孝顺竹遗传多样性、再生体系构建及杂交育种研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为探索竹类植物的遗传改良技术,选择丛生竹中分布较广、适应性较强的孝顺竹(Bambusa multiplex)为材料,开展了地理居群表型性状变异的调查分析,基于AFLP标记的遗传多样性分析,开花生物学特性研究和杂交试验,以及不同外植体类型的愈伤组织再生技术研究。主要获得以下研究结果:
     1.对孝顺竹自然分布区内5个天然地理居群开展胸径、地径、全长等19个表型性状调查和统计分析,发现居群间和居群内存在丰富的表型变异。19个表型性状在5个居群间的差异均达极显著或显著差异,泸州居群有14个表型性状的均值具5个居群之首,而仁化居群有11个性状的表型均值具5个居群之末。相关分析表明,胸径、地径、胸径/地径等14个表型性状间相关性均达到极显著或显著水平;仅秆节数、秆节数/全节数、叶长、叶宽、叶长/宽等5个性状与其它性状间的相关性较弱。表型性状与地理生态因子间的相关系数显示,秆重/全重与纬度、叶长/宽与海拔呈显著性正相关,叶长与经度、叶长/宽与经度、秆节数/全节数与纬度等分别呈显著性负相关。表型性状主成分分析的结果可获得3个主成分,累计贡献率达97.435%。第一主成分以胸径、地径、全长等8个性状的权重较大;第二主成分以叶长/宽的作用最大;第三主成分以秆节数、秆节数/全节数权重较大。将主成分分析的结果代入群体平均值开展系统聚类,可以从表型上将5个居群划分为3类,即温岭居群首先与长汀居群聚为一类,龙山居群与仁化居群聚为一类,泸州居群单独一类。2.从56对AFLP引物中筛选出10对较好的引物用于5个孝顺竹居群150个样品的PCR扩增,统计分析结果表明:10对引物在5个居群中共检测到939个位点,多态性位点比率71.99%。5个孝顺竹居群内检测到的多态位点数A在106-464之间,平均为255.8个;多态位点百分率P在11.29%-49.41%之间,平均为27.24%;观测等位基因数na在1.1129-1.4941之间;有效等位基因数ne在1.0713-1.3147之间;Nei’s基因多样性指数h在0.0406-0.1794之间;Shannon信息指数I在0.0601-0.2656之间;多态位点数A、多态位点百分率P、等位基因数na、有效等位基因数n、Nei’s基因多样性指数h、Shannon信息指数I的等指标在5个居群间的排序均表现为长汀>仁化>温岭>泸州>龙山,表明长汀居群存在丰富的遗传变异,而龙山居群的遗传多样性相对较低。孝顺竹物种水平遗传分化系数Gst=0.4393,即孝顺竹群体间的遗传变异占总变异的43.93%,群体内的遗传变异占总变异的56.07%;居群间基因流Nm =0.6383。5个孝顺竹居群间的遗传一致度在0.8165-0.9675之间,遗传距离在0.0330-0.2027之间,利用遗传距离采用UPGMA法对5个孝顺竹地理居群进行聚类的结果显示,泸州居群内和龙山居群最先聚在一起,然后与温岭居群相聚,长汀居群最后聚在一起。
     3.孝顺竹开花生物学和杂交试验表明,孝顺竹常于4月份形成花序,小花在早晨至上午开放,下午14:00-15:00陆续闭合;花丝伸长生长结束时花粉生活力最高,萌发率可达50%以上;稃片完全张开时柱头可授性较强,上午9:00-12:00柱头可授性较好。孝顺竹种内自交授粉、及其与麻竹的杂交试验表明,孝顺竹自交种实与杂交种实未表现出明显区别,均为长椭圆形,有不甚明显的腹沟,具喙,成熟时黄褐色。成熟的孝顺竹种子纯净种子长0.82-1.10 cm,宽0.26-0.28 cm,百粒鲜重3.32 g。孝顺竹×麻竹杂交苗在四个月龄时即表现出与母本自交苗明显的差异,叶片明显大于后者,此时表型杂种的叶长、叶宽、叶长/宽、地径、发笋数、叶脉数、叶片形状、叶鞘高度、叶鞘繸毛、叶耳、叶舌等性状均介于母本和父本自交个体之间。对表型杂种开展AFLP分子标记鉴定,10株表型杂种中父本特异位点占21.97%-28.10%,非亲本位点占1.88%-4.05%,表明杂种引入了父本的遗传基础且进行了遗传重组。杂种秆箨在15个月龄时表现出刺毛性状的分离,一种为父本的多刺毛表型,一种为母本的光滑秆箨。孝顺竹开花生物学的研究和种间杂种的获得为实现丛生竹重要性状的遗传学分析和新品种选育奠定了基础。
     4.利用孝顺竹小穗和种胚外植体诱导出胚性愈伤组织并实现植株再生。适宜愈伤组织诱导的培养基组成为NB+500 mg·L-1脯氨酸+500 mg·L-1谷氨酰胺+300 mg·L-1水解酪蛋白+30 g·L-1蔗糖+8 g·L-1卡拉胶+4 mg·L-1 2,4-D的培养基上,小穗和种胚愈伤组织诱导率分别可达87.30%、76.27%。对愈伤组织增殖的培养基进行了优化,较好的培养基组成为KNO3475 mg.L-1+ NH4NO3 825 mg.L-1+ MgSO4·7H2O 185 mg.L-1 + KH2PO4340 mg.L-1 + CaCl2·7H2O 440 mg.L-1+MS basal micronutrients + MS Iron + MS vitamins +1.0 mg.L-1 proline+30 g.L-1 maltose+8 g.L-1carrageenan+4 mg.L-1 2,4-D,部分愈伤组织可耐10.0 g.L-1 NaCl胁迫,75 mg.L-1的潮霉素可用于愈伤组织的抗性筛选。悬浮培养时,接种细胞密度以4.0%为宜,转速设120 r/min较好,2,4-D浓度4~6 mg·L-1,7-10d为转接周期较佳。植株分化过程经历预分化转绿和发芽两个阶段,经MS+30 g·L-1蔗糖+10 g·L-1卡拉胶+4 mg·L-1 KT培养基预分化7 d后,转入无激素的MS培养基上分化14 d,小穗愈伤组织仅个别长出绿色芽头;但种胚愈伤组织芽分化率可达80.0%。分化芽中有8%左右的白化苗,并伴有花叶苗出现。优化后的种胚愈伤组织预分化最佳培养基是MS+3 mg·L-1 6-BA+3 mg·L-1 KT。孝顺竹再生植株生根较容易,分化芽苗在添加2 mg·L-1 NAA的MS培养基上生根良好,移栽成活率可达70%以上。孝顺竹高效愈伤组织再生体系的构建为实现基于农杆菌介导的遗传转化提供了条件。
Bambusa multiplex (Gramineae, Bambusoideae), a sympodial bamboo species with pachymorph rhizome was chosen as material for genetic improvement research, considering its wide distribution and strong stress-resistance. In this study, phenotypic traits of five wild populations of B. multiplex in China were investigated and analyzed, genetic diversity was measured by AFLP markers, flowering habit and crossing test were conducted, and callus induction and plantlet regeneration of different explant types was experimented, the results are as follows:
     1. Phenotypic variation of B. multiplex were conducted by using five geographical populations of Wen Ling, Long Shan, Lu Zhou, Ren Hua and Chang Ting, China, 20 culms of each were cut down for samples. Total 19 phenotypic traits were measured and analyzed, including diameter of breast height (dbh), diameter of culm base (dcb), dbh/dcb, culm length (cl), full length (fl), cl/fl, culm fresh weight (cfw), full fresh weight (ffw), cfw/ffw, number of culm internode (nci), mumber of full internode (nfi), nci/nfi, maximum internode length (mil), number of internodes under branching (nib), height under branching (hb), angle of branching (ab), leaf length (ll), leaf width (lw) and ratio of ll/lw. The results showed that abundant variation existed within and among populations, 14 traits of Lu Zhou population toped the five and 11 traits of Ren Hua population bottomed. 7, 5, 4, 2 and 1 traits in Long Shan, Chang Ting, Ren Hua, Lu Zhou and Wen Ling had the largest variance coefficient, respectively. Correlation analysis demonstrated that difference at 1% to 5% significant level existed between 14 phenotypic traits including dbh, dcb, etc. While five phenotypic traits of number of nci, ratio of nci/nfci ,ll, lw and ratio of ll/lw. Some traits exhibited correlation to geographical and ecological factors, for example, significant positive correlation of cfw/ffw to latitude, ll/lw to altitude, and negative correlation of ll to longitude, ll/lw to longitude, etc. 3 principal components were obtained after analysis by using 19 phenotypic traits with a cumulative contribution of 97.44%. Index of principal components were introduce into the original values of each population and a cluster analysis was developed, five populations were divided into 3 groups by phenotypic traits, Wen Ling and Chang Ting joined together, Long Shan and Ren Hua joined, Chang Ting was the third group alone.
     2. 10 primer combinations of AFLP were screened out for genetic analysis of the above five populations of B.multiplex, each with 30 samples. Total 939 loci were detected with a polymorphic percentage of 71.99%. In each population, polymorphic loci (A) varied from 106-464 with an average of 255.8; polymorphic percentage (P) changed from 11.29%-49.41% with an average of 27.24%; Observed alleles number (na) was 1.1129-1.4941; Effective alleles number (ne) was 1.0713-1.3147; Nei's gene diversity (h) was 0.0406-0.1794; Shannon's Information index (I) 0.0601-0.2656. All of these index showed a tendency of Chang Ting>Ren Huap> Wen Ling>Lu Zhou>Long Shan in five B.multiplex populations, indicates that a rich variations existed in Chang Ting while a low genetic diversity in Wen Ling. Coefficient of genetic differentiation of B.multiplex (Gst)was 0.4393, which means a 43.93% genetic variation occurred between populations while 56.07% genetic variation in population; gene flow (Nm) among populations was 0.6383. Nei’s genetic identities in five B.multiplex populations were between 0.8165-0.9675, and genetic distances were between 0.0330-0.2027. Five populations showed a molecular phylogeny of Luzhou and Long Shan were clustered together firstly, then Wen Ling joined, and the Chang Ting was the last.
     3. Studies on flowering biology and crossing of B.multiplex showed that it’s inflorescences usually formed in April, spikelets opens in the morning and closes at 14:00-15:00 p.m.. Pollen germinated percentage can be over 50% at the time that the elongation growth finishes of filament. Stigma receptivity is the best when glumes open during 9:00-12:00 a.m.. Seeds from selfing of B.multiplex and B.multiplex×Dendroclamus latiflorus doesn’t show apparent difference, they were long oval, inconspicuous ventral furrow, browning yellow when mature with 0.82-1.10 cm long, wideth0.26-0.28 cm wide ,weight 3.32 g per 100 seeds. Progenies showed significant difference from selfing and crossing at four month’s age, putative hybrid showed a more larger leaf than that of selfed ones. At this age, the leaf length, leaf width, leaf length-width ratio, ground diameter, shoot numbers, leaf vein numbers, leaf shapes, leaf sheath height, leaf sheath hair, ligules, auricle of putative hybrids shows a middle value between the paternal and maternal selfed progenies. AFLP identification of hybrids were conducted, paternal particular loci changed from 21.97%-28.10% in 10 hybrids, and non-parental loci were 1.88%-4.05%, gave a molecular confirmation of true hybridity. Sheath of hybrids shows segregation in cilia at fifteen month’s age, one is the paternal ciliate and the other shows the maternal glabrous. Such a study make a base for elite hybrids selection and genetic analysis of important taxonomic taits of sheath ligule, auricle, blade and spot, etc..
     4. Embryogenic callus was initiated and plant regeneration has been achieved by culturing of spikelets and seed embryo explants of B. multiplex. 87.30% and 76.27% callus were induced 475 mg.L-1+ NH4NO3 825 mg.L-1+ MgSO4·7H2O 185 mg.L-1 + KH2PO4340 mg.L-1 + CaCl2·7H2O 440 mg.L-1+MS basal micronutrients + MS Iron + MS vitamins +1.0 mg.L-1 proline+30 g.L-1 maltose+8 g.L-1carrageenan+4 mg.L-1 2,4-D, callus can proliferate under stress of 0.0 g.L-1NaCl, 75 mg.L-1 Hygromycin was useful in callus resistance selection. A good suspension culture system of callus was an inoculation density of 4.0%, rotation speed was 120 r/min, 2,4-D concentration was 4~6 mg/L, and subculture every 7 days.
     Plantlet regenerated by two stage of pre-differentiation and germination, after a 7 d pre-differentiation on MS supplemented with 30 g·L-1 sucrose, 10 g·L-1 Carrageenan and 4 mg·L-1 kinetin (KT), and a 14 d auxin-free germination culture on MS, only a few spikelet calli germinated; whereas embryo calli regenerated by up to 80.0%; about 8% plantlets were albinal, and mosaic plantlets were occasionally found. Optimal pre-differentiation medium for seeds embryoids was MS supplemented with 3 mg·L-1 6-benzylaminopurine (6-BA) and 3 mg·L-1 KT; plantlets rooted in MS supplemented with 2 mg·L-1 naphthaleneacetic acid (NAA). Rooted plantlets transferred to soil with over 70% success. Such an effective regeneration system of B.multiplex made it possible for genetic transformation mediated by agrobacterium tumefaciens.
引文
贝丽霞.不同培养基对水稻悬浮细胞生长速率的影响.黑龙江农业科学, 1998, (2): 21~22
    陈琰.不同抗叶锈小麦品种悬浮细胞系的建立.河北农业大学硕士学位论文, 2005, 16
    陈存及,邱尔发,梁一池等.毛竹种源地理变异规律及选择的研究.竹子研究汇刊,2001,20(3):20-28
    杜凡,薛嘉榕. 15年来云南竹子的开花现象及其类型研究.林业科学, 2000, 36(6):51~68
    樊龙江,郭兴益,马乃训等.竹类植物与水稻等其它禾本科作物的系统进化关系及基因序列组成的比较. 林业科学研究, 2006, 19(2): 165~170
    方文娟,韩烈保,曾会明.植物细胞,悬浮培养影响因子研究,生物技术通报, 2005, (5): 11~15
    方伟,何祯祥.雷竹不同栽培类型RAPD分子标记的研究.浙江林学院学报. 2001, 18(1): 1~5
    高志民,李雪平,岳永德等.绿竹cab~BO2基因的克隆及其表达载体的构建.分子植物育种, 2007a, 5(3):431~435
    高志民,李雪平,彭镇华等.竹子捕光叶绿素a/b结合蛋白基因全长的克隆和序列分析.林业科学, 2007b,43(3):34~38
    高志民,刘颖丽,李雪平等.一个绿竹MADS—box基因的克隆与序列分析.分子植物育种,2007,5(6):866~870
    葛颂.植物群体遗传结构研究的回顾和展望.北京:高等教育出版社,1997,1~15
    耿伯介.1982a.世界竹亚科各属的考订(之一).竹子研究汇刊,1(1):1—19
    耿伯介.1982b.世界竹亚科各属的考订(之二).竹子研究汇刊,1(2):31—46
    耿伯介.1983a.世界竹亚科各属的考订(之三).竹子研究汇刊,2(1):11—27
    耿伯介.1983b.世界竹亚科各属的考订(之四).竹子研究汇刊,2(2):1—17
    耿伯介.1984a.世界竹亚科各属的考订(之五).竹子研究汇刊,3(1):22—42
    耿伯介.1984b.世界竹亚科各属的考订(之六).竹子研究汇刊,3(2):1—22
    顾小平,苏梦云,岳晋军,等.几种丛生竹愈伤组织诱导与防褐变技术研究.林业科学研究, 2006, 19(1):75~78
    郭晓艺,胡尚连,曹颖等.四川不同地区慈竹和硬头黄遗传多样性的RAPD分析.林业科技,2007,32(5): 19~22
    郝晨阳,董玉琛,王兰芬等.我国普通小麦核心种质的构建及遗传多样性分析.科学通报,2008,53(8): 908 - 915
    胡海英,赵亚美,阎晓磊等.香花槐愈伤组织的诱导与细胞悬浮培养技术,北京林业大学学报, 2007, 29(5): 26~30
    化青报,翟哓巧,段艳芳.木本植物悬浮细胞培养影因素研究,河南林业科技, 2008, 28(2): 13~16
    黄道强,周少川,李宏等.水稻核心种质育种理论应用——优质稻新品种黄莉占的育成及利用.广东农业科学,2009(9):10-11,15.
    江泽慧主编.世界竹藤. 1996,北京:辽宁科学技术出版社
    辉朝茂,杨宇明,杜凡等.云南竹亚科珍稀种质资源及其开花结实研究.世界竹藤通讯,2007,5(2):15~20
    金群英,林二培,彭华正等.早竹TB1同源基因的克隆和表达分析.林业科学,2007,43(8):41~47
    李昂,葛颂.植物保护遗传学研究进展.生物多样性,2002,10(1):61~71
    李潞滨,郭晓军,彭镇华等. AFLP引物组合数量对准确研究竹子系统关系的影响.植物学通报, 2008, 25(4): 449~454
    李明军,李萍,赵喜亭等.怀牛膝细胞悬浮培养及多糖含量变化的研究,西北植物学报, 2008, 28(3): 494~500
    李鹏,杜凡,普晓兰等.巨龙竹种下不同变异类型的RAPD分析.云南植物研究. 2004, 26(3): 290~296.
    李淑娴,尹佟明.用水稻微卫星引物进行竹子分子系统学研究初探.林业科学, 2002, 38(3): 42~48
    李桃. EST-SSR标记在竹类植物系统分类中的研究和应用.浙江大学硕士论文,2008
    李天红.桃遗传资源核心种质的研究.园艺园林科学,2005, 21 (8) : 296 - 298
    李雪平,高志民,彭镇华等.绿竹咖啡酸~0~甲基转移酶基因(COMT)的克隆及相关分析.林业科学研究,2007,20(5):722~725.
    李勇,邢辉,张金芳等.桑树悬浮细胞生长规律及其生理特性的研究,蚕业科学,2007,33(1):91~94
    李正才,傅懋毅,姜景民等.毛竹天然林表型特征的地理变异研究.林业科学研究,2002,15(6):654-659
    梁群健.1996.绿竹、麻竹和蓬莱竹的组织培养.国立台湾大学硕士论文
    林树燕,丁雨龙.刚竹属3个竹种的开花生物学特性.林业科技开发,2007,21(5):52~55
    林树燕,丁雨龙张昊.5种竹子花粉萌发率及开花特性.林业科学,2008,44(10):159~163,177
    刘春朝,王玉春,郑重等.剪切力对植物细胞悬浮培养的影响,化工冶金, 1998, 19(4): 379~384)
    刘颖丽,高志民,彭镇华.毛竹cab~PhE11基因的克隆与序列分析.河北农业大学学报,2008(5)
    刘振盼.分子生物学技术在林木遗传育种研究中的应用.农业科技与装备,2009(5):23~25.
    楼崇.江苏竹子园林. 2007,北京:科学技术文献出版社:107
    卢江杰,吉永胜彦,方伟等.3种竹类植物杂种的分子鉴定.林业科学,2009,45(3):29~34
    卢江杰,郑蓉,杨萍等.利用AFLP技术研究不同产地绿竹的遗传多样性.世界竹藤通讯. 2008.
    骆建霞,孙建设主编.园艺植物科学研究导论.北京:中国农业出版社. 2001
    罗天宽,张小玲,张宪银,等. NH4+/NO3-对珍汕胚的愈伤组织诱导和分化的影响.云南农业大学学报, 2004, 19(2): 131~134.
    吕国锋,张伯桥,张晓祥等.中国小麦微核心种质中弱筋种质的鉴定筛选.中国农学通报,2008,24(10):260-263.
    马和平,臧建成,李毅等.生物技术在林木育种中的应用.河北林果研究,2005,20(4):343~346,365.
    马乃训,陈光才,袁金玲.国产竹类植物生物多样性及保护策略.林业科学,2007,43(4):102~106
    马玉敏.中国野生板栗群体遗传结构和核心种质构建方法.山东农业大学博士论文, 2009,43~56
    毛闻君,董文渊,赵金发等.开花刺竹子林分生长和天然更新状况调查.世界竹藤通讯,2008,6(6):25~28
    牟少华,彭镇华,孙启祥等.部分箬竹属植物的荧光AFLP分析.林业科学,2009,45(11):32~35
    宁材强,戴启惠.撑篙竹×大绿竹杂交选育的研究.广西林业科学,1995,24(4):167~168
    庞朝友,杜雄明,马峙英.棉属种间杂交基因渐渗系SSR标记及其表型性状的聚类分析.作物学报,2006,32(9):1371-1378
    庞延军,杨永华,胡成华等.从RAPD看肿节少穗竹的分类地位问题初探.南京大学学报(自然科学版). 1998
    彭华正,金群英,华锡奇等.早竹花发育相关MADS—Box基因的克隆和序列分析.首届中国林业学术大会论文集,2005
    邱丽娟,李英慧,关荣霞等.大豆核心种质和微核心种质的构建、验证与研究进展.作物学报,2009,35(4):571-579.
    全先庆,张渝洁,单雷,等.脯氨酸在植物生长和非生物胁迫耐受中的作用.生物技术通讯, 2007, 18 (1) :159~162
    阮晓赛,林新春,娄永峰等.毛竹种源遗传多样性的AFLP和ISSR分析.浙江林业科技,2008,28(2):29~33
    [61]施建敏,杨光耀,郭起荣等.江西毛竹表型特征地理变异研究.江西农业大学学报,2008,30(5):824-828
    苏海,钟明,蔡时可等.马来甜龙竹的组织培养和快速繁殖.植物生理学通讯,2004,40(4):468.
    孙敬三,朱至清主编.植物细胞工程试验技术.北京:化学工业出版社, 2006, 107
    沈程文,宁正祥,黄建安等.基于表型参数及SRAP标记的广东茶树种质遗传多样性.应用生态学报, 2009, 20(7): 1551-1558
    沈熙环.林木常规育种与生物技术的应用.林业科技开发, 2006, 20(1):1~4.
    唐启义,冯明光.实用统计分析及其DPS数据处理系统.北京:科学出版社,2002
    唐文莉,彭镇华,高健.刚竹属3种重要散生竹光系统Ⅰ基因(Lhca1)的克隆、序列分析和蛋白结构预
    测.北京林业大学学报,2008a,30(4):109~115.
    唐文莉彭镇华高健.毛竹(Phyllostachys edulis)光系统Ⅰ基因LhcaPe02全长的克隆与序列分析.安徽农业大学学报,2008b,35(2):153~158.
    田波,陈永燕,严远鑫等.一个竹类植物MADS盒基因的克隆及其在拟南芥中的表达.科学通报,2005,5(2)
    王光萍,丁雨龙,黄敏仁等.观赏竹的试管快繁研究.林业科学,2005,41(5):51~56
    王海波,范云六.用“对话”试验探索植物组织培养机制并建立适用性广的小麦组织培养方法.作物学报, 2006,32(7):964~974
    王海波,魏景芳,葛亚新等.小麦愈伤组织状态调控与原生质体培养,中国农业科学, 1996, 29(6): 8~14
    王洪新,胡志昂.植物的繁殖系统,遗传结构和遗传多样性保护.生物多样性,1996,4(2):92-96.
    王明庥主编.林木遗传育种学. 2001.北京:中国林业出版社:44~86
    卫海荣.树木的杂种优势与杂交育种.河北林业科技,1994:9(1)
    魏志刚,高玉池,刘桂丰等.白桦核心种质初步构建.林业科学,2009,45(10):74-80
    吴传银,陈英.粳稻花药培养基因型的差异的研究.遗传学报, 1987, 14(3): 168~174
    
    吴富桢.测树学实习指南.北京:中国林业出版社。1994:83-86
    吴征镒主编.中国植被.北京:科学出版社,1980:411-416
    武建云,邓玉营,丁雨龙.篌竹变种的RAPD分析.常州工学院学报. 2008, 21(1): 59~63.
    吴益民,边红武,王君晖,黄纯农.竹子悬浮细胞系的建立和组织培养试管苗移栽观察.竹子研究汇刊, 2000, 19 (1): 52~56
    谢寅峰,林候,张千千等.鹅毛竹花后叶片衰老生理特性.南京林业大学学报:自然科学版,2009(6):39~43
    邢新婷,傅懋毅,费学谦等.撑篙竹遗传变异的RAPD分析.林业科学研究. 2003, 16(6): 655~660.
    邢新婷,傅懋毅.肖贤坦.麻竹开花生物学特性观察及控制授粉的初步研究.北京林业大学学报,2005,27(6):103~107
    续九如,黄智慧.林业试验设计.北京:中国林业出版社.1995
    许彩梁,杨国祯.黄竹奇珍蓬莱竹在台湾.生态台湾, 2004, 10(5): 30~35
    杨本鹏,张树珍,辉朝茂,等,巨龙竹的组织培养和快速繁殖.植物生理学通讯,2004,40(3):346
    杨光耀,赵奇僧.苦竹类植物RAPD分析及其系统意义.江西农业大学学报,2000, 22(4): 551~553.
    杨光耀,赵奇僧.用RAPD分子标记探讨倭竹族的属间关系.竹子研究汇刊. 2001, 20(2): 1~5
    杨秀艳,傅懋毅,李劲松.粉单竹的地理变异研究.林业科学. 2007, 43(6): 45~51
    杨玉珍彭方仁.遗传标记及其在林木研究中的应用.生物技术通讯,2006,17(5):788~791.
    杨志坚,陈辉,陈世品等.糙花少穗竹天然居群表型变异.福建农林大学学报:自然科学版,2008,37(6):592-596
    余建英,何旭宏编著.数据统计分析与spss应用.北京:人民邮电出版社. 2003
    余学军,张立钦,方伟等.绿竹不同栽培类型RAPD分子标记的研究.西南林学院学报. 2005, 25(4): 98~101.
    袁金玲,傅懋毅,姜景民.麻竹人工授粉群体连锁图谱的构建.林业科技开发. 2005
    袁金玲,傅懋毅,庄金坤等.几个丛生竹开花授粉特性及麻竹苗期初步选择.竹子研究汇刊,2005,24(3):9~13
    袁金玲,顾小平,李潞滨等.孝顺竹愈伤组织诱导及植株再生,林业科学, 2009, 12(3): 35~39
    张爱民编著.植物育种亲本选配的理论与方法.北京:农业出版社,1994:1~11,79~94
    张春霞,王福升,黄月英.菲白竹组培繁殖技术研究.林业科技开发,2006,20(5):31~33.
    张光楚,陈富枢.竹类杂交育种的研究.广东林业科技,1986,(3):1~5
    张光楚,王裕霞.竹子试管苗开花的初步研究.竹子研究汇刊,2001,20(1):1-4
    张光楚王裕霞.杂种撑麻7号竹的组织培养研究.林业科学研究,2003,16(3):245~253
    张汉尧,刘小珍,龚秀会等.竹子DNA提取方法改良及ITS~RFLP分析的初步研究.江西林业科技. 2006(3): 3~5
    张绮纹,苏晓华.中国重要工业用材树种分子遗传标记.世界林业研究,1995,8(5):47-51.
    张守锋,马秋香,丁雨龙.毛竹居群遗传多样性的RAPD分析.林业科技开发. 2007, 21(2): 26~28
    张绍智,王毅,刘小烛.巨龙竹蔗糖磷酸合成酶基因的分离克隆.西南林学院学报,2008,28(1):48~50,56
    张守锋.毛竹(Phyllostachys edulis)遗传多样性研究.南京林业大学硕士论文,2005
    张铁,万京.勃氏甜龙竹的组培快繁.云南民族大学学报:自然科学版,2004.13(3):203~206
    张文燕,马乃训.竹类植物花粉的生活力和自然授粉.林业科学研究.1990,3(3):250~255
    张文燕,马乃训.竹类植物花期生物学特性.林业科学研究.1989,2(6):596~600
    张在忠,赵仁发,钟章美等.远缘杂交稻竹稻966的杂交选育与性状表现.安徽农学通报,2007,13(11):121~121,140
    赵冰,张启翔.中国蜡梅种质资源核心种质的初步构建.北京林业大学学报, 2007, 29 (增刊1) : 54 - 60
    郑蓉.绿竹遗传多样性与优良地理种源选择的研究.北京林业大学博士论文,2008
    周芳纯著.竹林培育和利用.南京林业大学《竹类研究》编委会. 1998
    朱根发,余毓君, 1995,光敏核不育水稻(31301s)原生质体培养再生成株,作物学报, 21(3): 368~372
    朱至清.一种高效的小麦花药培养新方法.植物学通报,1991, 8(A00):24~26.
    朱至清,王敬驹,孙敬三,等.通过氮源比较试验建立一种较好的水稻花药培养基.中国科学A辑:数学, 1975, 18(5):484~490
    Adams WT. Application of Isozymes in tree breeding in Pacific Northwest conifers. In:Tanksley SD and Orton TJ (Eds). Isozymes in Plant Genetics and Breeding, Part A. Amersterdam: Elsevier Science Publishers,1983, 38l~400
    Barkley NA, Newman ML, WANG ML et al..Assessment of the genetic diversity and phylogenetic relationships of a temperate bamboo collection by using transferred EST-SSR markers. Genome, 2005,48:731~737
    Biswas MK,Xu Q,Deng XX. Utility of RAPD, ISSR, IRAP and REMAP markers for the genetic analysis of Citrus spp. . Scientia Horticulturae, 2010, 124(2): 254-261
    Boccacci P, Botta R. Microsatellite variability and genetic structure in hazelnut (Corylus avellana L.) cultivars from different growing regions. Scientia Horticulturae, 2010,124(1): 128-133
    Brown AHD. Isozymes, plant population genetic structure and genetic conservation Theoretical Application Genetics, 1978, 2:145~I57
    Brown AHD, weir BS. Measuring genetic variability in plant population. In:Tanksley S D, Orton T J, eds. Isozymes in Plant Genetics and Breeding. Part A. Amersterdam: Elsevier Science Publishers, 1983, 219~239
    Chauhan N, Negi M S , Sabharwal V, et al.. Screening interspecific hybrids of Populus ( P. ciliata×maximowiczii) using AFLP markers. Theoretical and Applied Genetics, 2004, 108: 951-957
    Chen CJ, Liang YC, Qiu EF. Study of the regular pattern of geography variation and selection of Phyllostachys heterocycla cv. pubescens provenances . Journal of Bamboo and Rattan. 2002, 1(4): 301~316
    Clayton, W.D., Harman, K.T. and Williamson, H. (2006 onwards). GrassBase - The Online World Grass Flora. http://www.kew.org/data/grasses-db.html. [accessed 08 November 2006; 15:30 GMT]*
    Clark L.G., Zhang W. and Wendel J.F. A Phylogeny of the Grass Family (Poaceae) Based on of SequenceData Syst. Bot. 1995, 20 (4), 436~460
    Creer S., Thorpe R. S., Malhotra A., et al. (Trimeresurus stejnegeri). The utility of AFLPs for supporting mitochondrial DNA phylogeographical analyses in the Taiwanese bamboo viper, Journal of Evolutionary Biology. 2004, 17 (1): 100~107
    Divakaran M., Babu K. N., Ravindran P.N.,et al.. Interspecific hybridization in vanilla and molecular characterization of hybrids and selfed progenies using RAPD and AFLP markers Scientia Horticulturae, 2006,108:414-422
    Doyle, J.J., and Doyle, J.L. A rapid isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19: 11-15.
    Frankel OH. Genetic perspectives of germplasm conservation. In: Arber W, Limensee K, Peacock W J, et al, eds. Genetic Manipulation: Impact on Man and Society. Cambridge, UK: Cambridge University Press, 1984. 161—170
    Frankel OH, Brown AHD. Plant genetic resources today: A critical appraisal. In: Holden J H W, Williams J T, eds. Crop Genetic Resources: Conservation & Evalution. London: George Allen & Urwin Ltd, 1984. 249—257
    Friar E, Kochert G.Bamboo germplasm screening with nuclear restriction fragment length polymorphisms. Theoretical and Applied Genetics,1991,(82):697~703
    Friar E and Kochert G. A study of genetic variation and evolution of Phyllostachys (Bambusoideae: Poaceae) using nuclear restriction fragment length polymorphisms . Theoretical and Applied Genetics, 1993
    Gamborg OL, Miller RA, Ojima K. Nutrient requirements of suspension cultures of soybean root cells . Experimental Cell Research, 1968,(50):151~158
    Gillis K., Gielis J., Peeters H., et al. Somatic embryogenesis from mature Bambusa balcooa Roxburgh as basis for mass production of elite forestry bamboos. Plant Cell Tiss Organ Cult, 2007, 91(2):115~123
    Gonai T., Manabe T., Inoue E., et al. Overcoming hybrid lethality in a cross between Japanese pear and apple using gamma irradiation and confirmation of hybrid status using flow cytometry and SSR markers. Scientia Horticulturae, 2006, 109(1):43-47
    Guo ZH, Cao YY, Li DZ, et al. Genetic Variation and Evolution of the Alpine Bamboos (Poaceae: Bambusoideae) using DNA Sequence Data . Journal of Plant Research, 2001,114(3):315~322
    Hamrick, J L and M D Loveless. Associations between the breeding system and the genetic structure of tropical tree populations.In:J. Bock and Y. B. Linhart (eds. ), Evolutionary Ecology of Plants.Westview Press, Boulder, 1989, 129~146
    Hsiao JY and Lee SM.. Genetic diversity and microgeographic differentiation of Yushan cane ( Yushania niitakayamensis, Poaceae) in Taiwan. Molecular Ecology ,1999, 8:263~270
    Hsiao JY and Rieseberg LH. Population genetic structure of Yushania niitakayamensis (Bambusoideae, Poaceae) in Taiwan. Molecular Ecology,1994,3:201~208
    Huang LC, Huang B L. Bamboo tissue culture. In: Recent Advances in Botany. Institute of Botany, Academia Sinica Monograph Series. 1993, (13), 203~212
    Hunter CP. Plant regeneration from microspores of barley ( Hordeum valgare L. ) [D]. London, LondonUniversity, 1988
    Isagi Y., Shimada K., Kushima H., et al. Clonal structure and flowering traits of a bamboo [Phyllostachys pubescens (Mazel) Ohwi] stand grown from a simultaneous flowering as revealed by AFLP analysis. Molecular Ecology. 2004,,13(7),: 2017~2021
    Kaul K., Karthigeyan S., Dhyani D. et al.. Morphological and molecular analyses of Rosa damascena×R. bourboniana interspecific hybrids.Scientia Horticulturae, 2009,122:258~263
    Kelchner, SA, LG Clark. Molecular Evolution and Phylogenetic Utility of the Chloroplast rpl16 Intron in Chusquea and the Bambusoideae (Poaceae). Molecular Phylogenetics and Evolution. 1997,8(3): 385~397
    Kleinhenz V., Midmore D. J.. Aspects of bamboo agronomy. Advances in Agronomy, 2001, 74:99~153
    Kumar L.S.. DNA markers in plant improvement: An overview. Biotechnology Advances, 1999, 17:143~182
    Kobayashi M. Phylogeny of world bamboos analysed by restriction fragment length polymorphisms of chloroplast DNA[M]. In : Chapman G.P. ed. The bamboos. London : Academic press , 1997 :227~236
    Lacis G,Rashal I, Ruisa S, et al. Assessment of genetic diversity of Latvian and Swedish sweet cherry (Prunus avium L.) genetic resources collections by using SSR (microsatellite) markers. Scientia Horticulturae, 2009,121(4): 451-457
    Lai C.C. and Hsiao J.Y.. Genetic variation of Phyllostachys pubescens (Bambusoideae, Poaceae) in Taiwan based on DNA polymorphisms.. Botanical Bulletin of Academia Sinica.1997,38:145~152
    Lewontin, R. C., J. L. Hubby . A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics,1966, 54: 595–609
    Lima ML, Oliveira KM, Arizono H et al.. Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane ( Saccharum spp.). Theoretical and Applied Genetics, 2002,104:30~38
    Lin XC , Ruan XS, Lou YF, et al. Genetic similarity among cultivars of Phyllostachys pubescens. Plant Systematics and Evolution.
    Lin CS, Lin CC, Chang WC. Effect of thidiazuron on vegetative tissue~derived somatic embryogenesis and flowering of bamboo Bambusa edulis . Plant Cell, Tissue and Organ Culture, 2004, 76:75~82
    Lin CS, Liang CJ, Hsaio HW, et al. In vitro flowering of green and albino Dendrocalamus latiflorus . New Forests , 2007, 34:177~186
    Lo T.Y., Cui H.Z., Tang P.W.C. and Leung H.C.. Strength analysis of bamboo by microscopic investigation of bamboo fibre. Engineering Structures, 2005, 27: 61~73
    Marulanda, Marta Leonor. Analyzing the genetic diversity of Guadua spp. in Colombia using rice and sugarcane microsatellites. Crop Breeding and Applied Biotechnology, 2007, 7(1): 43~512
    Mathews,S. and Sharrock,R.A. The phytochrome gene family in grasses (Poaceae): a phylogeny and evidence that grasses have a subset of the loci found in dicot angio~sperms Mol. Biol. Evol. 1996, 13 (8), 1141~1150
    Mehta UI, Rao VR, Ram HYM. Somatic embryogenesis in bamboo. In: Proc. 5th Int Congr Plant Tissue Cell Culture. Plant Tissue Cluture. Tokyo, Japan, 1982, 109~110
    Mitton JB. Conifers In: Tanksley S D, Orton T J, eds. Isozymes in Plant Genetics and Breeding, Part B. Amersterdam: Elsevier Science Publishers, 1983,443~472
    Moganedi K.L.M., Colpaert N., Breyne P., et al.. Determination of genetic stability of grafted marula trees using AFLP markers . Scientia Horticulturae, 2007, 111(3): 293-299
    Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures . Physiol. Plant, 1962, (15): 473~497
    Nayak S., Rout G. R.. Isolation and characterization of microsatellites in Bambusa arundinacea and cross species amplification in other bamboos. Plant Breeding, 2005,124(6): 599~602
    Ogita S. Callus and Cell Suspension Culture of Bamboo Plant Phyllostachys nigra . Plant Biotechnology, 2005, 22(2): 119~125
    Potrykus I, Harms CT and L?rz H. Callus formation from cell culture protoplasts of corn (Zea mays L.) .Theor. Appl. Genet, 1979, (54): 209~214
    Ramanayake S M S D , Meemaduma VN and Weerawardene TE. Genetic diversity and relationships between nine species of bamboo in Sri Lanka, using Random Amplified Polymorphic DNA. Plant Systematics and Evolution. 2007
    Rao I.U., Rao I.V.R., and Narang V..Somatic embryogenesis and regeneration of plants in the bamboo Dendrocalamus strictus, Plant Cell Reports, 1985, 4(4): 191~194
    Rao K.S., Ramakrishnan P.S.. Comparative analysis of the population dynamics of two bamboo species, Dendrocalamus hamiltonii and Neohouzeua dulloa, in a successional environment .Forest Ecology and Management, 1987, 21:177~189
    Ramanayake SMSD., Yakandawala K. Incidence of Flowering, Death and Phenology of Development in the Giant Bamboo (Dendrocalamus giganteus Wall. ex Munro). Annals of Botany, 1998, 82:779~785
    Scurlock JMO, Dayton DC and Hames B. Bamboo: an overlooked biomass resource? Biomass and Bioenergy, 2000, 19:229~244
    R. Sánchez-Pérez, D. Ruiz, F. Dicenta, J. Egea et al. Application of simple sequence repeat (SSR) markers in apricot breeding: molecular characterization, protection, and genetic relationships.Scientia Horticulturae, 2005,103(3): 305-315
    Sharma RK, Gupta P, Sharma V, et al.. Evaluation of rice and sugarcane SSR markers for phylogenetic and genetic diversity analyses in bamboo. Genome. 2008 , 51(2):91~103.
    Sharma V, Bhardwaj P, Kumar R et al. Identification and cross-species amplification of EST derived SSR markers in different bamboo species. Conservation Genetics, 2009, 10(3): 721-724
    Shinjiro O., 2005, Callus and cell suspension culture of bamboo plant Phyllostachys nigra, Plant Biotechnology, 22(2): 119~125
    Suyama Y., Obayashi K., Hayashi I.. Clonal structure in a dwarf bamboo (Sasa senanensis) population inferred from amplified fragment length polymorphism (AFLP) fingerprints. Molecular Ecology. 2000, 9(7): 901~906
    Tang WL. Cloning and sequence analysis of the light harvesting complex I gene (Lhca1) from three kinds of Phyllostachys and structure prediction of the protein. Journal of Beijing Forestry University. 2008. 30: 4, 109~115. 16
    Toshiyuki Matsui, Pankaj Kumar Bhowmik, Kyosuke Yokozeki. Phenylalanine Ammonia~Lyase in Moso Bamboo Shoot: Molecular Cloning and Gene Expression During Storage. Asian Journal of Plant Sciences, 2004, 3 ( 3) , 315~319
    Trevor R Hodkinson, Stephen A Renvoize, Graínne NíChonghaile, et al. A Comparison of ITS Nuclear rDNA Sequence Data and AFLP Markers for Phylogenetic Studies in Phyllostachys (Bambusoideae, Poaceae) . Journal of Plant Research, 2000, 113(1111): 259~269
    Triest L. Molecular ecology and biogeography of mangrove trees towards conceptual insights on gene flow and barriers: A review . Aquatic Botany. 2008, 89(2): 138-154
    Watanabe M, Ito M, Kurita S. Chloroplast DNA phylogeny of Asian bamboos ( Bmbusoideae:Poaceae) and its systematic implication. Plant Res, 1994, 107: 253~261
    Wrights S. Some polymorphic isozymes in the sold endosperm of sitka spruce. Evolution, 1965,19:358~420 Yang CD and Yeh FB. Efficient Algorithm on Optimal Hankel Norm Approximation for Multivariable Systems, IEEE Trans. Automatic Control, 1992, 37(6): 815~820
    Yang HQ. A molecular phylogenetic and fruit evolutionary analysis of the major groups of the paleotropical woody bamboos (Gramineae: Bambusoideae) based on nuclear ITS, GBSSI gene and plastid trnL~F DNA sequences. Molecular Phylogenetics & Evolution, 2008, 48(3):809~24
    Yeh ML, Chang WC. Plant regeneration through somatic embryogenesis in callus culture of green bamboo (Bambusa oldhamii Munro) . Theor Appl Genet, 1986a, 73: 161~163
    Yeh ML, Chang WC. Somatic embryogenesis and subsequent plant regeneration from inflorescence callus of Bambusa beecheyana Munro var. beecheyana. Plant Cell Reports, 1986b, 5: 409~411
    Yuko Miyazaki, Naoki Ohnishi, Kimiko Hirayama, et al.. Development and characterization of polymorphic microsatellite DNA markers for Sasa senanensis (Poaceae: Bambuseae). Conservation Genetics, 2009,10: 585~587