomb's Friction Law to Drawbeads in Sheet Metal Forming. Journal of Applied Metal Working, 1982, 2(3): 200~210
    [20] Harmon D. Nine. New Drawbead Concepts for Sheet Metal Forming. Journal of Applied Metal Working, 1982, 2(3): 185~192
    [21] C. Weidemann. The Blankholding Action of Drawbeads. Sheet Metal Industries, 1978(9): 984~989
    [22] M. Y. Demeri. Drawbeads in Sheet Metal Forming Journal of Materials Engineering and Performance, 1993, 2(6): 863~866
    [23] 邢忠文, 扬玉英, 郭刚. 薄板冲压成形中的拉伸筋阻力及其影响因素研究. 模具工业, 1994(4): 30~33
    [24] N. M. Wang, V. C. Shah. Drawbead Design and performance. J. Mater. shaping Technology, 1991(9): 21~22
    [25] 李东升, 胡世光, 黄小明. 拉延成形中拉延筋的摩擦分析金属成形工艺. 1994, 12(3): 119~122
    [26] 王志恒, 张晶, 段瑞刚, 李丹. 影响拉深筋结构及应用的因素分析. 锻压技术, 1997(2): 20~23
    [27] Kim Changman. Finite-element analysis and experimental verification for drawbead drawing processes. Journal of Materials Processing Technology, 1997, 72(2): 188~194
    [28] Neng Ming Wang. A Mathematical Model of Drawbead Forces in Sheet Metal Forming. Journal of Applied Metal Working, 1982, 2(3): 193~199
    [29] L. R. Sanchez, K. J. Weinmann. An Analytical and Experimental Study of the Flow of Sheet Metal between Circular Drawbeads. Journal of Engineering for Industry, 1996(118): 45~54
    [30] 李尚键, 李赞, 唐薇. 压料筋阻力的计算. 金属成形工艺, 1993, 11(4): 257~261
    [31] 邱宣怀. 机械设计. 第三版. 北京: 高等教育出版社, 1989. 150-152
    [32] 吴建平, 钟晓光, 李尚键. 板材成形过程中直拉深筋作用的数值模拟. 华中理工大学学报, 1991, 19(3): 67-71
    [33] 邢忠文, 徐宏志, 杨玉英. 拉深筋阻力的数值模拟. 第六届全国锻压年会论文集, 1995: 316~319
    [34] T. H. Choi, H. flub. Draw-bead Simulation by an Elastic-plastic Finite Element Method with Directional Reduced Integration. Journal of Materials Processing Technology, 1997(63): 666~671
    [35] Y. You. Calculation of drawbead restraining forces with the Bauschinger effect. Proc. Instn. Mech. Engrs, 1998, 212(B): 549~553
    [36] Fuh-Kuo Chen, Pao-Ching Tszeng. An analysis of drawbead restraining force in the stamping process. International Journal of Machine’ Tools & Manufacture, 1998(38): 827~842
    [37] P. Chabrand, F. Dubois, J. C. Gelin. Modeling Drawbeads in Sheets Metal Forming. Int. J. Mech. Sci., 1996, 38(1): 59~77
    [38] Fuh-Kuo Chen, Jia-Hong Liu. Analysis of an Equivalent Drawbead Model for the Finite Element Simulation of a Stamping Process. Int. J. Mach. Tools Manufact., 1997, 37(4): 234~244
    [39] T. Meinders. Implementation of an equivalent drawbead model in a finite-element code for sheet metal forming. Journal of Materials Processing Technology, 1998(83): 234~244
    [40] J. M. Yellup, M. J. Painter. Prediction of Strip Shape and Restraining Force for Shallow Drawbead Systems. Journal of Applied Metalworking, 1985(4): 30~38
    [41] B. Maker. Analysis of Drawbeads in Sheet Metal Forming PART II Experiment Verification. Journal of Engineering Materials and Technology. Transactions of the ASME, 1987(109): 164~170
    [42] D. W. Jung, I. S. Song, D. Y. Yang. An improved method for the application of blank-holding force considering the sheet thickness in the deep drawing simulation of planar anisotropic sheet. Journal of Materials Processing Technology, 1995(52):472~488
    [43] Chen Fuh-Kuo. Analysis of drawbead restraining force in the stamping process. International Journal of Machine Tools&Manufacture, 1998, 38(7): 827~842
    [44] 王孝培. 冲压设计资料. 第一版. 北京: 机械工业出版社,1983. 184~187, 236~238, 254~255
    [45] 姜奎华. 冲压工艺与模具设计. 第一版. 北京: 机械工业出版社, 1997. 188~189
    [46] Ohata T, Nakamachi E. Development of Optimum Process Design by Numerical Simulation. Journal of Material Processing Technology, 1996, 60: 543~578
    [47] 王东哲. 板料拉深成形变压边力理论和实验研究: [博士学位论文]。上海: 上海交通大学, 2001
    [48] 罗亚军. 板材拉深成形变压边力理论和数值模拟: [博士学位论文]。上海: 上海交通大学, 2003
    [49] 徐戊桥. 薄板拉延时的压边力变化规律及压边力控制研究: [硕士学位论文]。重庆: 重庆大学, 2000
    [50] 米昱. 薄板深拉深时压边力的变化规律及其最优控制的研究: [硕士学位论文]。重庆: 重庆大学, 2001
    [51] 杨涛. 薄板深拉成型的压边力优化: [硕士学位论文]。重庆: 重庆大学, 2001
    [52] 潘文武. 圆锥形件拉深成形智能化控制中合理压边力规律的研究: [硕士学位论文]。北京: 燕山大学, 2002
    [53] 郭秀梅. 圆锥形件拉深成形合理压边力规律的研究: [硕士学位论文]。吉林: 吉林大学, 2003
    [54] 谢伟东. 不锈钢筒形件拉深成形中变压边力影响的数值模拟与试验研究: [硕士学位论文]。广州: 华南理工大学, 2003
    [55] 张悦. 基于极限拉深原理的液压拉深机控制系统研究: [硕士学位论文]。武汉: 华中科技大学, 2002
    [56] 张慧. 基于极限拉深原理的高速智能液压拉深机控制系统的研究: [硕士学位论文]。武汉: 武汉科技大学, 2002
    [57] 孙成智, 罗思东, 王东川, 杜汉斌, 陈关龙. 变压边力对铝合金板冲压成形的影响研究. 塑性工程学报, 2005, (3): 41~45
    [58] W. Thomas, G. Johnson, T. Altan. Improving the Formability of Aluminum Alloy 3003-H14 with Computer Simulation, Advanced Technology of Plasticity, Vol. III,, Proceedings of the 6th ICTP, P: 2131~2136
    [59] Ahmeoglu M A, Altan T, Kinzel G L. Improvement of Part Quality in Stamping by Controlling Blank Holder Force and Pressure. Journal of Materials Processing Technology, 1992, 33: 195~214
    [60] 谭晶, 孙胜, 赵振铎. 多点位控制压边力数值模拟研究. 塑性工程学报, 2002, 9(2): 49~51
    [61] 谢汐. 变压边力冲压机压边力测试系统研究: [硕士学位论文]。上海: 上海交通大学, 2003
    [62] 孙成智. 基于变压边力的薄板冲压成形理论与实验研究: [博士学位论文]。上海: 上海交通大学, 2004
    [63] 杜勇. 带多点调压液压垫单动拉深压边机控制系统的研究: [硕士学位论文]。上海: 上海交通大学, 2003
    [64] 李 赞, 董湘怀, 李建军. 覆盖件拉伸过程中的力学特征分析. 机械工程学报, 2005, 4: 114~118
    [65] 李 赞, 董湘怀, 李志刚. 板料成形中的质点变形不同步效应. 华中科技大学学报, 2003, 6: 13~15
    [66] 李 赞, 董湘怀, 李志刚. 复杂油底壳一次拉深成形新工艺的数值模拟. 中国机械工程, 2004, 15(5): 458~461